Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Subjects
4.2. Genotyping
4.3. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Peters, H.; Balling, R. Teeth: Where and How to Make Them. Trends Genet. 1999, 15, 59–65. [Google Scholar] [CrossRef] [PubMed]
- Vieira, A.R. Oral Clefts and Syndromic Forms of Tooth Agenesis as Models for Genetics of Isolated Tooth Agenesis. J. Dent. Res. 2003, 82, 162–165. [Google Scholar] [CrossRef] [PubMed]
- Kangas, A.T.; Evans, A.R.; Thesleff, I.; Jernvall, J. Nonindependence of Mammalian Dental Characters. Nature 2004, 432, 211–214. [Google Scholar] [CrossRef] [PubMed]
- Kindelan, J.D.; Rysiecki, G.; Childs, W.P. Hypodontia: Genotype or Environment? A Case Report of Monozygotic Twins. Br. J. Orthod. 1998, 25, 175–178. [Google Scholar] [CrossRef]
- Arte, S.; Nieminen, P.; Apajalahti, S.; Haavikko, K.; Thesleff, I.; Pirinen, S. Characteristics of Incisor-Premolar Hypodontia in Families. J. Dent. Res. 2001, 80, 1445–1450. [Google Scholar] [CrossRef] [PubMed]
- Parkin, N.; Elcock, C.; Smith, R.N.; Griffin, R.C.; Brook, A.H. The Aetiology of Hypodontia: The Prevalence, Severity and Location of Hypodontia within Families. Arch. Oral Biol. 2009, 54 (Suppl. S1), S52–S56. [Google Scholar] [CrossRef] [PubMed]
- Trybek, G.; Jaroń, A.; Grzywacz, A. Association of Polymorphic and Haplotype Variants of the MSX1 Gene and the Impacted Teeth Phenomenon. Genes 2021, 12, 577. [Google Scholar] [CrossRef]
- Butera, A.; Maiorani, C.; Morandini, A.; Simonini, M.; Morittu, S.; Barbieri, S.; Bruni, A.; Sinesi, A.; Ricci, M.; Trombini, J.; et al. Assessment of Genetical, Pre, Peri and Post Natal Risk Factors of Deciduous Molar Hypomineralization (DMH), Hypomineralized Second Primary Molar (HSPM) and Molar Incisor Hypomineralization (MIH): A Narrative Review. Children 2021, 8, 432. [Google Scholar] [CrossRef]
- Aksenovich, T.I.; Zorkal’tsov, I.V.; Kniazev, S.P.; Kulikova, A.V. Inheritance of Hypodontia in Kerry Blue Terrier Dogs. Genetika 2004, 40, 658–666. [Google Scholar] [CrossRef]
- Aksenovich, T.I.; Kulikova, A.V.; Kniazev, S.P.; Zorkal’tseva, I.V.; Borodin, P.M. Polymorphism of dental formula and segregation of its variants in a pedigree of kerry blue terrier dogs. Genetika 2006, 42, 414–420. [Google Scholar] [CrossRef]
- Mead, S. Incidence of Impacted Teeth. Int. J. Orthod. Oral Surg. Radiogr. 1930, 16, 885–890. [Google Scholar] [CrossRef]
- Jaroń, A.; Trybek, G. The Pattern of Mandibular Third Molar Impaction and Assessment of Surgery Difficulty: A Retrospective Study of Radiographs in East Baltic Population. Int. J. Environ. Res. Public Health 2021, 18, 6016. [Google Scholar] [CrossRef] [PubMed]
- Haralabakis, H. Observations on the Time of Eruption, Congenital Absence, and Impaction of the Third Molar Teeth. Trans. Eur. Orthod. Soc. 1957, 33, 9. [Google Scholar]
- Dachi, S.F.; Howell, F.V. A Survey of 3874 Routine Full-Mouth Radiographs: II. A Study of Impacted Teeth. Oral Surg. Oral Med. Oral Pathol. 1961, 14, 1165–1169. [Google Scholar] [CrossRef]
- Elsey, M.J.; Rock, W.P. Influence of Orthodontic Treatment on Development of Third Molars. Br. J. Oral Maxillofac. Surg. 2000, 38, 350–353. [Google Scholar] [CrossRef]
- Mostowska, A.; Trzeciak, W.H. Molekularne Podłoże Wrodzonego Braku Zawiązków Zębów Stałych Na Podstawie Piśmiennictwa. Czas Stomat 2006, 59, 110–117. [Google Scholar]
- Chalothorn, L.A.; Beeman, C.S.; Ebersole, J.L.; Kluemper, C.T.; Hicks, E.P.; Kryscio, R.J.; DeSimone, C.P.; Modesitt, S.C. Hypodontia as a Risk Marker for Epithelial Ovarian Cancer: A Case-Controlled Study. J. Am. Dent. Assoc. 2008, 139, 163–169. [Google Scholar] [CrossRef]
- Goldenberg, M.; Das, P.; Messersmith, M.; Stockton, D.W.; Patel, P.I.; D’Souza, R.N. Clinical, Radiographic, and Genetic Evaluation of a Novel Form of Autosomal-Dominant Oligodontia. J. Dent. Res. 2000, 79, 1469–1475. [Google Scholar] [CrossRef]
- Jędryszek, A.; Kmiecik, M.; Paszkiewicz, A. Review of Modern Knowledge on Hypodontia. Dent. Med. Probl. 2009, 46, 118–125. [Google Scholar]
- Shafi, I.; Phillips, J.M.; Dawson, M.P.; Broad, R.D.; Hosey, M.T. A Study of Patients Attending a Multidisciplinary Hypodontia Clinic over a Five Year Period. Br. Dent. J. 2008, 205, 649–652. [Google Scholar] [CrossRef]
- Vieira, A.R.; Meira, R.; Modesto, A.; Murray, J.C. MSX1, PAX9, and TGFA Contribute to Tooth Agenesis in Humans. J. Dent. Res. 2004, 83, 723–727. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Kong, H.; Mues, G.; D’Souza, R. MSX1 Mutations: How Do They Cause Tooth Agenesis? J. Dent. Res. 2011, 90, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Chhabra, N.; Goswami, M.; Chhabra, A. Genetic Basis of Dental Agenesis—Molecular Genetics Patterning Clinical Dentistry. Med. Oral Patol. Oral Cirugía Bucal 2014, 19, 112–119. [Google Scholar] [CrossRef]
- Mitsui, S.N.; Yasue, A.; Masuda, K.; Watanabe, K.; Horiuchi, S.; Imoto, I.; Tanaka, E. Novel PAX9 Mutations Cause Non-Syndromic Tooth Agenesis. J. Dent. Res. 2014, 93, 245–249. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaard, M.J.; Créton, M.; Bronkhorst, Y.; van der Hout, A.; Hennekam, E.; Lindhout, D.; Cune, M.; van Amstel, H.K.P. Mutations in WNT10A Are Present in More than Half of Isolated Hypodontia Cases. J. Med. Genet. 2012, 49, 327–331. [Google Scholar] [CrossRef]
- Mostowska, A.; Biedziak, B.; Zadurska, M.; Dunin-Wilczynska, I.; Lianeri, M.; Jagodzinski, P. Nucleotide Variants of Genes Encoding Components of the Wnt Signalling Pathway and the Risk of Non-Syndromic Tooth Agenesis. Clin. Genet. 2013, 84, 429–440. [Google Scholar] [CrossRef]
- Xu, W.; Rould, M.A.; Jun, S.; Desplan, C.; Pabo, C.O. Crystal Structure of a Paired Domain-DNA Complex at 2.5 A Resolution Reveals Structural Basis for Pax Developmental Mutations. Cell 1995, 80, 639–650. [Google Scholar] [CrossRef]
- Neubüser, A.; Koseki, H.; Balling, R. Characterization and Developmental Expression of PAX9, a Paired-Box-Containing Gene Related to Pax1. Dev. Biol. 1995, 170, 701–716. [Google Scholar] [CrossRef]
- Stockton, D.W.; Das, P.; Goldenberg, M.; D’Souza, R.N.; Patel, P.I. Mutation of PAX9 Is Associated with Oligodontia. Nat. Genet. 2000, 24, 18–19. [Google Scholar] [CrossRef]
- Mensah, J.K.; Ogawa, T.; Kapadia, H.; Cavender, A.C.; D’Souza, R.N. Functional Analysis of a Mutation in PAX9 Associated with Familial Tooth Agenesis in Humans. J. Biol. Chem. 2004, 279, 5924–5933. [Google Scholar] [CrossRef]
- Paixão-Côrtes, V.R.; Meyer, D.; Pereira, T.v.; Mazières, S.; Elion, J.; Krishnamoorthy, R.; Zago, M.A.; Silva, W.A.; Salzano, F.M.; Bortolini, M.C. Genetic Variation among Major Human Geographic Groups Supports a Peculiar Evolutionary Trend in PAX9. PLoS ONE 2011, 6, e15656. [Google Scholar] [CrossRef]
- Frazier-Bowers, S.A.; Guo, D.C.; Cavender, A.; Xue, L.; Evans, B.; King, T.; Milewicz, D.; D’Souza, R.N. A Novel Mutation in Human PAX9 Causes Molar Oligodontia. J. Dent. Res. 2017, 81, 129–133. [Google Scholar] [CrossRef]
- Nieminen, P.; Arte, S.; Tanner, D.; Paulin, L.; Alaluusua, S.; Thesleff, I.; Pirinen, S. Identification of a Nonsense Mutation in the PAX9 Gene in Molar Oligodontia. Eur. J. Hum. Genet. 2001, 9, 743–746. [Google Scholar] [CrossRef]
- Das, P.; Stockton, D.W.; Bauer, C.; Shaffer, L.G.; D’Souza, R.N.; Wright, J.T.; Patel, P.I. Haploinsufficiency of PAX9 Is Associated with Autosomal Dominant Hypodontia. Hum. Genet. 2002, 110, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Mostowska, A.; Kobielak, A.; Trzeciak, W.H. Molecular Basis of Non-Syndromic Tooth Agenesis: Mutations of MSX1 and PAX9 Reflect Their Role in Patterning Human Dentition. Eur. J. Oral Sci. 2003, 111, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Stoczyńska, E.; Pawłowska, E.; Popławski, T.; Szczepańska, J.; Błasiak, J. Rola Białek PAX9 i MSX1 w Rozwoju i Agenezji Zębów. J. Stomatol. 2010, 65, 310–319. [Google Scholar]
- Neubüser, A.; Peters, H.; Balling, R.; Martin, G.R. Antagonistic Interactions between FGF and BMP Signaling Pathways: A Mechanism for Positioning the Sites of Tooth Formation. Cell 1997, 90, 247–255. [Google Scholar] [CrossRef]
- Sharpe, P.T. Homeobox Genes and Orofacial Development. Connect. Tissue Res. 1995, 32, 17–25. [Google Scholar] [CrossRef]
- Huelsken, J.; Birchmeier, W. New Aspects of Wnt Signaling Pathways in Higher Vertebrates. Curr. Opin. Genet. Dev. 2001, 11, 547–553. [Google Scholar] [CrossRef]
- Lustig, B.; Behrens, J. The Wnt Signaling Pathway and Its Role in Tumor Development. J. Cancer Res. Clin. Oncol. 2003, 129, 199–221. [Google Scholar] [CrossRef]
- Giles, R.H.; van Es, J.H.; Clevers, H. Caught up in a Wnt Storm: Wnt Signaling in Cancer. Biochim. Biophys. Acta Rev. Cancer 2003, 1653, 1–24. [Google Scholar] [CrossRef]
- Seidensticker, M.J.; Behrens, J. Biochemical Interactions in the Wnt Pathway. Biochim. Biophys. Acta 2000, 1495, 168–182. [Google Scholar] [CrossRef] [PubMed]
- Ming, M.; Qian, C.; Yokomizo, A.; Smith, D.I.; Wanguo, L. Cloning of the Human Homolog of Conductin (AXIN2), a Gene Mapping to Chromosome 17q23-Q24. Genomics 1999, 55, 341–344. [Google Scholar] [CrossRef]
- Behrens, J.; Jerchow, B.A.; Würtele, M.; Grimm, J.; Asbrand, C.; Wirtz, R.; Kühl, M.; Wedlich, D.; Birchmeier, W. Functional Interaction of an Axin Homolog, Conductin, with β-Catenin, APC, and GSK3β. Science 1998, 280, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H.; Kishida, S.; Uochi, T.; Ikeda, S.; Koyama, S.; Asashima, M.; Kikuchi, A. Axil, a Member of the Axin Family, Interacts with Both Glycogen Synthase Kinase 3beta and Beta-Catenin and Inhibits Axis Formation of Xenopus Embryos. Mol. Cell. Biol. 1998, 18, 2867–2875. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Salic, A.; Krüger, R.; Heinrich, R.; Kirschner, M.W. The Roles of APC and Axin Derived from Experimental and Theoretical Analysis of the Wnt Pathway. PLoS Biol. 2003, 1, e10. [Google Scholar] [CrossRef]
- Leung, J.Y.; Kolligs, F.T.; Wu, R.; Zhai, Y.; Kuick, R.; Hanash, S.; Cho, K.R.; Fearon, E.R. Activation of AXIN2 Expression by Beta-Catenin-T Cell Factor. A Feedback Repressor Pathway Regulating Wnt Signaling. J. Biol. Chem. 2002, 277, 21657–21665. [Google Scholar] [CrossRef]
- Jho, E.; Zhang, T.; Domon, C.; Joo, C.-K.; Freund, J.-N.; Costantini, F. Wnt/Beta-Catenin/Tcf Signaling Induces the Transcription of AXIN2, a Negative Regulator of the Signaling Pathway. Mol. Cell. Biol. 2002, 22, 1172–1183. [Google Scholar] [CrossRef]
- Jernvall, J.; Thesleff, I. Reiterative Signaling and Patterning during Mammalian Tooth Morphogenesis. Mech. Dev. 2000, 92, 19–29. [Google Scholar] [CrossRef]
- Thesleff, I. Epithelial-Mesenchymal Signalling Regulating Tooth Morphogenesis. J. Cell Sci. 2003, 116, 1647–1648. [Google Scholar] [CrossRef]
- Kondo, S.; Schutte, B.C.; Richardson, R.J.; Bjork, B.C.; Knight, A.S.; Watanabe, Y.; Howard, E.; de Lima, R.L.L.F.; Daack-Hirsch, S.; Sander, A.; et al. Mutations in IRF6 Cause Van Der Woude and Popliteal Pterygium Syndromes. Nat. Genet. 2002, 32, 285–289. [Google Scholar] [CrossRef]
- Mossey, P.A.; Modell, B. Epidemiology of Oral Clefts 2012: An International Perspective. In Cleft Lip and Palate: Epidemiology, Aetiology and Treatment; Karger Medical and Scientific Publishers: Basel, Switzerland, 2012; Volume 16, pp. 1–18. [Google Scholar] [CrossRef]
- Zucchero, T.M.; Cooper, M.E.; Maher, B.S.; Daack-Hirsch, S.; Nepomuceno, B.; Ribeiro, L.; Caprau, D.; Christensen, K.; Suzuki, Y.; Machida, J.; et al. Interferon Regulatory Factor 6 (IRF6) Gene Variants and the Risk of Isolated Cleft Lip or Palate. N. Engl. J. Med. 2004, 351, 769–780. [Google Scholar] [CrossRef] [PubMed]
- Blanton, S.H.; Cortez, A.; Stal, S.; Mulliken, J.B.; Finnell, R.H.; Hecht, J.T. Variation in IRF6 Contributes to Nonsyndromic Cleft Lip and Palate. Am. J. Med. Genet. A 2005, 137A, 259–262. [Google Scholar] [CrossRef] [PubMed]
- Ghassibé, M.; Bayet, B.; Revencu, N.; Verellen-Dumoulin, C.; Gillerot, Y.; Vanwijck, R.; Vikkula, M. Interferon Regulatory Factor-6: A Gene Predisposing to Isolated Cleft Lip with or without Cleft Palate in the Belgian Population. Eur. J. Hum. Genet. 2005, 13, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Scapoli, L.; Palmieri, A.; Martinelli, M.; Pezzetti, F.; Carinci, P.; Tognon, M.; Carinci, F. Strong Evidence of Linkage Disequilibrium between Polymorphisms at the IRF6 Locus and Non-syndromic Cleft Lip with or without Cleft Palate, in an Italian Population. Am. J. Hum. Genet. 2005, 76, 180–183. [Google Scholar] [CrossRef]
- Srichomthong, C.; Siriwan, P.; Shotelersuk, V. Significant Association between IRF6 820G->A and Non-Syndromic Cleft Lip with or without Cleft Palate in the Thai Population. J. Med. Genet. 2005, 42, e46. [Google Scholar] [CrossRef]
- Slayton, R.L.; Williams, L.; Murray, J.C.; Wheeler, J.J.; Lidral, A.C.; Nishimura, C.J. Genetic Association Studies of Cleft Lip and/or Palate with Hypodontia Outside the Cleft Region. Cleft Palate Craniofacial J. 2003, 40, 274–279. [Google Scholar] [CrossRef]
- Dewinter, G.; Quirynen, M.; Heidbüchel, K.; Verdonck, A.; Willems, G.; Carels, C. Dental Abnormalities, Bone Graft Quality, and Periodontal Conditions in Patients with Unilateral Cleft Lip and Palate at Different Phases of Orthodontic Treatment. Cleft Palate Craniofacial J. 2003, 40, 343–350. [Google Scholar] [CrossRef]
- Vichi, L.M. Franchi Abnormalities of the Maxillary Incisors in Children with Cleft Lip and Palate. ASDC J. Dent. Child. 1995, 62, 412–417. [Google Scholar]
- Roth, P.; Hirschfelder, U. Frequency of Tooth Agenesis in CLP Patients with Eruption of All Four Third Molars. Dtsch. Zahnarztl. Z. 1991, 46, 734–736. [Google Scholar]
- Lopes, L.D.; Mattos, B.S.; André, M. Anomalies in Number of Teeth in Patients with Lip and/or Palate Clefts. Braz. Dent. J. 1991, 2, 9–17. [Google Scholar] [PubMed]
- Carretero Quezada, M.G.; Hoeksma, J.B.; van de Velde, J.P.; Prahl-Andersen, B.; Kuijpers-Jagtman, A.M. Dental Anomalies in Patients with Familial and Sporadic Cleft Lip and Palate. J. Biol. Buccale 1988, 16, 185–190. [Google Scholar] [PubMed]
- Ranta, R.; Tulensalo, T. Symmetry and Combinations of Hypodontia in Non-Cleft and Cleft Palate Children. Scand. J. Dent. Res. 1988, 96, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ranta, R. Numeric Anomalies of Teeth in Concomitant Hypodontia and Hyperdontia. J. Craniofacial Genet. Dev. Biol. 1988, 8, 245–251. [Google Scholar]
- Ranta, R. Associations of Some Variables to Tooth Formation in Children with Isolated Cleft Palate. Scand. J. Dent. Res. 1984, 92, 496–502. [Google Scholar] [CrossRef] [PubMed]
- van den Boogaard, M.J.H.; Dorland, M.; Beemer, F.A.; van Amstel, H.K.P. MSX1 Mutation Is Associated with Orofacial Clefting and Tooth Agenesis in Humans. Nat. Genet. 2000, 24, 342–343. [Google Scholar] [CrossRef]
- Pereira, T.v.; Salzano, F.M.; Mostowska, A.; Trzeciak, W.H.; Ruiz-Linares, A.; Chies, J.A.B.; Saavedra, C.; Nagamachi, C.; Hurtado, A.M.; Hill, K.; et al. Natural Selection and Molecular Evolution in Primate PAX9 Gene, a Major Determinant of Tooth Development. Proc. Natl. Acad. Sci. USA 2006, 103, 5676–5681. [Google Scholar] [CrossRef]
- Silvestri, A.R.; Singh, I. The Unresolved Problem of the Third Molar: Would People Be Better off without It? J. Am. Dent. Assoc. 2003, 134, 450–455. [Google Scholar] [CrossRef]
- Song, F.; O’Meara, S.; Wilson, P.; Golder, S.; Kleijnen, J. The Effectiveness and Cost-Effectiveness of the Prophylactic Removal of Wisdom Teeth. Health Technol. Assess. 2000, 4, 1–55. [Google Scholar] [CrossRef]
- Vastardis, H.; Karimbux, N.; Guthua, S.W.; Seidman, J.G.; Seidman, C.E. A Human MSX1 Homeodomain Missense Mutation Causes Selective Tooth Agenesis. Nat. Genet. 1996, 13, 417–421. [Google Scholar] [CrossRef]
- Xuan, K.; Jin, F.; Liu, Y.L.; Yuan, L.T.; Wen, L.Y.; Yang, F.S.; Wang, X.J.; Wang, G.H.; Jin, Y. Identification of a Novel Missense Mutation of MSX1 Gene in Chinese Family with Autosomal-Dominant Oligodontia. Arch. Oral Biol. 2008, 53, 773–779. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Hu, G.; Wang, H.; Sciavolino, P.; Iler, N.; Shen, M.M.; Abate-Shen, C. Heterodimerization of Msx and Dlx Homeoproteins Results in Functional Antagonism. Mol. Cell. Biol. 1997, 17, 2920–2932. [Google Scholar] [CrossRef]
- Mostowska, A.; Biedziak, B.; Jagodzinski, P.P. Novel MSX1 Mutation in a Family with Autosomal-Dominant Hypodontia of Second Premolars and Third Molars. Arch. Oral Biol. 2012, 57, 790–795. [Google Scholar] [CrossRef]
- Zhang, M.Q. Statistical Features of Human Exons and Their Flanking Regions. Hum. Mol. Genet. 1998, 7, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Pawlowska, E.; Janik-Papis, K.; Wisniewska-Jarosinska, M.; Szczepanska, J.; Blasiak, J. Mutations in the Human Homeobox MSX1 Gene in the Congenital Lack of Permanent Teeth. Tohoku J. Exp. Med. 2009, 217, 307–312. [Google Scholar] [CrossRef]
- Boeira Junior, B.R.; Echeverrigaray, S. Polymorphism in the MSX1 Gene in a Family with Upper Lateral Incisor Agenesis. Arch. Oral Biol. 2012, 57, 1423–1428. [Google Scholar] [CrossRef] [PubMed]
- Paixão-Côrtes, V.R.; Braga, T.; Salzano, F.M.; Mundstock, K.; Mundstock, C.A.; Bortolini, M.C. PAX9 and MSX1 Transcription Factor Genes in Non-Syndromic Dental Agenesis. Arch. Oral Biol. 2011, 56, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Lammi, L.; Arte, S.; Somer, M.; Järvinen, H.; Lahermo, P.; Thesleff, I.; Pirinen, S.; Nieminen, P. Mutations in AXIN2 Cause Familial Tooth Agenesis and Predispose to Colorectal Cancer. Am. J. Hum. Genet. 2004, 74, 1043–1050. [Google Scholar] [CrossRef]
- Wilusz, C.J.; Wang, W.; Peltz, S.W. Curbing the Nonsense: The Activation and Regulation of MRNA Surveillance. Genes Dev. 2001, 15, 2781–2785. [Google Scholar] [CrossRef]
- Cartegni, L.; Chew, S.L.; Krainer, A.R. Listening to Silence and Understanding Nonsense: Exonic Mutations That Affect Splicing. Nat. Rev. Genet. 2002, 3, 285–298. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.; Zeng, L.; Costantini, F. Identification of a Domain of Axin That Binds to the Serine/Threonine Protein Phosphatase 2A and a Self-Binding Domain. J. Biol. Chem. 1999, 274, 3439–3445. [Google Scholar] [CrossRef]
- Mao, J.; Wang, J.; Liu, B.; Pan, W.; Farr, G.H.; Flynn, C.; Yuan, H.; Takada, S.; Kimelman, D.; Li, L.; et al. Low-Density Lipoprotein Receptor-Related Protein-5 Binds to Axin and Regulates the Canonical Wnt Signaling Pathway. Mol. Cell 2001, 7, 801–809. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Dong, X.; Mai, M.; Seelan, R.S.; Taniguchi, K.; Krishnadath, K.K.; Halling, K.C.; Cunningham, J.M.; Qian, C.; Christensen, E.; et al. Mutations in AXIN2 Cause Colorectal Cancer with Defective Mismatch Repair by Activating Beta-Catenin/TCF Signalling. Nat. Genet. 2000, 26, 146–147. [Google Scholar] [CrossRef] [PubMed]
- Mostowska, A.; Biedziak, B.; Jagodzinski, P.P. Axis Inhibition Protein 2 (AXIN2) Polymorphisms May Be a Risk Factor for Selective Tooth Agenesis. J. Hum. Genet. 2006, 51, 262–266. [Google Scholar] [CrossRef]
- Callahan, N.; Modesto, A.; Meira, R.; Seymen, F.; Patir, A.; Vieira, A.R. Axis Inhibition Protein 2 (AXIN2) Polymorphisms and Tooth Agenesis. Arch. Oral Biol. 2009, 54, 45–49. [Google Scholar] [CrossRef]
- Vieira, A.R.; Modesto, A.; Meira, R.; Barbosa, A.R.S.; Lidral, A.C.; Murray, J.C. Interferon Regulatory Factor 6 (IRF6) and Fibroblast Growth Factor Receptor 1 (FGFR1) Contribute to Human Tooth Agenesis. Am. J. Med. Genet. A 2007, 143A, 538–545. [Google Scholar] [CrossRef]
- Vieira, A.R.; Seymen, F.; Patir, A.; Menezes, R. Evidence of Linkage Disequilibrium between Polymorphisms at the IRF6 Locus and Isolate Tooth Agenesis, in a Turkish Population. Arch. Oral Biol. 2008, 53, 780–784. [Google Scholar] [CrossRef] [PubMed]
Location of Impacted Teeth | Impacted Molars—0 n (%) | Impacted Molars—1 n (%) | Impacted Molars—2 n (%) | Impacted Molars—3 n (%) | Impacted Molars—4 n (%) | Impacted Molars—5 n (%) | Ʃ |
---|---|---|---|---|---|---|---|
Maxilla and mandible | 1 (0.01) | 1 (0.01) | 15 (0.14) | 24 (0.23) | 64 (0.60) | 1 (0.01) | 106 |
Maxilla | 10 (0.26) | 13 (0.34) | 5 (0.13) | 2 (0.05) | 8 (0.21) | 0 (0.00) | 38 |
Mandible | 3 (0.05) | 17 (0.28) | 37 (0.62) | 0 (0.00) | 3 (0.05) | 0 (0.00) | 60 |
Ʃ | 14 | 31 | 57 | 26 | 75 | 1 | 204 |
Location of Impacted Teeth | Impacted Premolars—0 n (%) | Impacted Premolars—1 n (%) | Impacted Premolars—2 n (%) | Impacted Premolars—5 n (%) | Ʃ |
---|---|---|---|---|---|
Maxilla and mandible | 103 (0.97) | 2 (0.02) | 0 (0.00) | 1 (0.01) | 106 |
Maxilla | 37 (0.97) | 0 (0.00) | 1 (0.03) | 0 (0.00) | 38 |
Mandible | 57 (0.95) | 3 (0.05) | 0 (0.00) | 0 (0.00) | 60 |
Ʃ | 197 | 5 | 1 | 1 | 204 |
Location of Impacted Teeth | Impacted Canines—0 n (%) | Impacted Canines—1 n (%) | Impacted Canines—2 n (%) | Ʃ |
---|---|---|---|---|
Maxilla and mandible | 103 (0.97) | 3 (0.03) | 0 (0.00) | 106 |
Maxilla | 26 (0.68) | 11 (0.29) | 1 (0.03) | 38 |
Mandible | 59 (0.98) | 1 (0.02) | 0 (0.00) | 60 |
Ʃ | 188 | 15 | 1 | 204 |
Location of Impacted Teeth | Genotypes | Alleles | |||
---|---|---|---|---|---|
PAX9 rs4904210 | |||||
GG n (%) | CC n (%) | GC n (%) | G n (%) | C n (%) | |
Maxilla and mandible n = 106 | 42 (0.40) | 15 (0.14) | 49 (0.46) | 133 (0.63) | 79 (0.37) |
Maxilla n = 38 | 19 (0.50) | 7 (0.18) | 12 (0.32) | 50 (0.66) | 26 (0.34) |
Mandible n = 58 | 20 (0.34) | 11 (0.19) | 27 (0.47) | 67 (0.58) | 49 (0.42) |
χ2 p-value φ Statistical test power | 3.592 0.4640 0.13 0.28 | 1.394 0.4982 0.06 0.17 | |||
MSX1 rs8670 | |||||
CC n (%) | TT n (%) | CT n (%) | C n (%) | T n (%) | |
Maxilla and mandible n = 106 | 50 (0.47) | 5 (0.05) | 51 (0.48) | 151 (0.71) | 61 (0.29) |
Maxilla n = 38 | 27 (0.71) | 2 (0.05) | 9 (0.24) | 63 (0.83) | 13 (0.17) |
Mandible n = 58 | 36 (0.62) | 8 (0.14) | 14 (0.24) | 86 (0.74) | 30 (0.26) |
χ2 p-value φ Statistical test power | 15.876 * 0.0031 0.28 0.91 | 3.986. 0.1363 0.10 0.42 | |||
MSX1 rs12532 | |||||
AA n (%) | GG n (%) | AG n (%) | A n (%) | G n (%) | |
Maxilla and mandible n = 106 | 65 (0.61) | 6 (0.06) | 35 (0.33) | 165 (0.78) | 47 (0.22) |
Maxilla n = 38 | 11 (0.29) | 8 (0.21) | 19 (0.50) | 41 (0.54) | 35 (0.46) |
Mandible n = 59 | 34 (0.58) | 5 (0.08) | 20 (0.34) | 88 (0.75) | 30 (0.25) |
χ2 p-value φ Statistical test power | 15.104 * 0.0044 0.27 0.89 | 16.364 * 0.0003 0.20 0.96 | |||
AXIN2 rs7591 | |||||
TT n (%) | AA n (%) | TA n (%) | T n (%) | A n (%) | |
Maxilla and mandible n = 106 | 44 (0.42) | 19 (0.18) | 43 (0.41) | 131 (0.62) | 81 (0.38) |
Maxilla n = 38 | 7 (0.18) | 9 (0.24) | 22 (0.58) | 36 (0.47) | 40 (0.53) |
Mandible n = 59 | 20 (0.33) | 14 (0.23) | 26 (0.43) | 66 (0.56) | 52 (0.44) |
χ2 p-value φ Statistical test power | 7.013 0.1352 0.185 0.54 | 4.904 0.0861 0.11 0.50 | |||
AXIN2 rs4904210 | |||||
CC n (%) | TT n (%) | CT n (%) | C n (%) | T n (%) | |
Maxilla and mandible n = 106 | 55 (0.52) | 11 (0.10) | 40 (0.38) | 150 (0.71) | 62 (0.29) |
Maxilla n = 38 | 13 (0.34) | 8 (0.21) | 17 (0.45) | 43 (0.57) | 33 (0.43) |
Mandible n = 60 | 30 (0.50) | 7 (0.12) | 23 (0.38) | 83 (0.69) | 37 (0.31) |
χ2 p-value φ Statistical test power | 4.833 0.3050 0.15 0.36 | 5.316 0.0701 0.11 0.50 | |||
AXIN2 rs2240308 | |||||
AA n (%) | GG n (%) | AG n (%) | A n (%) | G n (%) | |
Maxilla and mandible n = 106 | 32 (0.30) | 22 (0.21) | 52 (0.49) | 116 (0.55) | 96 (0.45) |
Maxilla n = 38 | 5 (0.13) | 15 (0.39) | 18 (0.47) | 28 (0.37) | 48 (0.63) |
Mandible n = 58 | 23 (0.40) | 10 (0.17) | 25 (0.43) | 71 (0.61) | 45 (0.39) |
χ2 p-value φ Statistical test power | 11.210 * 0.0243 0.235 0.77 | 11.351 * 0.0034 0.17 0.87 | |||
IRF6 rs642961 | |||||
GG n (%) | AA n (%) | GA n (%) | G n (%) | A n (%) | |
Maxilla and mandible n = 106 | 74 (0.70) | 3 (0.03) | 29 (0.27) | 177 (0.83) | 35 (0.17) |
Maxilla n = 38 | 26 (0.68) | 0 (0.00) | 12 (0.32) | 64 (0.84) | 12 (0.16) |
Mandible n = 59 | 41 (0.69) | 2 (0.03) | 16 (0. 27) | 98 (0.83) | 20 (0.17) |
χ2 p-value φ Statistical test power | 1.412 0.8420 0.08 0.12 | 0.072 0.9648 0.01 0.05 | |||
IRF6 rs861019 | |||||
AA n (%) | GG n (%) | AG n (%) | A n (%) | G n (%) | |
Maxilla and mandible n = 106 | 25 (0.24) | 18 (0.17) | 63 (0.59) | 113 (0.53) | 99 (0.47) |
Maxilla n = 38 | 8 (0.21) | 5 (0.13) | 25 (0.66) | 41 (0.54) | 35 (0.46) |
Mandible n = 59 | 18 (0.51) | 10 (0.17) | 31 (0.53) | 67 (057) | 51 (0.43) |
χ2 p-value φ Statistical test power | 2.025 0.7312 0.10 0.17 | 0.379 0.8276 0.03 0.08 | |||
IRF6 rs4904210 | |||||
TT n (%) | CC n (%) | TC n (%) | T n (%) | C n (%) | |
Maxilla and mandible n = 106 | 43 (0.41) | 13 (0.12) | 50 (0.47) | 136 (0.64) | 76 (0.36) |
Maxilla n = 38 | 12 (0.32) | 5 (0.13) | 21 (0.55) | 45 (0.59) | 31 (0.41) |
Mandible n = 58 | 23 (0.40) | 9 (0.16) | 26 (0.45) | 72 (0.62) | 44 (0.38) |
χ2 p-value φ Statistical test power | 1.461 0.8336 0.085 0.13 | 0.605 0.7391 0.04 0.10 | |||
IRF6 rs658860 | |||||
TT n (%) | CC n (%) | TC n (%) | T n (%) | C n (%) | |
Maxilla and mandible n = 106 | 74 (0.70) | 3 (0.03) | 29 (0.27) | 177 (0.83) | 35 (0.17) |
Maxilla n = 37 | 26 (0.70) | 0 (0.00) | 11 (0.30) | 63 (0.85) | 11 (0.15) |
Mandible n = 57 | 39 (0.68) | 1 (0.02) | 17 (0.30) | 95 (0.83) | 19 (0.17) |
χ2 p-value φ Statistical test power | 1.240 0.8715 0.08 0.12 | 0.129 0.9374 0.02 0.06 |
MSX1 rs8670 | Control Group (n = 186) | Study Group (n = 202) | pa |
---|---|---|---|
CC (n = 228) | 115 (61.8%) | 113 (55.9%) | 0.487 (χ² 1.44) |
CT (n = 134) | 60 (32.3%) | 74 (36.6%) | |
TT (n = 26) | 11 (5.9%) | 15 (7.4%) | |
C 0.76 | 0.78 | 0.74 | 0.228 (χ² 1.46) |
T 0.24 | 0.22 | 0.26 | |
HWE | |||
χ² = 1.07; pb = 0.301 | χ² = 0.7; pc = 0.403 | χ² = 0.35; pd = 0.554 | |
MSX1 rs12532 | Control group (n = 186) | Study group (n = 202) | pa |
AA (n = 209) | 99 (53.2%) | 110 (54.2%) | 0.925 (χ² 0.16) |
AG (n = 145) | 71 (38.2%) | 74 (36.5%) | |
GG (n = 35) | 16 (8.6%) | 19 (9.4%) | |
A 0.72 | 0.72 | 0.72 | 0.975 (χ² 0.001) |
G 0.28 | 0.28 | 0.28 | |
HWE | |||
χ² = 1.8; pb = 0.180 | χ² = 0.41; pc = 0.522 | χ² = 1.56; pd = 0.212 | |
AXIN2 rs2240308 | Control group (n = 186) | Study group (n = 202) | pa |
AA (n = 113) | 53 (28.5%) | 60 (29.7%) | 0.695 (χ² 0.73) |
AG (n = 190) | 95 (51.1%) | 95 (47.0%) | |
GG (n = 85) | 38 (20.4%) | 47 (23.3%) | |
A 0.54 | 0.54 | 0.53 | 0.820 (χ² 0.05) |
G 0.46 | 0.46 | 0.47 | |
HWE | |||
χ² = 0.09; pb = 0.764 | χ² = 0.15; pc = 0.699 | χ² = 0.62; pd = 0.431 |
Number of Impacted Teeth | n | % |
---|---|---|
1 | 44 | 21.6 |
2 | 55 | 27.0 |
3 | 28 | 13.7 |
4 and more | 77 | 37.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Trybek, G.; Jaroń, A.; Gabrysz-Trybek, E.; Rutkowska, M.; Markowska, A.; Chmielowiec, K.; Chmielowiec, J.; Grzywacz, A. Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes. Int. J. Mol. Sci. 2023, 24, 13889. https://doi.org/10.3390/ijms241813889
Trybek G, Jaroń A, Gabrysz-Trybek E, Rutkowska M, Markowska A, Chmielowiec K, Chmielowiec J, Grzywacz A. Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes. International Journal of Molecular Sciences. 2023; 24(18):13889. https://doi.org/10.3390/ijms241813889
Chicago/Turabian StyleTrybek, Grzegorz, Aleksandra Jaroń, Ewa Gabrysz-Trybek, Monika Rutkowska, Aleksandra Markowska, Krzysztof Chmielowiec, Jolanta Chmielowiec, and Anna Grzywacz. 2023. "Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes" International Journal of Molecular Sciences 24, no. 18: 13889. https://doi.org/10.3390/ijms241813889
APA StyleTrybek, G., Jaroń, A., Gabrysz-Trybek, E., Rutkowska, M., Markowska, A., Chmielowiec, K., Chmielowiec, J., & Grzywacz, A. (2023). Genetic Factors of Teeth Impaction: Polymorphic and Haplotype Variants of PAX9, MSX1, AXIN2, and IRF6 Genes. International Journal of Molecular Sciences, 24(18), 13889. https://doi.org/10.3390/ijms241813889