HLA-F and LILRB1 Genetic Polymorphisms Associated with Alloimmunisation in Sickle Cell Disease
Abstract
:1. Introduction
2. Results
2.1. Alloimmunisation of SCD Patients
2.2. Hb Mutation Is Associated with RBC Transfusion and Alloimmunisation
2.3. LILRB1 and HLA-F Genetic Polymorphisms Involved in Protein Expression Are Associated with SCD Patient Alloimmunisation
3. Discussion
4. Materials and Methods
4.1. SCD Patient Cohort and Sample Collection
4.2. Antibody Identification and Red Blood Cell Antigen Characterisation
4.3. HLA Ib, LILRB1 and 2, KIR3DS1, and NKG2C Genetic Analyses
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kavanagh, P.L.; Fasipe, T.A.; Wun, T. Sickle Cell Disease: A Review. JAMA 2022, 328, 57–68. [Google Scholar] [CrossRef]
- Bender, M.A. Sickle Cell Disease. In GeneReviews((R)); Adam, M.P., Mirzaa, G.M., Pagon, R.A., Wallace, S.E., Bean, L.J.H., Gripp, K.W., Amemiya, A., Eds.; GeneReviews®: Seattle, WA, USA, 1993. [Google Scholar]
- Ashley-Koch, A.; Yang, Q.; Olney, R.S. Sickle Hemoglobin (Hb S) Allele and Sickle Cell Disease: A HuGE Review. Am. J. Epidemiol. 2000, 151, 839–845. [Google Scholar] [CrossRef]
- Habara, A.; Steinberg, M.H. Minireview: Genetic basis of heterogeneity and severity in sickle cell disease. Exp. Biol. Med. 2016, 241, 689–696. [Google Scholar] [CrossRef]
- Origa, R. beta-Thalassemia. Genet. Med. 2017, 19, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Saraf, S.L.; Molokie, R.E.; Nouraie, M.; Sable, C.A.; Luchtman-Jones, L.; Ensing, G.J.; Campbell, A.D.; Rana, S.R.; Niu, X.M.; Machado, R.F.; et al. Differences in the clinical and genotypic presentation of sickle cell disease around the world. Paediatr. Respir. Rev. 2014, 15, 4–12. [Google Scholar] [CrossRef]
- Shah, F.; Dwivedi, M. Pathophysiology and recent therapeutic insights of sickle cell disease. Ann. Hematol. 2020, 99, 925–935. [Google Scholar] [CrossRef] [PubMed]
- Mehari, A.; Klings, E.S. Chronic Pulmonary Complications of Sickle Cell Disease. Chest 2016, 149, 1313–1324. [Google Scholar] [CrossRef]
- Gardner, K.; Douiri, A.; Drasar, E.; Allman, M.; Mwirigi, A.; Awogbade, M.; Thein, S.L. Survival in adults with sickle cell disease in a high-income setting. Blood 2016, 128, 1436–1438. [Google Scholar] [CrossRef]
- Linder, G.E.; Chou, S.T. Red cell transfusion and alloimmunization in sickle cell disease. Haematologica 2021, 106, 1805–1815. [Google Scholar] [CrossRef] [PubMed]
- Calhoun, L.; Johnson, C.; Petz, L.D.; Shulman, I.A.; Herron, R.M. The sickle cell hemolytic transfusion reaction syndrome. Transfusion 1997, 37, 382–392. [Google Scholar] [CrossRef]
- Miller, S.T.; Kim, H.-Y.; Weiner, D.L.; Wager, C.G.; Gallagher, D.; Styles, L.A.; Dampier, C.D.; Roseff, S.D.; Investigators of the Sickle Cell Disease Clinical Research Network (SCDCRN). Red blood cell alloimmunization in sickle cell disease: Prevalence in 2010. Transfusion 2013, 53, 704–709. [Google Scholar] [CrossRef] [PubMed]
- Floch, A.; Gien, D.; Tournamille, C.; Chami, B.; Habibi, A.; Galactéros, F.; Bierling, P.; Djoudi, R.; Pondarré, C.; Peyrard, T.; et al. High immunogenicity of red blood cell antigens restricted to the population of African descent in a cohort of sickle cell disease patients. Transfusion 2018, 58, 1527–1535. [Google Scholar] [CrossRef]
- Fogarty, H.; Sardana, M.; Sheridan, L.; Chieng, P.; Kelly, S.; Ngwenya, N.; Sheehan, C.; Morris, K.; Tuohy, E. Motivators and barriers to blood donation among potential donors of African and Caucasian ethnicity. Blood Transfus. 2023, 21, 13–23. [Google Scholar] [CrossRef]
- Haw, J.; Walrond, J.; Jayachandran, J.; Dordunoo, D.; Eche-Ameh, H.; Muwhen, U.; Phiri, P.; Rastogi, J.; Tinga, B. Sickle cell disease and the need for blood: Barriers to donation for African, Caribbean, and Black young adults in Canada. Transfusion 2023, 63, 1324–1332. [Google Scholar] [CrossRef] [PubMed]
- Takasaki, K.; Friedman, D.F.; Uter, S.; Vege, S.; Westhoff, C.M.; Chou, S.T. Variant RHD alleles and Rh immunization in patients with sickle cell disease. Br. J. Haematol. 2023, 201, 1220–1228. [Google Scholar] [CrossRef]
- Miller, J.D.; Weber, D.A.; Ibegbu, C.; Pohl, J.; Altman, J.D.; Jensen, P.E. Analysis of HLA-E peptide-binding specificity and contact residues in bound peptide required for recognition by CD94/NKG2. J. Immunol. 2003, 171, 1369–1375. [Google Scholar] [CrossRef] [PubMed]
- Noizat-Pirenne, F. Relevance of blood groups in transfusion of sickle cell disease patients. Comptes Rendus Biol. 2013, 336, 152–158. [Google Scholar] [CrossRef]
- Meunier, N.; Rodet, M.; Bonin, P.; Chadebech, P.; Chami, B.; Lee, K.; Habibi, A.; Bachir, D.; Galacteros, F.; Bierling, P.; et al. Study of 206 transfused sickle cell disease patients: Immunization, transfusion safety and red blood cell supply. Transfus. Clin. Biol. 2008, 15, 377–382. [Google Scholar] [CrossRef]
- Floch, L. Alloimmunisation Anti-Érythrocytaire et Variants du Système RH: Nouvelles Approches Bioinformatiques. Thèse. 2020. Available online: https://www.theses.fr/2020PESC0070 (accessed on 25 July 2023).
- Reisner, E.G.; Kostyu, D.D.; Phillips, G.; Walker, C.; Dawson, D.V. Alloantibody responses in multiply transfused sickle cell patients. Tissue Antigens 1987, 30, 161–166. [Google Scholar] [CrossRef]
- Telen, M.J.; Afenyi-Annan, A.; Garrett, M.E.; Combs, M.R.; Orringer, E.P.; Ashley-Koch, A.E. Alloimmunization in sickle cell disease: Changing antibody specificities and association with chronic pain and decreased survival. Transfusion 2015, 55, 1378–1387. [Google Scholar] [CrossRef]
- Meier, E.R. Treatment Options for Sickle Cell Disease. Pediatr. Clin. North Am. 2018, 65, 427–443. [Google Scholar] [CrossRef] [PubMed]
- Pirenne, F.; Yazdanbakhsh, K. How I safely transfuse patients with sickle-cell disease and manage delayed hemolytic transfusion reactions. Blood 2018, 131, 2773–2781. [Google Scholar] [CrossRef]
- Gomes, E.G.d.C.; Machado, L.A.F.; de Oliveira, L.C.; Neto, J.F.N. The erythrocyte alloimmunisation in patients with sickle cell anaemia: A systematic review. Transfus. Med. 2019, 29, 149–161. [Google Scholar] [CrossRef]
- Wong, K.; Lai, W.K.; Jackson, D.E. HLA Class II regulation of immune response in sickle cell disease patients: Susceptibility to red blood cell alloimmunization (systematic review and meta-analysis). Vox Sang. 2022, 117, 1251–1261. [Google Scholar] [CrossRef]
- Robinson, J.; Barker, D.J.; Georgiou, X.; Cooper, M.A.; Flicek, P.; Marsh, S.G.E. IPD-IMGT/HLA Database. Nucleic Acids Res. 2020, 48, D948–D955. [Google Scholar] [CrossRef]
- Langkilde, C.H.; Nilsson, L.L.; Jorgensen, N.; Funck, T.; Perin, T.L.; Hornstrup, M.B.; Host, T.; Scheike, T.; Lindhard, A.; Hviid, T.V.F.; et al. Variation in the HLA-F gene locus with functional impact is associated with pregnancy success and time-to-pregnancy after fertility treatment. Hum. Reprod. 2020, 35, 705–717. [Google Scholar] [CrossRef]
- Papúchová, H.; Saxtorph, M.H.; Hallager, T.; E Jepsen, I.; O Eriksen, J.; Persson, G.; Funck, T.; Weisdorf, I.; Macklon, N.S.; Larsen, L.G.; et al. Endometrial HLA-F expression is influenced by genotypes and correlates differently with immune cell infiltration in IVF and recurrent implantation failure patients. Hum. Reprod. 2022, 37, 1816–1834. [Google Scholar] [CrossRef]
- Maier, S.; Grzeschik, M.; Weiss, E.H.; Ulbrecht, M. Implications of HLA-E allele expression and different HLA-E ligand diversity for the regulation of NK cells. Hum. Immunol. 2000, 61, 1059–1065. [Google Scholar] [CrossRef] [PubMed]
- Di Cristofaro, J.; El Moujally, D.; Agnel, A.; Mazières, S.; Cortey, M.; Basire, A.; Chiaroni, J.; Picard, C. HLA-G haplotype structure shows good conservation between different populations and good correlation with high, normal and low soluble HLA-G expression. Hum. Immunol. 2013, 74, 203–206. [Google Scholar] [CrossRef]
- Rizzo, R.; Bortolotti, D.; Fredj, N.B.; Rotola, A.; Cura, F.; Castellazzi, M.; Tamborino, C.; Seraceni, S.; Baldi, E.; Melchiorri, L.; et al. Role of HLA-G 14bp deletion/insertion and +3142C>G polymorphisms in the production of sHLA-G molecules in relapsing-remitting multiple sclerosis. Hum. Immunol. 2012, 73, 1140–1146. [Google Scholar] [CrossRef] [PubMed]
- Lima, T.H.A.; Buttura, R.V.; Donadi, E.A.; Veiga-Castelli, L.C.; Mendes-Junior, C.T.; Castelli, E.C. HLA-F coding and regulatory segments variability determined by massively parallel sequencing procedures in a Brazilian population sample. Hum. Immunol. 2016, 77, 841–853. [Google Scholar] [CrossRef] [PubMed]
- Burrows, C.K.; Kosova, G.; Herman, C.; Patterson, K.; Hartmann, K.E.; Edwards, D.R.V.; Stephenson, M.D.; Lynch, V.J.; Ober, C. Expression Quantitative Trait Locus Mapping Studies in Mid-secretory Phase Endometrial Cells Identifies HLA-F and TAP2 as Fecundability-Associated Genes. PLoS Genet. 2016, 12, e1005858. [Google Scholar] [CrossRef]
- Paganini, J.; Faux, P.; Beley, S.; Picard, C.; Chiaroni, J.; Di Cristofaro, J. HLA-F transcriptional and protein differential expression according to its genetic polymorphisms. HLA 2023. [Google Scholar] [CrossRef]
- Rebmann, V.; Nardi, F.d.S.; Wagner, B.; Horn, P.A. HLA-G as a Tolerogenic Molecule in Transplantation and Pregnancy. J. Immunol. Res. 2014, 2014, 297073. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, T.; Blasczyk, R.; Bade-Doeding, C. HLA-E: A Novel Player for Histocompatibility. J. Immunol. Res. 2014, 2014, 352160. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Liang, J.; Liu, W.; Wang, F.; Li, C. Possible roles of HLA-G regulating immune cells in pregnancy and endometrial diseases via KIR2DL4. J. Reprod. Immunol. 2020, 142, 103176. [Google Scholar] [CrossRef]
- Yu, K.; Davidson, C.E.; Burshtyn, D.N. LILRB1 Intron 1 Has a Polymorphic Regulatory Region That Enhances Transcription in NK Cells and Recruits YY1. J. Immunol. 2020, 204, 3030–3041. [Google Scholar] [CrossRef]
- Li, W.; Wang, F.; Guo, R.; Bian, Z.; Song, Y. Targeting macrophages in hematological malignancies: Recent advances and future directions. J. Hematol. Oncol. 2022, 15, 110. [Google Scholar] [CrossRef]
- Yu, K.; Davidson, C.L.; Wójtowicz, A.; Lisboa, L.; Wang, T.; Airo, A.M.; Villard, J.; Buratto, J.; Sandalova, T.; Achour, A.; et al. LILRB1 polymorphisms influence posttransplant HCMV susceptibility and ligand interactions. J. Clin. Investig. 2018, 128, 1523–1537. [Google Scholar] [CrossRef]
- Vittrant, B.; Bergeron, A.; Molina, O.E.; Leclercq, M.; Légaré, X.-P.; Hovington, H.; Picard, V.; Martin-Magniette, M.-L.; Livingstone, J.; Boutros, P.C.; et al. Immune-focused multi-omics analysis of prostate cancer: Leukocyte Ig-Like receptors are associated with disease progression. OncoImmunology 2020, 9, 1851950. [Google Scholar] [CrossRef]
- Bylińska, A.; Wilczyńska, K.; Malejczyk, J.; Milewski, Ł.; Wagner, M.; Jasek, M.; Niepiekło-Miniewska, W.; Wiśniewski, A.; Płoski, R.; Barcz, E.; et al. The impact of HLA-G, LILRB1 and LILRB2 gene polymorphisms on susceptibility to and severity of endometriosis. Mol. Genet. Genom. 2018, 293, 601–613. [Google Scholar] [CrossRef] [PubMed]
- Davidson, C.L.; Li, N.L.; Burshtyn, D.N. LILRB1 polymorphism and surface phenotypes of natural killer cells. Hum. Immunol. 2010, 71, 942–949. [Google Scholar] [CrossRef]
- Noyola, D.E.; Juárez-Vega, G.; Monjarás-Ávila, C.; Escalante-Padrón, F.; Rangel-Ramírez, V.; Cadena-Mota, S.; Monsiváis-Urenda, A.; García-Sepúlveda, C.A.; González-Amaro, R. NK cell immunophenotypic and genotypic analysis of infants with severe respiratory syncytial virus infection. Microbiol. Immunol. 2015, 59, 389–397. [Google Scholar] [CrossRef]
- Kaiser, B.K.; Barahmand-Pour, F.; Paulsene, W.; Medley, S.; Geraghty, D.E.; Strong, R.K. Interactions between NKG2x Immunoreceptors and HLA-E Ligands Display Overlapping Affinities and Thermodynamics. J. Immunol. 2005, 174, 2878–2884. [Google Scholar] [CrossRef] [PubMed]
- Mosaad, Y.M.; Abdel-Dayem, Y.; El-Deek, B.S.; El-Sherbini, S.M. Association Between HLA-E *0101 Homozygosity and Recurrent Miscarriage in Egyptian Women. Scand. J. Immunol. 2011, 74, 205–209. [Google Scholar] [CrossRef]
- Braud, V.M.; Allan, D.S.J.; O’Callaghan, C.A.; Soderstrom, K.; D’Andrea, A.; Ogg, G.S.; Lazetic, S.; Young, N.T.; Bell, J.I.; Phillips, J.H.; et al. HLA-E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature 1998, 391, 795–799. [Google Scholar] [CrossRef]
- Shilling, H.G.; Young, N.; Guethlein, L.A.; Cheng, N.W.; Gardiner, C.M.; Tyan, D.; Parham, P. Genetic Control of Human NK Cell Repertoire. J. Immunol. 2002, 169, 239–247. [Google Scholar] [CrossRef]
- Miyashita, R.; Tsuchiya, N.; Hikami, K.; Kuroki, K.; Fukazawa, T.; Bijl, M.; Kallenberg, C.G.M.; Hashimoto, H.; Yabe, T.; Tokunaga, K. Molecular genetic analyses of human NKG2C (KLRC2) gene deletion. Int. Immunol. 2004, 16, 163–168. [Google Scholar] [CrossRef] [PubMed]
- Goncalves, A.; Makalo, P.; Joof, H.; Burr, S.; Ramadhani, A.; Massae, P.; Malisa, A.; Mtuy, T.; Derrick, T.; Last, A.R.; et al. Differential frequency of NKG2C/KLRC2 deletion in distinct African populations and susceptibility to Trachoma: A new method for imputation of KLRC2 genotypes from SNP genotyping data. Hum. Genet. 2016, 135, 939–951. [Google Scholar] [CrossRef]
- Burian, A.; Wang, K.L.; Finton, K.A.K.; Lee, N.; Ishitani, A.; Strong, R.K.; Geraghty, D.E. HLA-F and MHC-I Open Conformers Bind Natural Killer Cell Ig-Like Receptor KIR3DS1. PLoS ONE 2016, 11, e0163297. [Google Scholar] [CrossRef]
- Garcia-Beltran, W.F.; Holzemer, A.; Martrus, G.; Chung, A.W.; Pacheco, Y.; Simoneau, C.R.; Rucevic, M.; Lamothe-Molina, P.A.; Pertel, T.; Kim, T.-E.; et al. Faculty Opinions recommendation of Open conformers of HLA-F are high-affinity ligands of the activating NK-cell receptor KIR3DS1. Nat. Immunol. 2016, 17, 1067–1074. [Google Scholar] [CrossRef]
- Lunemann, S.; Schöbel, A.; Kah, J.; Fittje, P.; Hölzemer, A.; Langeneckert, A.E.; Hess, L.U.; Poch, T.; Martrus, G.; Garcia-Beltran, W.F.; et al. Interactions Between KIR3DS1 and HLA-F Activate Natural Killer Cells to Control HCV Replication in Cell Culture. Gastroenterology 2018, 155, 1366–1371.e3. [Google Scholar] [CrossRef] [PubMed]
- Laaribi, A.B.; Hannachi, N.; Ben Yahia, H.; Marzouk, M.; Mehri, A.; Belhadj, M.; Yacoub, S.; Letaief, A.; Ouzari, H.-I.; Boudabous, A.; et al. Human leukocyte antigen (HLA-F) polymorphism is associated with chronic HBV infection. 3 Biotech 2018, 8, 49. [Google Scholar] [CrossRef]
- Uhrberg, M.; Valiante, N.M.; Shum, B.P.; Shilling, H.G.; Lienert-Weidenbach, K.; Corliss, B.; Tyan, D.; Lanier, L.L.; Parham, P. Human Diversity in Killer Cell Inhibitory Receptor Genes. Immunity 1997, 7, 753–763. [Google Scholar] [CrossRef]
- Hsu, K.C.; Chida, S.; Geraghty, D.E.; Dupont, B. The killer cell immunoglobulin-like receptor (KIR) genomic region: Gene-order, haplotypes and allelic polymorphism. Immunol. Rev. 2002, 190, 40–52. [Google Scholar] [CrossRef]
- Lepin, E.J.M.; Bastin, J.M.; Allan, D.S.J.; Roncador, G.; Braud, V.M.; Mason, D.Y.; van der Merwe, P.A.; McMichael, A.J.; Bell, J.I.; Powis, S.H.; et al. Functional characterization of HLA-F and binding of HLA-F tetramers to ILT2 and ILT4 receptors. Eur. J. Immunol. 2000, 30, 3552–3561. [Google Scholar] [CrossRef]
- Foroni, I.; Couto, A.R.; Bettencourt, B.F.; Santos, M.; Lima, M.; Burges-Armas, J. HLA-E, HLA-F and HLA-G—The Non-Classical Side of the MHC Cluster. In HLA and Associated Important Diseases; InTech: London, UK, 2014. [Google Scholar]
- Goodridge, J.P.; Burian, A.; Lee, N.; Geraghty, D.E. HLA-F and MHC Class I Open Conformers Are Ligands for NK Cell Ig-like Receptors. J. Immunol. 2013, 191, 3553–3562. [Google Scholar] [CrossRef] [PubMed]
- Navarro, F.; Llano, M.; Bellon, T.; Colonna, M.; Geraghty, D.E.; Lopez-Botet, M. The ILT2(LIR1) and CD94/NKG2A NK cell receptors respectively recognize HLA-G1 and HLA-E molecules co-expressed on target cells. Eur. J. Immunol. 1999, 29, 277–283. [Google Scholar] [CrossRef]
- Kang, X.; Kim, J.; Deng, M.; John, S.; Chen, H.; Wu, G.; Phan, H.; Zhang, C.C. Inhibitory leukocyte immunoglobulin-like receptors: Immune checkpoint proteins and tumor sustaining factors. Cell Cycle 2016, 15, 25–40. [Google Scholar] [CrossRef]
- Shiroishi, M.; Tsumoto, K.; Amano, K.; Shirakihara, Y.; Colonna, M.; Braud, V.M.; Allan, D.S.J.; Makadzange, A.; Rowland-Jones, S.; Willcox, B.; et al. Human inhibitory receptors Ig-like transcript 2 (ILT2) and ILT4 compete with CD8 for MHC class I binding and bind preferentially to HLA-G. Proc. Natl. Acad. Sci. USA 2003, 100, 8856–8861. [Google Scholar] [CrossRef]
- Goodridge, J.P.; Burian, A.; Lee, N.; Geraghty, D.E. HLA-F Complex without Peptide Binds to MHC Class I Protein in the Open Conformer Form. J. Immunol. 2010, 184, 6199–6208. [Google Scholar] [CrossRef] [PubMed]
- Heinrichs, H.; Orr, H.T. HLA non-A,B,C class I genes: Their structure and expression. Immunol. Res. 1990, 9, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Lee, N.; Ishitani, A.; Geraghty, D.E. HLA-F is a surface marker on activated lymphocytes. Eur. J. Immunol. 2010, 40, 2308–2318. [Google Scholar] [CrossRef]
- Lee, N.; Geraghty, D.E. HLA-F Surface Expression on B Cell and Monocyte Cell Lines Is Partially Independent from Tapasin and Completely Independent from TAP. J. Immunol. 2003, 171, 5264–5271. [Google Scholar] [CrossRef] [PubMed]
- Wainwright, S.D.; Biro, P.A.; Holmes, C.H. HLA-F Is a Predominantly Empty, Intracellular, TAP-Associated MHC Class Ib Protein with a Restricted Expression Pattern. J. Immunol. 2000, 164, 319–328. [Google Scholar] [CrossRef]
- Fiouane, S.; Chebbo, M.; Beley, S.; Paganini, J.; Picard, C.; D’Journo, X.; Thomas, P.; Chiaroni, J.; Chanez, P.; Gras, D.; et al. Mobilisation of HLA-F on the surface of bronchial epithelial cells and platelets in asthmatic patients. HLA 2022, 100, 491–499. [Google Scholar] [CrossRef]
- Hackmon, R.; Pinnaduwage, L.; Zhang, J.; Lye, S.J.; Geraghty, D.E.; Dunk, C.E. Definitive class I human leukocyte antigen expression in gestational placentation: HLA-F, HLA-E, HLA-C, and HLA-G in extravillous trophoblast invasion on placentation, pregnancy, and parturition. Am. J. Reprod. Immunol. 2017, 77, e12643. [Google Scholar] [CrossRef]
- Martins, J.O.; Pagani, F.; Dezan, M.R.; Oliveira, V.B.; Conrado, M.; Ziza, K.C.; Gualandro, S.F.; Langui, D.M.; Bordin, J.O.; Rocha, V.; et al. Impact of HLA-G +3142C>G on the development of antibodies to blood group systems other than the Rh and Kell among sensitized patients with sickle cell disease. Transfus. Apher. Sci. 2022, 61, 103447. [Google Scholar] [CrossRef]
- Friedman, D.; Lukas, M.; Jawad, A.; Larson, P.; Ohene-Frempong, K.; Manno, C. Alloimmunization to platelets in heavily transfused patients with sickle cell disease. Blood 1996, 88, 3216–3222. [Google Scholar] [CrossRef]
- McPherson, M.E.; Anderson, A.R.; Castillejo, M.-I.; Hillyer, C.D.; Bray, R.A.; Gebel, H.M.; Josephson, C.D. HLA alloimmunization is associated with RBC antibodies in multiply transfused patients with sickle cell disease. Pediatr. Blood Cancer 2010, 54, 552–558. [Google Scholar] [CrossRef]
- Alizadeh, M.; Picard, C.; Frassati, C.; Walencik, A.; Gauthier, A.C.; Bennasar, F.; Verite, F.; Semana, G. A new set of reagents and related software used for NGS based classical and non-classical HLA typing showing evidence for a greater HLA haplotype diversity. Hum. Immunol. 2020, 81, 202–205. [Google Scholar] [CrossRef] [PubMed]
- Abi-Rached, L.; Gouret, P.; Yeh, J.-H.; Di Cristofaro, J.; Pontarotti, P.; Picard, C.; Paganini, J. Immune diversity sheds light on missing variation in worldwide genetic diversity panels. PLoS ONE 2018, 13, e0206512. [Google Scholar] [CrossRef] [PubMed]
Transfused Patients | Non-Transfused Patients | |||
---|---|---|---|---|
Alloimmunised | Non Alloimmunised | p-Value | ||
Number of patients | 9 | 22 | 6 | |
Sex ratio (female/male) | 3/6 | 3/19 | 0.20 | 2/4 |
Age (years, mean [min–max]) | 30 [19–53] | 30 [18–61] | 31 [21–48] | |
HbS/HbS | 9 | 11 | <0.01 | 2 |
HbS/Hbβ0 | 0 | 3 | 0.24 | 0 |
HbS/Hbβ+ | 0 | 6 | 0.08 | 0 |
HbS/HbC | 0 | 2 | 0.35 | 4 |
Haemolytic transfusion reactions | 5 | 1 | <0.01 | 0 |
Transfusion iron overload | 3 | 2 | 0.09 | 0 |
Treatment by hydroxyurea (%) | 69.2 | 63.1 | 2 | |
Blood product transfusion (mean number of bags [min–max]) | 197 [10–696] | 112 [2–717] | 0.28 | 0 |
Hospitalisation number/year > 3 | 1 | 3 | 0.85 | 0 |
Acute transfusion program | 2 | 5 | 0.97 | 0 |
Number of antibodies directed against red blood cell antigen or HLA antigen (mean [min–max]) | 2.1 [1–7] | 0 | 0 |
Sample Code | Number of Antibodies | Antibodies | Allo-Antibodies | Auto-Antibodies | Transfusion (Number of Bags) |
---|---|---|---|---|---|
008 | 3 | anti-Fya, anti-HLA class I, anti-Jkb | x | 22 | |
024 | 1 | Auto anti-e | x | 164 | |
044 | 1 | Auto anti-Jka | x | 63 | |
031 | 1 | anti-HLA class I | x | 145 | |
009 | 1 | Auto anti-D | x | 15 | |
023 | 7 | Auto anti-C, Auto anti-e, anti-Fya, anti-Jkb, anti-LFA (low-frequency antigen), anti-Jka, anti-Cw, anti-Ytb | x | x | 696 |
033 | 1 | anti-S | x | 489 | |
005 | 4 | Auto anti-Jkb, Auto anti-e, anti-Fy3, anti-N | x | x | 10 |
034 | 1 | anti-HLA class I | x | 275 | |
026 | 3 | anti-S, anti-C, anti-E | x | 20 | |
020 | 1 | anti-Bg1 | x | 108 | |
003 | 1 | Anti-CH/RG | x | 10 |
Non-Alloimmunised Patients | Alloimmunised Patients | p-Value (Chi 2) | |
---|---|---|---|
rs3760860-A/A or A/G and rs3760861-A/A or A/G | 15/21 (71.4%) | 8/8 (100%) | 0.09 |
rs3760860-A/A and rs3760861-A/A | 5/21 (23.8%) | 5/8 (62.5%) | 0.05 |
Non-Alloimmunised Patients | Alloimmunised Patients | p-Value | Non-Alloimmunised Patients | Alloimmunised Patients | p-Value | |
---|---|---|---|---|---|---|
with no KIR3DS1 gene | ||||||
F*01:01:02 | 7/19 (36.8%) | 1/9 (11.1%) | 0.16 | 6/13 (46.2%) | 0/6 (0%) | 0.04 |
rs2523405-T | 17/20 (85.0%) | 4/8 (50%) | 0.05 | 11/13 (84.6%) | 1/5 (20%) | 0.01 |
Gene or SNP | Sense | Primer Sequence | PCR Product |
---|---|---|---|
rs1362126 (G>A) HLA-F: 2KB upstream variant | Forward | GAATGGGAGGCAGAAAGT | 417 |
Reverse | CGTGGGACTTTAGAACCT | ||
rs2523405 (T>G) HLA-F-AS1: intron variant | Forward | ATGTCCACTCGTTGCCTTTG | 380 |
Reverse | CACTAAACACCCAGCCCATG | ||
rs2523393 (A>G) HLA-F-AS1: intron variant | Forward | GCCATGTAAGCCAGGATGTG | 506 |
Reverse | ACTGTAACTGCACCTGTGGA | ||
LILRB1 | Forward | AGTCTCCACATGCTCAACCA | 8045 |
Reverse | AGTGAGAGGGAAGGAACGTG | ||
LILRB2 | Forward | CTCACCTCTGGCCTCTGTTC | 9038 |
Reverse | CAGGTTGCTGCAAAACTCAA | ||
NKG2C-presence | Forward | ATCAATTATTGAAATAGGATGC | 363 |
Reverse | CGCAAAGTTACAACCATCACCAT | ||
NKG2C-deletion | Forward | ACTCGGATTTCTATTTGATGC | 411 |
Reverse | ACAAGTGATGTATAAGAAAAAG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bernit, E.; Jean, E.; Marlot, B.; Laget, L.; Izard, C.; Dettori, I.; Beley, S.; Gautier, I.; Agouti, I.; Frassati, C.; et al. HLA-F and LILRB1 Genetic Polymorphisms Associated with Alloimmunisation in Sickle Cell Disease. Int. J. Mol. Sci. 2023, 24, 13591. https://doi.org/10.3390/ijms241713591
Bernit E, Jean E, Marlot B, Laget L, Izard C, Dettori I, Beley S, Gautier I, Agouti I, Frassati C, et al. HLA-F and LILRB1 Genetic Polymorphisms Associated with Alloimmunisation in Sickle Cell Disease. International Journal of Molecular Sciences. 2023; 24(17):13591. https://doi.org/10.3390/ijms241713591
Chicago/Turabian StyleBernit, Emmanuelle, Estelle Jean, Bastien Marlot, Laurine Laget, Caroline Izard, Isabelle Dettori, Sophie Beley, Isabelle Gautier, Imane Agouti, Coralie Frassati, and et al. 2023. "HLA-F and LILRB1 Genetic Polymorphisms Associated with Alloimmunisation in Sickle Cell Disease" International Journal of Molecular Sciences 24, no. 17: 13591. https://doi.org/10.3390/ijms241713591
APA StyleBernit, E., Jean, E., Marlot, B., Laget, L., Izard, C., Dettori, I., Beley, S., Gautier, I., Agouti, I., Frassati, C., Pedini, P., Picard, C., Paganini, J., Chiaroni, J., & Di Cristofaro, J. (2023). HLA-F and LILRB1 Genetic Polymorphisms Associated with Alloimmunisation in Sickle Cell Disease. International Journal of Molecular Sciences, 24(17), 13591. https://doi.org/10.3390/ijms241713591