Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas
Abstract
:1. Introduction
2. Results
2.1. MIR193B/MIR365A Genes Are Hypermethylated in Human Meningiomas
2.2. DNA Hypermethylation of MIR193B Corresponds to Decreased Expression of Hsa-miR-193b-3p and 193b-5p in Meningiomas
2.3. MIR193B DNA Methylation and Expression of Hsa-miR-193b-3p Diffrentiate Benign and Atypical Meningiomas
2.4. Hsa-miR-193b-3p Regulates the Expression of CCND1 and Level of Cyclin D1 in Meningioma IOMM-Lee Cells
2.5. Hsa-miR-193b-3p Influences Cell Viability and Proliferation
2.6. The Expression of Cyclin D1 Is Higher in High-Grade Than Benign Meningiomas
3. Discussion
4. Materials and Methods
4.1. Description of the Patients
4.2. DNA Methylation
4.3. Measurement of miRNA Relative Expression Levels
4.4. Immunohistochemistry
4.5. In Vitro Cell Line Culture and Transfection with miRNA Mimics
4.6. Western Blot
4.7. Luciferase Reporter Gene Assay
4.8. Functional In Vitro Assays
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Low, J.T.; Ostrom, Q.T.; Cioffi, G.; Neff, C.; Waite, K.A.; Kruchko, C.; Barnholtz-Sloan, J.S. Primary Brain and Other Central Nervous System Tumors in the United States (2014–2018): A Summary of the CBTRUS Statistical Report for Clinicians. Neurooncol. Pract. 2022, 9, 165–182. [Google Scholar] [CrossRef] [PubMed]
- Louis, D.N.; Sahm, F.; Perry, A.; von Deimling, A.; Claus, B.E.; Mawrin, C.; Brastianos, P.K.; Meningiomas, S.S. Central Nervous System Tumours. In WHO Classification of Tumours; Brat, D.J., Ellison, D.W., Figarella-Branger, D., Hawkins, C., Louis, D.N., Ng, H.K., Perry, A., Pfister, S.M., Refeinberger, G., Soffietti, R., et al., Eds.; International Agency for Research on Cancer: Lyon, France, 2021. [Google Scholar]
- Robert, S.M.; Vetsa, S.; Nadar, A.; Vasandani, S.; Youngblood, M.W.; Gorelick, E.; Jin, L.; Marianayagam, N.; Erson-Omay, E.Z.; Günel, M.; et al. The Integrated Multiomic Diagnosis of Sporadic Meningiomas: A Review of Its Clinical Implications. J. Neurooncol. 2022, 156, 205–214. [Google Scholar] [CrossRef]
- He, S.; Pham, M.H.; Pease, M.; Zada, G.; Giannotta, S.L.; Wang, K.; Mack, W.J. A Review of Epigenetic and Gene Expression Alterations Associated with Intracranial Meningiomas. Neurosurg. Focus 2013, 35, E5. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Croce, C.M. The Role of MicroRNAs in Human Cancer. Signal Transduct. Target. Ther. 2016, 1, 15004. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, X.; Cobb, G.P.; Anderson, T.A. MicroRNAs as Oncogenes and Tumor Suppressors. Dev. Biol. 2007, 302, 1–12. [Google Scholar] [CrossRef]
- Chakrabortty, A.; Patton, D.J.; Smith, B.F.; Agarwal, P. MiRNAs: Potential as Biomarkers and Therapeutic Targets for Cancer. Genes 2023, 14, 1375. [Google Scholar] [CrossRef]
- Wang, L.; Chen, S.; Liu, Y.; Zhang, H.; Ren, N.; Ma, R.; He, Z. The Biological and Diagnostic Roles of MicroRNAs in Meningiomas. Rev. Neurosci. 2020, 31, 771–778. [Google Scholar] [CrossRef]
- Saviana, M.; Le, P.; Micalo, L.; Del Valle-Morales, D.; Romano, G.; Acunzo, M.; Li, H.; Nana-Sinkam, P. Crosstalk between MiRNAs and DNA Methylation in Cancer. Genes 2023, 14, 1075. [Google Scholar] [CrossRef]
- Sahm, F.; Schrimpf, D.; Stichel, D.; Jones, D.T.W.; Hielscher, T.; Schefzyk, S.; Okonechnikov, K.; Koelsche, C.; Reuss, D.E.; Capper, D.; et al. DNA Methylation-Based Classification and Grading System for Meningioma: A Multicentre, Retrospective Analysis. Lancet Oncol. 2017, 18, 682–694. [Google Scholar] [CrossRef]
- Olar, A.; Wani, K.M.; Wilson, C.D.; Zadeh, G.; DeMonte, F.; Jones, D.T.W.; Pfister, S.M.; Sulman, E.P.; Aldape, K.D. Global Epigenetic Profiling Identifies Methylation Subgroups Associated with Recurrence-Free Survival in Meningioma. Acta Neuropathol. 2017, 133, 431–444. [Google Scholar] [CrossRef]
- Wang, J.Z.; Patil, V.; Liu, J.; Dogan, H.; Tabatabai, G.; Yefet, L.S.; Behling, F.; Hoffman, E.; Bunda, S.; Yakubov, R.; et al. Increased MRNA Expression of CDKN2A Is a Transcriptomic Marker of Clinically Aggressive Meningiomas. Acta Neuropathol. 2023, 146, 145–162. [Google Scholar] [CrossRef] [PubMed]
- Barski, D.; Wolter, M.; Reifenberger, G.; Riemenschneider, M.J. Hypermethylation and Transcriptional Downregulation of the TIMP3 Gene Is Associated with Allelic Loss on 22q12.3 and Malignancy in Meningiomas. Brain Pathol. 2010, 20, 623–631. [Google Scholar] [CrossRef] [PubMed]
- Bujko, M.; Kober, P.; Rusetska, N.; Wakuła, M.; Goryca, K.; Grecka, E.; Matyja, E.; Neska, J.; Mandat, T.; Bonicki, W.; et al. Aberrant DNA Methylation of Alternative Promoter of DLC1 Isoform 1 in Meningiomas. J. Neurooncol. 2016, 130, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Stögbauer, L.; Stummer, W.; Senner, V.; Brokinkel, B. Telomerase Activity, TERT Expression, HTERT Promoter Alterations, and Alternative Lengthening of the Telomeres (ALT) in Meningiomas–A Systematic Review. Neurosurg. Rev. 2020, 43, 903–910. [Google Scholar] [CrossRef] [PubMed]
- Morales, S.; Monzo, M.; Navarro, A. Epigenetic Regulation Mechanisms of MicroRNA Expression. Biomol. Concepts 2017, 8, 203–212. [Google Scholar] [CrossRef]
- Glaich, O.; Parikh, S.; Bell, R.E.; Mekahel, K.; Donyo, M.; Leader, Y.; Shayevitch, R.; Sheinboim, D.; Yannai, S.; Hollander, D.; et al. DNA Methylation Directs MicroRNA Biogenesis in Mammalian Cells. Nat. Commun. 2019, 10, 5657. [Google Scholar] [CrossRef]
- El-Gewely, M.; Andreassen, M.; Walquist, M.; Ursvik, A.; Knutsen, E.; Nystad, M.; Coucheron, D.; Myrmel, K.; Hennig, R.; Johansen, S. Differentially Expressed MicroRNAs in Meningiomas Grades I and II Suggest Shared Biomarkers with Malignant Tumors. Cancers 2016, 8, 31. [Google Scholar] [CrossRef]
- Rauhala, H.E.; Jalava, S.E.; Isotalo, J.; Bracken, H.; Lehmusvaara, S.; Tammela, T.L.J.; Oja, H.; Visakorpi, T. MiR-193b Is an Epigenetically Regulated Putative Tumor Suppressor in Prostate Cancer. Int. J. Cancer 2010, 127, 1363–1372. [Google Scholar] [CrossRef]
- Kaukoniemi, K.M.; Rauhala, H.E.; Scaravilli, M.; Latonen, L.; Annala, M.; Vessella, R.L.; Nykter, M.; Tammela, T.L.J.; Visakorpi, T. Epigenetically Altered MiR-193b Targets Cyclin D1 in Prostate Cancer. Cancer Med. 2015, 4, 1417–1425. [Google Scholar] [CrossRef]
- Mazzu, Y.Z.; Yoshikawa, Y.; Nandakumar, S.; Chakraborty, G.; Armenia, J.; Jehane, L.E.; Lee, G.S.M.; Kantoff, P.W. Methylation-Associated MiR-193b Silencing Activates Master Drivers of Aggressive Prostate Cancer. Mol. Oncol. 2019, 13, 1944–1958. [Google Scholar] [CrossRef]
- Mazzu, Y.Z.; Hu, Y.; Soni, R.K.; Mojica, K.M.; Qin, L.X.; Agius, P.; Waxman, Z.M.; Mihailovic, A.; Socci, N.D.; Hendrickson, R.C.; et al. MiR-193b-Regulated Signaling Networks Serve as Tumor Suppressors in Liposarcoma and Promote Adipogenesis in Adipose-Derived Stem Cells. Cancer Res. 2017, 77, 5728–5740. [Google Scholar] [CrossRef] [PubMed]
- Lü, L.; Liu, T.; Gao, J.; Zeng, H.; Chen, J.; Gu, X.; Mei, Z. Aberrant Methylation of MicroRNA-193b in Human Barrett’s Esophagus and Esophageal Adenocarcinoma. Mol. Med. Rep. 2016, 14, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Khordadmehr, M.; Shahbazi, R.; Sadreddini, S.; Baradaran, B. MiR-193: A New Weapon against Cancer. J. Cell. Physiol. 2019, 234, 16861–16872. [Google Scholar] [CrossRef]
- Zhong, Q.; Wang, T.; Lu, P.; Zhang, R.; Zou, J.; Yuan, S. MiR-193b Promotes Cell Proliferation by Targeting Smad3 in Human Glioma. J. Neurosci. Res. 2014, 92, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Zhao, Z.; Ma, J.; Chen, J.; Peng, J.; Yang, S.; He, Y. Deregulation of MiR-193b Affects the Growth of Colon Cancer Cells via Transforming Growth Factor-β and Regulation of the SMAD3 Pathway. Oncol. Lett. 2017, 13, 2557–2562. [Google Scholar] [CrossRef]
- Chen, J.; Feilotter, H.E.; Paré, G.C.; Zhang, X.; Pemberton, J.G.W.; Garady, C.; Lai, D.; Yang, X.; Tron, V.A. MicroRNA-193b Represses Cell Proliferation and Regulates Cyclin D1 in Melanoma. Am. J. Pathol. 2010, 176, 2520–2529. [Google Scholar] [CrossRef]
- Hu, H.; Li, S.; Liu, J.; Ni, B. MicroRNA-193b Modulates Proliferation, Migration, and Invasion of Non-Small Cell Lung Cancer Cells. Acta Biochim. Biophys. Sin. 2012, 44, 424–430. [Google Scholar] [CrossRef]
- Ikeda, Y.; Tanji, E.; Makino, N.; Kawata, S.; Furukawa, T. MicroRNAs Associated with Mitogen-Activated Protein Kinase in Human Pancreatic Cancer. Mol. Cancer Res. 2012, 10, 259–269. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, Y.; Zhao, L.; Liu, S.; Yu, S.; Ma, Y.; Sun, G. MicroRNA-193b Inhibits the Proliferation, Migration and Invasion of Gastric Cancer Cells via Targeting Cyclin D1. Acta Histochem. 2016, 118, 323–330. [Google Scholar] [CrossRef]
- Xu, C.; Liu, S.; Fu, H.; Li, S.; Tie, Y.; Zhu, J.; Xing, R.; Jin, Y.; Sun, Z.; Zheng, X. MicroRNA-193b Regulates Proliferation, Migration and Invasion in Human Hepatocellular Carcinoma Cells. Eur. J. Cancer 2010, 46, 2828–2836. [Google Scholar] [CrossRef]
- Hashemi, Z.S.; Forouzandeh Moghadam, M.; Khalili, S.; Ghavami, M.; Salimi, F.; Sadroddiny, E. Additive Effect of MetastamiR-193b and Breast Cancer Metastasis Suppressor 1 as an Anti-Metastatic Strategy. Breast Cancer 2019, 26, 215–228. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.R.; Yeh, H.C.; Wang, W.J.; Ke, H.L.; Lin, H.H.; Hsu, W.C.; Chao, S.Y.; Hour, T.C.; Wu, W.J.; Pu, Y.S.; et al. MiR-193b Mediates CEBPD-Induced Cisplatin Sensitization Through Targeting ETS1 and Cyclin D1 in Human Urothelial Carcinoma Cells. J. Cell. Biochem. 2017, 118, 1563–1573. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Sun, Y.; Yang, H.; Li, J.; Yu, S.; Chang, X.; Lu, Z.; Chen, J. Deregulation of the MiR-193b-KRAS Axis Contributes to Impaired Cell Growth in Pancreatic Cancer. PLoS ONE 2015, 10, e0125515. [Google Scholar] [CrossRef] [PubMed]
- Leivonen, S.K.; Mäkelä, R.; Östling, P.; Kohonen, P.; Haapa-Paananen, S.; Kleivi, K.; Enerly, E.; Aakula, A.; Hellström, K.; Sahlberg, N.; et al. Protein Lysate Microarray Analysis to Identify MicroRNAs Regulating Estrogen Receptor Signaling in Breast Cancer Cell Lines. Oncogene 2009, 28, 3926–3936. [Google Scholar] [CrossRef] [PubMed]
- Maxwell, M.; Galanopoulos, T.; Antoniades, H.N. Expression of Cyclin D1 Proto-Oncogene MRNA in Primary Meningiomas May Contribute to Tumorigenesis. Int. J. Oncol. 1996, 9, 1213–1217. [Google Scholar] [CrossRef]
- Montalto, F.I.; De Amicis, F. Cyclin D1 in Cancer: A Molecular Connection for Cell Cycle Control, Adhesion and Invasion in Tumor and Stroma. Cells 2020, 9, 2648. [Google Scholar] [CrossRef]
- Milenković, S.; Marinkovic, T.; Jovanovic, M.B.; Djuricic, S.; Berisavac, I.I.; Berisavac, I. Cyclin D1 Immunoreactivity in Meningiomas. Cell. Mol. Neurobiol. 2008, 28, 907–913. [Google Scholar] [CrossRef]
- Alama, A.; Barbieri, F.; Spaziante, R.; Bruzzo, C.; Dadati, P.; Dorcaratto, A.; Ravetti, J.L. Significance of Cyclin D1 Expression in Meningiomas: A Preliminary Study. J. Clin. Neurosci. 2007, 14, 355–358. [Google Scholar] [CrossRef]
- Cheng, G.; Zhang, L.; Lv, W.; Dong, C.; Wang, Y.; Zhang, J. Overexpression of Cyclin D1 in Meningioma Is Associated with Malignancy Grade and Causes Abnormalities in Apoptosis, Invasion and Cell Cycle Progression. Med. Oncol. 2015, 32, 439. [Google Scholar] [CrossRef]
- Young, J.S.; Kidwell, R.L.; Zheng, A.; Haddad, A.F.; Aghi, M.K.; Raleigh, D.R.; Schulte, J.D.; Butowski, N.A. CDK 4/6 Inhibitors for the Treatment of Meningioma. Front. Oncol. 2022, 12, 931371. [Google Scholar] [CrossRef]
- Munoz, J.L.; Walker, N.D.; Mareedu, S.; Pamarthi, S.H.; Sinha, G.; Greco, S.J.; Rameshwar, P. Cycling Quiescence in Temozolomide Resistant Glioblastoma Cells Is Partly Explained by MicroRNA-93 and -193-Mediated Decrease of Cyclin D. Front. Pharmacol. 2019, 10, 134. [Google Scholar] [CrossRef]
- Belanger, K.; Ung, T.H.; Damek, D.; Lillehei, K.O.; Ormond, D.R. Concomitant Temozolomide plus Radiotherapy for High-Grade and Recurrent Meningioma: A Retrospective Chart Review. BMC Cancer 2022, 22, 367. [Google Scholar] [CrossRef]
- Chamberlain, M.C.; Tsao-Wei, D.D.; Groshen, S. Temozolomide for Treatment-Resistant Recurrent Meningioma. Neurology 2004, 62, 1210–1212. [Google Scholar] [CrossRef]
- Fortin, J.P.; Triche, T.J.; Hansen, K.D. Preprocessing, Normalization and Integration of the Illumina HumanMethylationEPIC Array with Minfi. Bioinformatics 2017, 33, 558–560. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, B.S.; Schwartz, D.A.; Yang, I.V.; Kechris, K.J. Comb-p: Software for Combining, Analyzing, Grouping and Correcting Spatially Correlated P-Values. Bioinformatics 2012, 28, 2986–2988. [Google Scholar] [CrossRef] [PubMed]
- McCarty, K.S.; Szabo, E.; Flowers, J.L.; Cox, E.B.; Leight, G.S.; Miller, L.; Konrath, J.; Soper, J.T.; Budwit, D.A.; Creasman, W.T. Use of a Monoclonal Anti-Estrogen Receptor Antibody in the Immunohistochemical Evaluation of Human Tumors. Cancer Res. 1986, 46, 4244–4249. [Google Scholar]
- McGeary, S.E.; Lin, K.S.; Shi, C.Y.; Pham, T.M.; Bisaria, N.; Kelley, G.M.; Bartel, D.P. The Biochemical Basis of MicroRNA Targeting Efficacy. Science 2019, 366, eaav1741. [Google Scholar] [CrossRef] [PubMed]
Clinical Feature | |
Number of patients | 58 |
Females | 37/58 (63.8%) |
Males | 21/58 (36.2%) |
Age at surgery (years; median (range)) | 60 (32–86) |
Meningioma subtype | |
WHO grade I | 24/58 (41.4%) |
Meningothelial | 15 (25.9%) |
Fibrous | 5 (8.6%) |
Transitional | 4 (6.9%) |
WHO grade II, atypical | 22/58 (37.9%) |
WHO grade III, anaplastic | 12/58 (20.7%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kober, P.; Mossakowska, B.J.; Rusetska, N.; Baluszek, S.; Grecka, E.; Konopiński, R.; Matyja, E.; Oziębło, A.; Mandat, T.; Bujko, M. Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas. Int. J. Mol. Sci. 2023, 24, 13483. https://doi.org/10.3390/ijms241713483
Kober P, Mossakowska BJ, Rusetska N, Baluszek S, Grecka E, Konopiński R, Matyja E, Oziębło A, Mandat T, Bujko M. Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas. International Journal of Molecular Sciences. 2023; 24(17):13483. https://doi.org/10.3390/ijms241713483
Chicago/Turabian StyleKober, Paulina, Beata Joanna Mossakowska, Natalia Rusetska, Szymon Baluszek, Emilia Grecka, Ryszard Konopiński, Ewa Matyja, Artur Oziębło, Tomasz Mandat, and Mateusz Bujko. 2023. "Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas" International Journal of Molecular Sciences 24, no. 17: 13483. https://doi.org/10.3390/ijms241713483
APA StyleKober, P., Mossakowska, B. J., Rusetska, N., Baluszek, S., Grecka, E., Konopiński, R., Matyja, E., Oziębło, A., Mandat, T., & Bujko, M. (2023). Epigenetic Downregulation of Hsa-miR-193b-3p Increases Cyclin D1 Expression Level and Cell Proliferation in Human Meningiomas. International Journal of Molecular Sciences, 24(17), 13483. https://doi.org/10.3390/ijms241713483