Strontium Chloride Improves Reproductive Function and Alters Gut Microbiota in Male Rats
Abstract
:1. Introduction
2. Results
2.1. Sr Exposure Increased Rat Sperm Quality
2.2. Sr Exposure Increased the Levels of Marker Enzymes and Testosterone Synthesis Marker Genes and Decreased the Levels of Nitric Oxide Synthase (NOS) and Nitric Oxide (NO)
2.3. Sr Exposure Increased Hormone Levels and Systemic Sr Content, but Its Significance Needs to Be Further Evaluated
2.4. Sr Exposure Does Not Affect the Richness and Diversity of Gut Microbiota
2.5. Sr Exposure Specifically Altered Microbial Taxonomic Profiles
2.6. Correlation between the Gut Microbiota and Host Phenotype
3. Discussion
4. Materials and Methods
4.1. Reagents and Chemicals
4.2. Animals and Experimental Design
4.3. Sperm Parameter Assessment and Measurement of Hormone Levels
4.4. Histological Analysis
4.5. Biochemical Indicator Analysis
4.6. Detection of Sr Content
4.7. Gene Expression Analysis by RT-qPCR
4.8. Intestinal Microbial DNA Extraction and 16S rDNA Sequencing
4.9. TM4 Cell Culture and Treatment
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef] [PubMed]
- Skakkebaek, N.E.; Rajpert-De Meyts, E.; Buck Louis, G.M.; Toppari, J.; Andersson, A.M.; Eisenberg, M.L.; Jensen, T.K.; Jørgensen, N.; Swan, S.H.; Sapra, K.J.; et al. Male Reproductive Disorders and Fertility Trends: Influences of Environment and Genetic Susceptibility. Physiol. Rev. 2016, 96, 55–97. [Google Scholar] [CrossRef]
- Levine, H.; Jørgensen, N.; Martino-Andrade, A.; Mendiola, J.; Weksler-Derri, D.; Mindlis, I.; Pinotti, R.; Swan, S.H. Temporal trends in sperm count: A systematic review and meta-regression analysis. Hum. Reprod. Update 2017, 23, 646–659. [Google Scholar] [CrossRef] [PubMed]
- Eisenberg, M.L.; Li, S.; Behr, B.; Pera, R.R.; Cullen, M.R. Relationship between semen production and medical comorbidity. Fertil. Steril. 2015, 103, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Ventimiglia, E.; Capogrosso, P.; Boeri, L.; Serino, A.; Colicchia, M.; Ippolito, S.; Scano, R.; Papaleo, E.; Damiano, R.; Montorsi, F.; et al. Infertility as a proxy of general male health: Results of a cross-sectional survey. Fertil. Steril 2015, 104, 48–55. [Google Scholar] [CrossRef]
- Seregin, I.V.; Kozhevnikova, A.D. Distribution of cadmium, lead, nickel, and strontium in imbibing maize caryopses. Russ. J. Plant Physiol. 2005, 52, 565–569. [Google Scholar] [CrossRef]
- Yalin, S.; Sagír, O.; Comelekoglu, U.; Berköz, M.; Eroglu, P. Strontium ranelate treatment improves oxidative damage in osteoporotic rat model. Pharmacol. Rep. 2012, 64, 396–402. [Google Scholar] [CrossRef]
- Yu, H.; Liu, Y.; Yang, X.; He, J.; Zhong, Q.; Guo, X. The anti-inflammation effect of strontium ranelate on rat chondrocytes with or without IL-1β in vitro. Exp. Ther. Med. 2022, 23, 208. [Google Scholar] [CrossRef]
- Bai, Y.; Feng, W.; Wang, S.; Zhang, X.; Zhang, W.; He, M.; Zhang, X.; Wu, T.; Guo, H. Essential Metals Zinc, Selenium, and Strontium Protect against Chromosome Damage Caused by Polycyclic Aromatic Hydrocarbons Exposure. Environ. Sci. Technol. 2016, 50, 951–960. [Google Scholar] [CrossRef]
- Maehira, F.; Ishimine, N.; Miyagi, I.; Eguchi, Y.; Shimada, K.; Kawaguchi, D.; Oshiro, Y. Anti-diabetic effects including diabetic nephropathy of anti-osteoporotic trace minerals on diabetic mice. Nutrition 2011, 27, 488–495. [Google Scholar] [CrossRef]
- Kargozar, S.; Lotfibakhshaiesh, N.; Ai, J.; Mozafari, M.; Brouki Milan, P.; Hamzehlou, S.; Barati, M.; Baino, F.; Hill, R.G.; Joghataei, M.T. Strontium- and cobalt-substituted bioactive glasses seeded with human umbilical cord perivascular cells to promote bone regeneration via enhanced osteogenic and angiogenic activities. Acta Biomater. 2017, 58, 502–514. [Google Scholar] [CrossRef] [PubMed]
- Zhao, F.; Lei, B.; Li, X.; Mo, Y.; Wang, R.; Chen, D.; Chen, X. Promoting in vivo early angiogenesis with sub-micrometer strontium-contained bioactive microspheres through modulating macrophage phenotypes. Biomaterials 2018, 178, 36–47. [Google Scholar] [CrossRef] [PubMed]
- Miao, Y.; Liu, L.; Liu, C.; Deng, Y.L.; Chen, P.P.; Luo, Q.; Cui, F.P.; Zhang, M.; Lu, W.Q.; Zeng, Q. Urinary biomarker of strontium exposure is positively associated with semen quality among men from an infertility clinic. Ecotoxicol. Environ. Saf. 2021, 208, 111694. [Google Scholar] [CrossRef] [PubMed]
- Marín-Briggiler, C.I.; Vazquez-Levin, M.H.; Gonzalez-Echeverría, F.; Blaquier, J.A.; Tezón, J.G.; Miranda, P.V. Strontium supports human sperm capacitation but not follicular fluid-induced acrosome reaction. Biol. Reprod. 1999, 61, 673–680. [Google Scholar] [CrossRef]
- Okada, K.; Palmieri, C.; Della Salda, L.; Vackova, I. Viability, acrosome morphology and fertilizing capacity of boar spermatozoa treated with strontium chloride. Zygote 2008, 16, 49–56. [Google Scholar] [CrossRef]
- Feng, Y.; Zhang, Q.; Dai, D.Z.; Ying, H.J.; Dai, Y. Strontium fructose 1,6-diphosphate rescues adenine-induced male hypogonadism and upregulates the testicular endothelin-1 system. Clin. Exp. Pharmacol. Physiol. 2007, 34, 1131–1137. [Google Scholar] [CrossRef] [PubMed]
- González-Weller, D.; Rubio, C.; Gutiérrez, Á.J.; González, G.L.; Caballero Mesa, J.M.; Revert Gironés, C.; Burgos Ojeda, A.; Hardisson, A. Dietary intake of barium, bismuth, chromium, lithium, and strontium in a Spanish population (Canary Islands, Spain). Food Chem. Toxicol. 2013, 62, 856–858. [Google Scholar] [CrossRef]
- Millour, S.; Noël, L.; Chekri, R.; Vastel, C.; Kadar, A.; Sirot, V.; Leblanc, J.-C.; Guérin, T. Strontium, silver, tin, iron, tellurium, gallium, germanium, barium and vanadium levels in foodstuffs from the Second French Total Diet Study. J. Food Compos. Anal. 2012, 25, 108–129. [Google Scholar] [CrossRef]
- Marie, P.; Ammann, P.; Boivin, G.; Rey, C. Mechanisms of action and therapeutic potential of strontium in bone. Calcif. Tissue Int. 2001, 69, 121. [Google Scholar] [CrossRef]
- Yao, Q.; Gao, Y.; Fan, L.; Wang, J.; Zheng, N. 2’-Fucosyllactose Remits Colitis-Induced Liver Oxygen Stress through the Gut-Liver-Metabolites Axis. Nutrients 2022, 14, 4186. [Google Scholar] [CrossRef]
- Collins, S.M.; Surette, M.; Bercik, P. The interplay between the intestinal microbiota and the brain. Nat. Rev. Microbiol. 2012, 10, 735–742. [Google Scholar] [CrossRef] [PubMed]
- Ticinesi, A.; Lauretani, F.; Milani, C.; Nouvenne, A.; Tana, C.; Del Rio, D.; Maggio, M.; Ventura, M.; Meschi, T. Aging Gut Microbiota at the Cross-Road between Nutrition, Physical Frailty, and Sarcopenia: Is There a Gut-Muscle Axis? Nutrients 2017, 9, 1303. [Google Scholar] [CrossRef] [PubMed]
- Meijers, B.K.; Evenepoel, P. The gut-kidney axis: Indoxyl sulfate, p-cresyl sulfate and CKD progression. Nephrol Dial Transpl. 2011, 26, 759–761. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, J.F.; Cheng, Y.; Dai, M.Y.; Zhu, W.F.; Yang, X.W.; Gonzalez, F.J.; Li, F. Polyamine metabolism links gut microbiota and testicular dysfunction. Microbiome 2021, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Adams, D.H.; Fava, F.; Hermes, G.D.; Hirschfield, G.M.; Hold, G.; Quraishi, M.N.; Kinross, J.; Smidt, H.; Tuohy, K.M.; et al. The gut microbiota and host health: A new clinical frontier. Gut 2016, 65, 330–339. [Google Scholar] [CrossRef]
- Hussain, T.; Murtaza, G.; Kalhoro, D.H.; Kalhoro, M.S.; Metwally, E.; Chughtai, M.I.; Mazhar, M.U.; Khan, S.A. Relationship between gut microbiota and host-metabolism: Emphasis on hormones related to reproductive function. Anim. Nutr. 2021, 7, 1–10. [Google Scholar] [CrossRef]
- Karakas, S.E.; Surampudi, P. New Biomarkers to Evaluate Hyperandrogenemic Women and Hypogonadal Men. Adv. Clin Chem. 2018, 86, 71–125. [Google Scholar]
- Zhang, C.; Xiong, B.H.; Chen, L.; Ge, W.; Yin, S.; Feng, Y.N.; Sun, Z.Y.; Sun, Q.Y.; Zhao, Y.; Shen, W.; et al. Rescue of male fertility following faecal microbiota transplantation from alginate oligosaccharide-dosed mice. Gut 2021, 70, 2213–2215. [Google Scholar] [CrossRef]
- Zhang, P.F.; Feng, Y.N.; Li, L.; Ge, W.; Yu, S.; Hao, Y.N.; Shen, W.; Han, X.; Ma, D.X.; Yin, S.; et al. Improvement in sperm quality and spermatogenesis following faecal microbiota transplantation from alginate oligosaccharide dosed mice. Gut 2021, 70, 222–225. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, W.H.; Zhang, J.; Jing, Y.L.; Yang, M.L.; Du, L.J.; Gao, F.; Gong, H.M.; Chen, L.; Li, J.; et al. Gut microbiota dysbiosis in male patients with chronic traumatic complete spinal cord injury. J. Transl. Med. 2018, 16, 353. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, P.; Ge, W.; Feng, Y.; Li, L.; Sun, Z.; Zhang, H.; Shen, W. Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Theranostics 2020, 10, 3308–3324. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Yu, Z.; Feng, P.; Ye, Z.; Li, R.; Liu, J.; Hu, J.; Kakade, A.; Liu, P.; Li, X. Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Front. Cell. Infect. Microbiol. 2019, 9, 221. [Google Scholar] [CrossRef]
- Alipour, H.; Gazerani, P.; Heidari, M.; Dardmeh, F. Modulatory Effect of Probiotic Lactobacillus rhamnosus PB01 on Mechanical Sensitivity in a Female Diet-Induced Obesity Model. Pain Res. Manag. 2021, 2021, 5563959. [Google Scholar] [CrossRef]
- Dai, Z.; Wu, Z.; Hang, S.; Zhu, W.; Wu, G. Amino acid metabolism in intestinal bacteria and its potential implications for mammalian reproduction. Mol. Hum. Reprod. 2015, 21, 389–409. [Google Scholar] [CrossRef]
- Al-Asmakh, M.; Stukenborg, J.B.; Reda, A.; Anuar, F.; Strand, M.L.; Hedin, L.; Pettersson, S.; Söder, O. The gut microbiota and developmental programming of the testis in mice. PLoS ONE 2014, 9, e103809. [Google Scholar] [CrossRef]
- Liu, R.J.; Cai, D.B.; Li, X.S.; Liu, B.P.; Chen, J.L.; Jiang, X.W.; Li, H.W.; Li, Z.H.; Teerds, K.J.; Sun, J.X.; et al. Effects of Bisphenol A on reproductive toxicity and gut microbiota dysbiosis in male rats. Ecotoxicol. Environ. Saf. 2022, 239, 113623. [Google Scholar] [CrossRef]
- Ding, N.; Zhang, X.; Zhang, X.D.; Jing, J.; Liu, S.S.; Mu, Y.P.; Peng, L.L.; Yan, Y.J.; Xiao, G.M.; Bi, X.Y.; et al. Impairment of spermatogenesis and sperm motility by the high-fat diet-induced dysbiosis of gut microbes. Gut 2020, 69, 1608–1619. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, P.; Geng, Q.; Fan, H.; Gong, Y.; Hu, Y.; Shan, L.; Sun, Y.; Shen, W.; Zhou, Y. Disrupted spermatogenesis in a metabolic syndrome model: The role of vitamin A metabolism in the gut-testis axis. Gut 2022, 71, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Amani, R.; Saeidi, S.; Nazari, Z.; Nematpour, S. Correlation between dietary zinc intakes and its serum levels with depression scales in young female students. Biol. Trace Elem. Res. 2010, 137, 150–158. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Liu, G.; Xu, D.; Wu, Z.; Ma, L.; Victoria, S.M.; Baumgard, L.H.; Bu, D. Milk selenium content and speciation in response to supranutritional selenium yeast supplementation in cows. Anim. Nutr. 2021, 7, 1087–1094. [Google Scholar] [CrossRef]
- Walker, W.H. Androgen Actions in the Testis and the Regulation of Spermatogenesis. Adv. Exp. Med. Biol. 2021, 1288, 175–203. [Google Scholar] [PubMed]
- Yang, J.; Wu, G.; Feng, Y.; Lv, Q.; Lin, S.; Hu, J. Effects of taurine on male reproduction in rats of different ages. J. Biomed. Sci. 2010, 17 (Suppl. 1), S9. [Google Scholar] [CrossRef] [PubMed]
- Qin, F.; Liu, N.; Nie, J.; Shen, T.; Xu, Y.; Pan, S.; Pei, H.; Zhou, G. Circadian effects of ionizing radiation on reproductive function and clock genes expression in male mouse. Environ. Health Prev. Med. 2021, 26, 103. [Google Scholar] [CrossRef] [PubMed]
- Mills, N.C.; Means, A.R. Sorbitol dehydrogenase of rat testis: Changes of activity during development, after hypophysectomy and following gonadotrophic hormone administration. Endocrinology 1972, 91, 147–156. [Google Scholar] [CrossRef]
- Kobayashi, T.; Kaneko, T.; Iuchi, Y.; Matsuki, S.; Takahashi, M.; Nakada, T.; Fujii, J. Localization and physiological implication of aldose reductase and sorbitol dehydrogenase in reproductive tracts and spermatozoa of male rats. J. Androl. 2002, 23, 674–684. [Google Scholar] [PubMed]
- Li, J.; Hu, Y.; Zhang, Q.; Ma, B.; Wu, Z.; Wang, Y.; Sun, J.; Zhu, J.; Ying, H.; Ouyang, P. Strontium fructose 1, 6-diphosphate alleviate cyclophosphamide-induced oligozoospermia by improving antioxidant and inhibiting testicular apoptosis via FAS/FASL pathway. Andrologia 2015, 47, 995–1003. [Google Scholar] [CrossRef]
- Kang, Y.; Zhang, J.; Li, J.; Duan, X. Research advance in nitric oxide and nitric oxide synthase in testis. Bull. Acad. Mil. Med. Sci. 2002, 26, 301–304. [Google Scholar]
- Xu, J.; Zhang, X.; Sun, X.; Lv, Q.; Zhang, Y. Red-fleshed apple anthocyanin extracts attenuate male reproductive system dysfunction caused by busulfan in mice. Front. Nutr. 2021, 8, 632483. [Google Scholar] [CrossRef]
- Wongdee, K.; Krishnamra, N.; Charoenphandhu, N. Derangement of calcium metabolism in diabetes mellitus: Negative outcome from the synergy between impaired bone turnover and intestinal calcium absorption. J. Physiol. Sci. 2017, 67, 71–81. [Google Scholar] [CrossRef]
- Turnbaugh, P.J.; Hamady, M.; Yatsunenko, T.; Cantarel, B.L.; Duncan, A.; Ley, R.E.; Sogin, M.L.; Jones, W.J.; Roe, B.A.; Affourtit, J.P.; et al. A core gut microbiome in obese and lean twins. Nature 2009, 457, 480–484. [Google Scholar] [CrossRef]
- Ricaboni, D.; Mailhe, M.; Khelaifia, S.; Raoult, D.; Million, M. Romboutsia timonensis, a new species isolated from human gut. N. Microbes N. Infect. 2016, 12, 6–7. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Wang, K.; Che, L.Q.; Fang, Z.F.; Xu, S.Y.; Feng, B.; Zhuo, Y.; Li, J.; Wu, C.M.; Zhang, J.J.; et al. The Improvement of Semen Quality by Dietary Fiber Intake Is Positively Related With Gut Microbiota and SCFA in a Boar Model. Front. Microbiol. 2022, 13, 863315. [Google Scholar] [CrossRef]
- Zened, A.; Combes, S.; Cauquil, L.; Mariette, J.; Klopp, C.; Bouchez, O.; Troegeler-Meynadier, A.; Enjalbert, F. Microbial ecology of the rumen evaluated by 454 GS FLX pyrosequencing is affected by starch and oil supplementation of diets. FEMS Microbiol. Ecol. 2013, 83, 504–514. [Google Scholar] [CrossRef]
- Zhang, J.C.; Guo, Z.; Xue, Z.S.; Sun, Z.H.; Zhang, M.H.; Wang, L.F.; Wang, G.Y.; Wang, F.; Xu, J.; Cao, H.F.; et al. A phylo-functional core of gut microbiota in healthy young Chinese cohorts across lifestyles, geography and ethnicities. ISME J. 2015, 9, 1979–1990. [Google Scholar] [CrossRef] [PubMed]
- Cheng, S.; Mao, H.; Ruan, Y.; Wu, C.; Xu, Z.; Hu, G.; Guo, X.; Zhang, C.; Cao, H.; Liu, P. Copper changes intestinal microbiota of the cecum and rectum in female mice by 16S rRNA gene sequencing. Biol. Trace Elem. Res. 2020, 193, 445–455. [Google Scholar] [CrossRef] [PubMed]
Target Gene | Primer Direction | Sequences (5′ to 3′) |
---|---|---|
STAR | Forward | CCCAAATGTCAAGGAAATCA |
Reverse | AGGCATCTCCCCAAAGTG | |
3β-HSD | Forward | CCCTGCTCTACTGGCTTGC |
Reverse | TCTGCTTGGCTTCCTCCC | |
Cyp11a1 | Forward | AAGTATCCGTGATGTGGG |
Reverse | TCATACAGTGTCGCCTTTTCT | |
Cyp17a1 | Forward | TGGCTTTCCTGGTGCACAATC |
Reverse | TGAAAGTTGGTGTTCGGCTGAAG | |
GAPDH | Forward | TCAAGAAGGTGGTGAAGCAG |
Reverse | AAGGTGGAAGAGTGGGAGTTG |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, X.; Gao, Y.; Zhang, Y.; Wang, J.; Zheng, N. Strontium Chloride Improves Reproductive Function and Alters Gut Microbiota in Male Rats. Int. J. Mol. Sci. 2023, 24, 13922. https://doi.org/10.3390/ijms241813922
Huang X, Gao Y, Zhang Y, Wang J, Zheng N. Strontium Chloride Improves Reproductive Function and Alters Gut Microbiota in Male Rats. International Journal of Molecular Sciences. 2023; 24(18):13922. https://doi.org/10.3390/ijms241813922
Chicago/Turabian StyleHuang, Xulai, Yanan Gao, Yangdong Zhang, Jiaqi Wang, and Nan Zheng. 2023. "Strontium Chloride Improves Reproductive Function and Alters Gut Microbiota in Male Rats" International Journal of Molecular Sciences 24, no. 18: 13922. https://doi.org/10.3390/ijms241813922
APA StyleHuang, X., Gao, Y., Zhang, Y., Wang, J., & Zheng, N. (2023). Strontium Chloride Improves Reproductive Function and Alters Gut Microbiota in Male Rats. International Journal of Molecular Sciences, 24(18), 13922. https://doi.org/10.3390/ijms241813922