Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton (Gossypium hirsutum L.)
Abstract
:1. Introduction
2. Results
2.1. Gene Expression Analysis for the Floral Induction and Meristem Identity Genes
2.2. Genome-Wide Association Mapping of the Gene Expression Traits
2.3. Linkage Disequilibrium (LD) and LD Decay
2.4. Population Structure and Diversity Analysis
2.5. Pedigree Analysis
2.6. Gene Family Analysis
2.7. Promoter and miRNA Analysis
2.8. Determination of the Molecular Functions of the Trans-eQTLs and the Putative Causes of Epistatic Interactions between the eQTLs and the Genes of Interest
2.9. CpG Island Prediction in the Members of FT, SOC1, LFY, FUL, and AP1 Gene Families
2.10. Expression Analysis of the Members of FT, SOC1, LFY, FUL, and AP1 Gene Families
3. Discussion
4. Materials and Methods
4.1. Plant Materials and Sample Collection
4.2. Gene Expression Analysis
4.3. Genomic DNA Extraction and SNP Genotyping
4.4. Diversity Analysis
4.5. Genome-Wide Association Study (GWAS) and eQTL Analysis
4.6. Gene Family Members and Promoter Sequence Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gilland, B.J. World population and food supply: Can food production keep pace with population growth in the next half-century? Food Policy 2002, 27, 47–63. [Google Scholar] [CrossRef]
- Yasir, M.; He, S.; Sun, G.; Geng, X.; Pan, Z.; Gong, W.; Jia, Y.; Du, X. A Genome-Wide Association Study Revealed Key SNPs/Genes Associated with Salinity Stress Tolerance in Upland Cotton. Genes 2019, 10, 829. [Google Scholar] [CrossRef] [PubMed]
- Jans, Y.; von Bloh, W.; Schaphoff, S.; Müller, C. Global Cotton Production under Climate Change–Implications for Yield and Water Consumption. Hydrol. Earth Syst. Sci. 2021, 25, 2027–2044. [Google Scholar] [CrossRef]
- Wendel, J.F.; Brubaker, C.L.; Percival, A.E. Genetic Diversity in Gossypium hirsutum and the Origin of Upland Cotton. Am. J. Bot. 1992, 79, 1291–1310. [Google Scholar] [CrossRef]
- Gross, B.L.; Strasburg, J.L. Cotton Domestication: Dramatic Changes in a Single Cell. BMC Biol. 2010, 8, 137. [Google Scholar] [CrossRef] [PubMed]
- Hovav, R.; Udall, J.A.; Chaudhary, B.; Hovav, E.; Flagel, L.; Hu, G.; Wendel, J.F. The Evolution of Spinnable Cotton Fiber Entailed Prolonged Development and a Novel Metabolism. PLoS Genet. 2008, 4, e25. [Google Scholar] [CrossRef]
- Wendel, J.F.; Brubaker, C.; Alvarez, I.; Cronn, R.; Stewart, J.M. Evolution and Natural History of the Cotton Genus. Genet. Genom. Cotton 2009, 3, 3–22. [Google Scholar] [CrossRef]
- Grover, C.E.; Zhu, X.; Grupp, K.; Jareczek, J.J.; Gallagher, J.S.; Szadkowski, E.; Seijo, G.; Wendel, J.F. Molecular Confirmation of Species Status for the Allopolyploid Cotton Species, Gossypium ekmanianum Wittmack. Genet. Resour. Crop Evol. 2015, 62, 103–114. [Google Scholar] [CrossRef]
- Brown, M.S. Identification of the chromosomes of Gossypium hirsutum L. by means of translocations. J. Hered. 1980, 71, 266–274. [Google Scholar] [CrossRef]
- Ahmad, M.; Ullah Khan, N.; Mohammad, F.; Khan, S.; Munir, I.; Bibi, Z.; Shaheen, S. Genetic Potential and Heritability Studies for Some Polygenic Traits in COTTON (Gossypium hirsutum L.). Pak. J. Bot. 2011, 43, 1713–1718. [Google Scholar]
- Li, C.-Q.; Song, L.; Zhao, H.-H.; Wang, Q.-L.; Fu, Y.-Z. Identification of Quantitative Trait Loci with Main and Epistatic Effects for Plant Architecture Traits in Upland Cotton (Gossypium hirsutum L.). Plant Breed. 2014, 133, 390–400. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J. Molecular Basis of Plant Architecture. Annu. Rev. Plant Biol. 2008, 59, 253–279. [Google Scholar] [CrossRef] [PubMed]
- Pnueli, L.; Carmel-Goren, L.; Hareven, D.; Gutfinger, T.; Alvarez, J.; Ganal, M.; Zamir, D.; Lifschitz, E. The SELF-PRUNING Gene of Tomato Regulates Vegetative to Reproductive Switching of Sympodial Meristems and is the Ortholog of CEN and TFL1. Development 1998, 125, 1979–1989. [Google Scholar] [CrossRef]
- Kelly, J.D. Remaking bean plant architecture for efficient production. Adv. Agron. 2001, 71, 109–143. [Google Scholar] [CrossRef]
- Boote, K.J.; Jones, J.W.; Batchelor, W.D.; Nafziger, E.D.; Myers, O. Genetic Coefficients in the CROPGRO–Soybean Model. Agron. J. 2003, 95, 32–51. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J. Genes Controlling Plant Architecture. Curr. Opin. Biotechnol. 2006, 17, 123–129. [Google Scholar] [CrossRef]
- Mauro-Herrera, M.; Doust, A.N. Development and Genetic Control of Plant Architecture and Biomass in the Panicoid Grass, Setaria. PLoS ONE 2016, 11, e0151346. [Google Scholar] [CrossRef] [PubMed]
- Tan, L.; Li, X.; Liu, F.; Sun, X.; Li, C.; Zhu, Z.; Fu, Y.; Cai, H.; Wang, X.; Xie, D.; et al. Control of a Key Transition from Prostrate to Erect Growth in Rice Domestication. Nat. Genet. 2008, 40, 1360–1364. [Google Scholar] [CrossRef]
- Soyk, S.; Lemmon, Z.H.; Oved, M.; Fisher, J.; Liberatore, K.L.; Park, S.J.; Goren, A.; Jiang, K.; Ramos, A.; van der Knaap, E.; et al. Bypassing Negative Epistasis on Yield in Tomato Imposed by a Domestication Gene. Cell 2017, 169, 1142–1155.e12. [Google Scholar] [CrossRef]
- Studer, A.J.; Wang, H.; Doebley, J.F. Selection during Maize Domestication Targeted a Gene Network Controlling Plant and Inflorescence Architecture. Genetics 2017, 207, 755–765. [Google Scholar] [CrossRef]
- Ferrandiz, C.; Gu, Q.; Martienssen, R.; Yanofsky, M.F. Redundant Regulation of Meristem Identity and Plant Architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 2000, 127, 725–734. [Google Scholar] [CrossRef]
- Wang, B.-H.; Wu, Y.-T.; Huang, N.-T.; Zhu, X.-F.; Guo, W.-Z.; Zhang, T.-Z. QTL Mapping for Plant Architecture Traits in Upland Cotton Using RILs and SSR Markers. Acta Genet. Sin. 2006, 33, 161–170. [Google Scholar] [CrossRef]
- Song, X.; Zhang, T. Quantitative Trait Loci Controlling Plant Architectural Traits in Cotton. Plant Sci. 2009, 177, 317–323. [Google Scholar] [CrossRef]
- Yu, J.Z.; Ulloa, M.; Hoffman, S.M.; Kohel, R.J.; Pepper, A.E.; Fang, D.D.; Percy, R.G.; Burke, J.J. Mapping Genomic Loci for Cotton Plant Architecture, Yield Components, and Fiber Properties in an Interspecific (Gossypium hirsutum L. × G. Barbadense L.) RIL Population. Mol. Genet. Genom. 2014, 289, 1347–1367. [Google Scholar] [CrossRef]
- Shang, L.; Liu, F.; Wang, Y.; Abduweli, A.; Cai, S.; Wang, K.; Hua, J. Dynamic QTL Mapping for Plant Height in Upland Cotton (Gossypium hirsutum). Plant Breed. 2015, 134, 703. Available online: https://www.academia.edu/21006329 (accessed on 29 May 2023). [CrossRef]
- Andrés, F.; Coupland, G. The Genetic Basis of Flowering Responses to Seasonal Cues. Nat. Rev. Genet. 2012, 13, 627–639. [Google Scholar] [CrossRef] [PubMed]
- Blackman, B.K.; Rasmussen, D.A.; Strasburg, J.L.; Raduski, A.R.; Burke, J.M.; Knapp, S.J.; Michaels, S.D.; Rieseberg, L.H. Contributions of Flowering Time Genes to Sunflower Domestication and Improvement. Genetics 2010, 187, 271–287. [Google Scholar] [CrossRef] [PubMed]
- Flowers, J.M.; Hanzawa, Y.; Hall, M.C.; Moore, R.C.; Purugganan, M.D. Population Genomics of the Arabidopsis Thaliana Flowering Time Gene Network. Mol. Biol. Evol. 2009, 26, 2475–2486. [Google Scholar] [CrossRef]
- Franks, S.J.; Sim, S.; Weis, A.E. Rapid Evolution of Flowering Time by an Annual Plant in Response to a Climate Fluctuation. Proc. Natl. Acad. Sci. USA 2007, 104, 1278–1282. [Google Scholar] [CrossRef]
- Levin, D.A. Flowering-Time Plasticity Facilitates Niche Shifts in Adjacent Populations. New Phytol. 2009, 183, 661–666. [Google Scholar] [CrossRef]
- Olsen, K.M.; Wendel, J.F. A Bountiful Harvest: Genomic Insights into Crop Domestication Phenotypes. Annu. Rev. Plant Biol. 2013, 64, 47–70. [Google Scholar] [CrossRef] [PubMed]
- Parmesan, C.; Yohe, G. A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature 2003, 421, 37–42. [Google Scholar] [CrossRef]
- Pires, J.C.; Zhao, J.; Schranz, M.E.; Leon, E.J.; Quijada, P.A.; Lukens, L.N.; Osborn, T.C. Flowering Time Divergence and Genomic Rearrangements in Resynthesized Brassica Polyploids (Brassicaceae). Biol. J. Linn. 2004, 82, 675–688. Available online: https://agris.fao.org/agris-search/search.do?recordID=US201301007163 (accessed on 27 June 2023). [CrossRef]
- Purugganan, M.D.; Fuller, D.Q. The Nature of Selection during Plant Domestication. Nature 2009, 457, 843–848. [Google Scholar] [CrossRef]
- Kojima, S.; Takahashi, Y.; Kobayashi, Y.; Monna, L.; Sasaki, T.; Araki, T.; Yano, M. Hd3a, a Rice Ortholog of the Arabidopsis FT Gene, Promotes Transition to Flowering Downstream of Hd1 under Short-Day Conditions. Plant Cell Physiol. 2002, 43, 1096–1105. [Google Scholar] [CrossRef]
- Yan, L.; Fu, D.; Li, C.; Blechl, A.; Tranquilli, G.; Bonafede, M.; Sanchez, A.; Valarik, M.; Yasuda, S.; Dubcovsky, J. The Wheat and Barley Vernalization Gene VRN3 is an Orthologue of FT. Proc. Natl. Acad. Sci. USA 2006, 103, 19581–19586. [Google Scholar] [CrossRef] [PubMed]
- Faure, S.; Higgins, J.; Turner, A.; Laurie, D.A. The FLOWERING LOCUS T-like Gene Family in Barley (Hordeum vulgare). Genetics 2007, 176, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Blackman, B.K. Interacting Duplications, Fluctuating Selection, and Convergence: The Complex Dynamics of Flowering Time Evolution during Sunflower Domestication. J. Exp. Bot. 2013, 64, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Hecht, V.; Laurie, R.E.; Vander Schoor, J.K.; Ridge, S.; Knowles, C.L.; Liew, L.C.; Sussmilch, F.C.; Murfet, I.C.; Macknight, R.C.; Weller, J.L. The Pea GIGAS Gene Is a FLOWERING LOCUS T Homolog Necessary for Graft-Transmissible Specification of Flowering but Not for Responsiveness to Photoperiod. Plant Cell 2011, 23, 147–161. [Google Scholar] [CrossRef] [PubMed]
- Oda, A.; Narumi, T.; Li, T.; Kando, T.; Higuchi, Y.; Sumitomo, K.; Fukai, S.; Hisamatsu, T. CsFTL3, a Chrysanthemum FLOWERING LOCUS T-like Gene, Is a Key Regulator of Photoperiodic Flowering in Chrysanthemums. J. Exp. Bot. 2011, 63, 1461–1477. [Google Scholar] [CrossRef]
- Pan, Y.; Meng, F.; Wang, X. Sequencing Multiple Cotton Genomes Reveals Complex Structures and Lays Foundation for Breeding. Front. Plant Sci. 2020, 11, 560096. [Google Scholar] [CrossRef] [PubMed]
- Campbell, B.T.; Saha, S.; Percy, R.; Frelichowski, J.; Jenkins, J.N.; Park, W.; Mayee, C.D.; Gotmare, V.; Dessauw, D.; Giband, M.; et al. Status of the Global Cotton Germplasm Resources. Crop Sci. 2010, 50, 1161–1179. [Google Scholar] [CrossRef]
- Guo, Y.; McCarty, J.C.; Jenkins, J.N.; Saha, S. QTLs for Node of First Fruiting Branch in a Cross of an Upland Cotton, Gossypium hirsutum L., Cultivar with Primitive Accession Texas 701. Euphytica 2007, 163, 113. [Google Scholar] [CrossRef]
- Tyagi, P.; Gore, M.A.; Bowman, D.T.; Campbell, B.T.; Udall, J.A.; Kuraparthy, V. Genetic Diversity and Population Structure in the US Upland Cotton (Gossypium hirsutum L.). Theor. Appl. Genet. 2014, 127, 283–295. [Google Scholar] [CrossRef]
- Melzer, S.; Lens, F.; Gennen, J.; Vanneste, S.; Rohde, A.; Beeckman, T. Flowering-Time Genes Modulate Meristem Determinacy and Growth Form in Arabidopsis thaliana. Nat. Genet. 2008, 40, 1489–1492. [Google Scholar] [CrossRef]
- Lee, J.; Oh, M.; Park, H.; Lee, I. SOC1 Translocated to the Nucleus by Interaction with AGL24 Directly Regulates LEAFY. Plant J. 2008, 55, 832–843. [Google Scholar] [CrossRef] [PubMed]
- Wigge, P.A.; Kim, M.C.; Jaeger, K.E.; Busch, W.; Schmid, M.; Lohmann, J.U.; Weigel, D. Integration of Spatial and Temporal Information During Floral Induction in Arabidopsis. Science 2005, 309, 1056–1059. Available online: https://pubmed.ncbi.nlm.nih.gov/16099980/ (accessed on 23 June 2023). [CrossRef] [PubMed]
- Yoo, S.K.; Chung, K.S.; Kim, J.; Lee, J.H.; Hong, S.M.; Yoo, S.J.; Yoo, S.Y.; Lee, J.S.; Ahn, J.H. CONSTANS Activates SUPPRESSOR of OVEREXPRESSION of CONSTANS 1 through FLOWERING LOCUS T to Promote Flowering in Arabidopsis. Plant Physiol. 2005, 139, 770–778. [Google Scholar] [CrossRef]
- Hulse-Kemp, A.M.; Lemm, J.; Plieske, J.; Ashrafi, H.; Buyyarapu, R.; Fang, D.D.; Frelichowski, J.; Giband, M.; Hague, S.; Hinze, L.L.; et al. Development of a 63K SNP Array for Cotton and High-Density Mapping of Intraspecific and Interspecific Populations of Gossypium spp. G3 Genes Genomes Genet. 2015, 5, 1187–1209. [Google Scholar] [CrossRef]
- Zheng, X.; Li, L.; Liang, F.; Tan, C.; Tang, S.; Yu, S.; Diao, Y.; Li, S.; Hu, Z. Pedigree-Based Genome Re-Sequencing Reveals Genetic Variation Patterns of Elite Backbone Varieties during Modern Rice Improvement. Sci. Rep. 2017, 7, 292. [Google Scholar] [CrossRef]
- Zhou, D.; Chen, W.; Lin, Z.; Chen, H.; Wang, C.; Li, H.; Yu, R.; Zhang, F.; Zhen, G.; Yi, J.; et al. Pedigree-Based Analysis of Derivation of Genome Segments of an Elite Rice Reveals Key Regions during its Breeding. Plant Biotechnol. J. 2015, 14, 638–648. [Google Scholar] [CrossRef]
- Guo, H.; Wang, X.; Gundlach, H.; Mayer, K.F.X.; Peterson, D.G.; Scheffler, B.E.; Chee, P.W.; Paterson, A.H. Extensive and Biased Intergenomic Nonreciprocal DNA Exchanges Shaped a Nascent Polyploid Genome, Gossypium (Cotton). Genetics 2014, 197, 1153–1163. [Google Scholar] [CrossRef] [PubMed]
- Sul, J.H.; Han, B.; Ye, C.; Choi, T.; Eskin, E. Effectively Identifying EQTLs from Multiple Tissues by Combining Mixed Model and Meta-Analytic Approaches. PLoS Genet. 2013, 9, e1003491. [Google Scholar] [CrossRef]
- Wang, X.; Guo, H.; Wang, J.; Lei, T.; Liu, T.; Wang, Z.; Li, Y.; Lee, T.; Li, J.; Tang, H.; et al. Comparative Genomic De-Convolution of the Cotton Genome Revealed a Decaploid Ancestor and Widespread Chromosomal Fractionation. New Phytol. 2015, 209, 1252–1263. [Google Scholar] [CrossRef] [PubMed]
- Mei, H.; Zhu, X.; Zhang, T. Favorable QTL Alleles for Yield and its Components Identified by Association Mapping in Chinese Upland Cotton Cultivars. PLoS ONE 2013, 8, e82193. [Google Scholar] [CrossRef]
- Cai, C.; Ye, W.; Zhang, T.; Guo, W. Association Analysis of Fiber Quality Traits and Exploration of Elite Alleles in Upland Cotton Cultivars/Accessions (Gossypium hirsutum L.). J. Integr. Plant Biol. 2014, 56, 51–62. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Wang, W.; Rutter, W.B.; Jordan, K.W.; Ren, J.; Taagen, E.; DeWitt, N.; Sehgal, D.; Sukumaran, S.; Dreisigacker, S.; et al. Genomic Variants Affecting Homoeologous Gene Expression Dosage Contribute to Agronomic Trait Variation in Allopolyploid Wheat. Nat. Commun. 2022, 13, 826. [Google Scholar] [CrossRef] [PubMed]
- Sui, M.; Jing, Y.; Li, H.; Zhan, Y.; Luo, J.; Teng, W.; Qiu, L.; Zheng, H.; Li, W.; Zhao, X.; et al. Identification of Loci and Candidate Genes Analyses for Tocopherol Concentration of Soybean Seed. Front. Plant Sci. 2020, 11, 539460. [Google Scholar] [CrossRef] [PubMed]
- Bolon, Y.; Hyten, D.L.; Orf, J.H.; Vance, C.P.; Muehlbauer, G.J. EQTL Networks Reveal Complex Genetic Architecture in the Immature Soybean Seed. Plant Genome 2014, 7, 1–14. [Google Scholar] [CrossRef]
- Liu, C.; Zhu, X.; Zhang, J.; Shen, M.; Chen, K.; Fu, X.; Ma, L.; Liu, X.; Zhou, C.; Zhou, D.-X.; et al. EQTLs Play Critical Roles in Regulating Gene Expression and Identifying Key Regulators in Rice. Plant Biotechnol. J. 2022, 20, 2357–2371. [Google Scholar] [CrossRef]
- Huang, L.; Liu, X.; Pandey, M.K.; Ren, X.; Chen, H.; Xue, X.; Liu, N.; Dongxin, H.; Chen, Y.; Zhou, X.; et al. Genome-Wide Expression Quantitative Trait Locus Analysis in a Recombinant Inbred Line Population for Trait Dissection in Peanut. Plant Biotechnol. J. 2020, 18, 779–790. [Google Scholar] [CrossRef]
- Pang, J.; Fu, J.; Zong, N.; Wang, J.; Song, D.; Zhang, X.; He, C.; Fang, T.; Zhang, H.; Fan, Y.; et al. Kernel Size-Related Genes Revealed by an Integrated EQTL Analysis during Early Maize Kernel Development. Plant J. Cell Mol. Biol. 2019, 98, 19–32. [Google Scholar] [CrossRef] [PubMed]
- Holloway, B.; Luck, S.; Beatty, M.; Rafalski, J.-A.; Li, B. Genome-Wide Expression Quantitative Trait Loci (EQTL) Analysis in Maize. BMC Genom. 2011, 12, 336. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Gao, C.; Liu, L.; Zhang, Y.; Jin, Y.; Yan, Q.; Yang, L.; Li, F.; Yang, Z. Integration of EQTL Analysis and GWAS Highlights Regulation Networks in Cotton under Stress Condition. Int. J. Mol. Sci. 2022, 23, 7564. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; You, C.; Yu, J.; Zhang, X.; Yan, F.; Ye, Z.; Shen, C.; Li, B.; Guo, K.; et al. Combined GWAS and EQTL Analysis Uncovers a Genetic Regulatory Network Orchestrating the Initiation of Secondary Cell Wall Development in Cotton. New Phytol. 2020, 226, 1738–1752. [Google Scholar] [CrossRef]
- Yang, Z.; Wang, J.; Huang, Y.; Wang, S.; Wei, L.; Liu, D.-X.; Weng, Y.; Xiang, J.; Zhu, Q.; Yang, Z.; et al. CottonMD: A Multi-Omics Database for Cotton Biological Study. Nucleic Acids Res. 2022, 51, 1446–1456. [Google Scholar] [CrossRef]
- Yuan, Y.; Wang, X.; Wang, L.; Xing, H.; Wang, Q.; Saeed, M.; Tao, J.; Feng, W.; Zhang, G.; Song, X.-L.; et al. Genome-Wide Association Study Identifies Candidate Genes Related to Seed Oil Composition and Protein Content in Gossypium hirsutum L. Front. Plant Sci. 2018, 9, 1359. [Google Scholar] [CrossRef]
- Jia, X.; Pang, C.; Wei, H.; Wang, H.; Ma, Q.; Yang, J.; Cheng, S.; Su, J.; Fan, S.; Song, M.; et al. High-Density Linkage Map Construction and QTL Analysis for Earliness-Related Traits in Gossypium hirsutum L. BMC Genom. 2016, 17, 909. [Google Scholar] [CrossRef]
- Li, C.; Wang, X.; Dong, N.; Zhao, H.; Xia, Z.; Wang, R.; Converse, R.L.; Wang, Q. QTL Analysis for Early-Maturing Traits in Cotton Using Two Upland Cotton (Gossypium hirsutum L.) Crosses. Breed. Sci. 2013, 63, 154–163. [Google Scholar] [CrossRef]
- Li, L.; Zhao, S.; Su, J.; Fan, S.; Pang, C.; Wei, H.; Wang, H.; Gu, L.; Zhang, C.; Liu, G.; et al. High-Density Genetic Linkage Map Construction by F2 Populations and QTL Analysis of Early-Maturity Traits in Upland Cotton (Gossypium hirsutum L.). PLoS ONE 2017, 12, e0182918. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Pang, C.; Wei, H.; Li, L.; Liang, B.; Wang, C.; Song, M.; Wang, H.; Zhao, S.; Jia, X.; et al. Identification of Favorable SNP Alleles and Candidate Genes for Traits Related to Early Maturity via GWAS in Upland Cotton. BMC Genom. 2016, 17, 687. [Google Scholar] [CrossRef]
- Naveed, S.; Rustgi, S. Functional Characterization of Candidate Genes, Gohir.D05G103700 and Gohir.D12G153600, Identified through Expression QTL Analysis Using Virus-Induced Gene Silencing in Upland Cotton (Gossypium hirsutum L.). Agriculture 2023, 13, 1007. [Google Scholar] [CrossRef]
- Kinga, K.M.; Gábor, H.; Taller, J.; Farkas, E.; Kincső, D.; Kutasy, B.; Nikoletta, K.; Nagy, E.; Balázs, K.; Eszter, V. Different Expression Pattern of Flowering Pathway Genes Contribute to Male or Female Organ Development during Floral Transition in the Monoecious Weed Ambrosia Artemisiifolia L. (Asteraceae). PeerJ 2019, 7, e7421. [Google Scholar] [CrossRef]
- Zheng, J.; Ma, Y.; Zhang, M.; Lyu, M.; Yuan, Y.; Wu, B. Expression Pattern of FT/TFL1 and MiR156-Targeted SPL Genes Associated with Developmental Stages in Dendrobium catenatum. Int. J. Mol. Sci. 2019, 20, 2725. [Google Scholar] [CrossRef] [PubMed]
- Jaudal, M.; Wen, J.; Mysore, K.S.; Putterill, J. Medicago PHYA Promotes Flowering, Primary Stem Elongation and Expression of Flowering Time Genes in Long Days. BMC Plant Biol. 2020, 20, 329. [Google Scholar] [CrossRef]
- Lim, W.-J.; Kim, K.H.; Kim, J.-Y.; Jeong, S.; Kim, N. Identification of DNA-Methylated CpG Islands Associated with Gene Silencing in the Adult Body Tissues of the Ogye Chicken Using RNA-Seq and Reduced Representation Bisulfite Sequencing. Front. Genet. 2019, 10, 346. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Spector, T.D.; Deloukas, P.; Bell, J.T.; Engelhardt, B.E. Predicting Genome-Wide DNA Methylation Using Methylation Marks, Genomic Position, and DNA Regulatory Elements. Genome Biol. 2015, 16, 14. [Google Scholar] [CrossRef] [PubMed]
- Weber, M.; Schübeler, D. Genomic Patterns of DNA Methylation: Targets and Function of an Epigenetic Mark. Curr. Opin. Cell Biol. 2007, 19, 273–280. [Google Scholar] [CrossRef]
- Smallwood, A.; Estève, P.-O.; Pradhan, S.; Carey, M. Functional Cooperation between HP1 and DNMT1 Mediates Gene Silencing. Genes Dev. 2007, 21, 1169–1178. [Google Scholar] [CrossRef]
- Rai, K.; Sarkar, S.; Broadbent, T.J.; Voas, M.; Grossmann, K.F.; Nadauld, L.D.; Dehghanizadeh, S.; Hagos, F.T.; Li, Y.; Toth, R.K.; et al. DNA Demethylase Activity Maintains Intestinal Cells in an Undifferentiated State Following Loss of APC. Cell 2010, 142, 930–942. [Google Scholar] [CrossRef]
- Xianwei, S.; Zhang, X.; Sun, J.; Cao, X. Epigenetic Mutation of RAV6 Affects Leaf Angle and Seed Size in Rice. Plant Physiol. 2015, 169, 2118–2128. [Google Scholar] [CrossRef]
- Song, Q.; Zhang, T.; Stelly, D.M.; Chen, Z.J. Epigenomic and Functional Analyses Reveal Roles of Epialleles in the Loss of Photoperiod Sensitivity during Domestication of Allotetraploid Cottons. Genome Biol. 2017, 18, 99. [Google Scholar] [CrossRef] [PubMed]
- McGarry, R.C.; Ayre, B.G. Cotton architecture: Examining the roles of SINGLE FLOWER TRUSS and SELF-PRUNING in regulating growth habits of a woody perennial crop. Curr. Opin. Plant Biol. 2021, 59, 101968. [Google Scholar] [CrossRef]
- McGarry, R.C.; Ayre, B.G. Geminivirus-mediated delivery of florigen promotes determinate growth in aerial organs and uncouples flowering from photoperiod in cotton. PLoS ONE 2012, 7, e36746. [Google Scholar] [CrossRef] [PubMed]
- McGarry, R.C.; Prewitt, S.F.; Culpepper, S.; Eshed, Y.; Lifschitz, E.; Ayre, B.G. Monopodial and sympodial branching architecture in cotton is differentially regulated by the Gossypium hirsutum SINGLE FLOWER TRUSS and SELF-PRUNING orthologs. New Phytol. 2016, 212, 244–258. [Google Scholar] [CrossRef]
- Liu, L.; Guo, R.; Qin, Q.; Fu, J.; Liu, B. Expression of Bt Protein in Transgenic Bt Cotton Plants and Ecological Fitness of These Plants in Different Habitats. Front. Plant Sci. 2020, 11, 1209. [Google Scholar] [CrossRef]
- Li, J.; Fan, S.-L.; Song, M.-Z.; Pang, C.-Y.; Wei, H.-L.; Li, W.; Ma, J.; Wei, J.-H.; Jing, J.; Yu, S.-X. Cloning and Characterization of a FLO/LFY Ortholog in Gossypium hirsutum L. Plant Cell Rep. 2013, 32, 1675–1686. [Google Scholar] [CrossRef]
- Rao, X.; Huang, X.; Zhou, Z.; Lin, X. An Improvement of the 2ˆ(-Delta Delta CT) Method for Quantitative Real-Time Polymerase Chain Reaction Data Analysis. Biostat. Bioinforma. Biomath. 2013, 3, 71–85. [Google Scholar] [PubMed]
- Ahn, S.J.; Costa, J.; Emanuel, J.R. PicoGreen quantitation of DNA: Effective evaluation of samples pre- or post-PCR. Nucleic Acids Res. 1996, 24, 2623–2625. [Google Scholar] [CrossRef]
- Stecher, G.; Tamura, K.; Kumar, S. Molecular Evolutionary Genetics Analysis (MEGA) for MacOS. Mol. Biol. Evol. 2020, 37, 1237–1239. [Google Scholar] [CrossRef]
- Raj, A.; Stephens, M.; Pritchard, J.K. FastSTRUCTURE: Variational Inference of Population Structure in Large SNP Data Sets. Genetics 2014, 197, 573–589. [Google Scholar] [CrossRef] [PubMed]
- Shaw, P.D.; Graham, M.; Kennedy, J.; Milne, I.; Marshall, D.F. Helium: Visualization of Large Scale Plant Pedigrees. BMC Bioinform. 2014, 15, 259. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.R.; Bender, D.; Maller, J.; Sklar, P.; de Bakker, P.I.W.; Daly, M.J.; et al. PLINK: A Tool Set for Whole-Genome Association and Population-Based Linkage Analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef]
- RStudio Team. RStudio: Integrated Development for R. RStudio; PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 18 March 2022).
- Barrett, J.C.; Fry, B.; Maller, J.; Daly, M.J. Haploview: Analysis and Visualization of LD and Haplotype Maps. Bioinformatics 2004, 21, 263–265. [Google Scholar] [CrossRef]
- Goodstein, D.M.; Shu, S.; Howson, R.; Neupane, R.; Hayes, R.D.; Fazo, J.; Mitros, T.; Dirks, W.; Hellsten, U.; Putnam, N.; et al. Phytozome: A Comparative Platform for Green Plant Genomics. Nucleic Acids Res. 2011, 40, 1178–1186. [Google Scholar] [CrossRef]
- Chow, C.-N.; Lee, T.-Y.; Hung, Y.-C.; Li, G.-Z.; Tseng, K.-C.; Liu, Y.-H.; Kuo, P.-L.; Zheng, H.-Q.; Chang, W.-C. PlantPAN3.0: A New and Updated Resource for Reconstructing Transcriptional Regulatory Networks from ChIP-Seq Experiments in Plants. Nucleic Acids Res. 2018, 47, 1155–1163. [Google Scholar] [CrossRef]
- Kozomara, A.; Birgaoanu, M.; Griffiths-Jones, S. MiRBase: From MicroRNA Sequences to Function. Nucleic Acids Res. 2018, 47, 155–162. [Google Scholar] [CrossRef]
- Nolte, H.; MacVicar, T.D.; Tellkamp, F.; Krüger, M. Instant Clue: A Software Suite for Interactive Data Visualization and Analysis. Sci. Rep. 2018, 8, 12648. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Leal, D.; Lemmon, Z.H.; Man, J.; Bartlett, M.E.; Lippman, Z.B. Engineering Quantitative Trait Variation for Crop Improvement by Genome Editing. Cell 2017, 171, 470–480.e8. [Google Scholar] [CrossRef]
- Rathinavel, K. Principal Component Analysis with Quantitative Traits in Extant Cotton Varieties (Gossypium hirsutum L.) and Parental Lines for Diversity. Curr. Agric. Res. J. 2018, 6, 54–64. [Google Scholar] [CrossRef]
ID | Genotype | Points 2017 | Points 2018 | Points 2019 | Total Points |
---|---|---|---|---|---|
8 | CABD3CABCH-1-89 | 14 | 7 | 13 | 34 (76%) |
5 | ARKOT 8102 | 9 | 8 | 15 | 32 (71%) |
20 | HOPI MOENCOPI | 11 | 10 | 11 | 32 (71%) |
37 | SPNXCHGLBH-1-94 | 12 | 8 | 8 | 28 (62%) |
9 | CAHUGLBBCS-1-88 | 9 | 6 | 8 | 23 (51%) |
39 | TAMCOT SP-23 | 6 | 9 | 8 | 23 (51%) |
10 | COKER 201 | 9 | 9 | 4 | 22 (49%) |
17 | GSA 74 | 4 | 8 | 7 | 19 (42%) |
Sr. No. | Molecular Markers | Gene ID | Sub-Genome | Gene Name | Position on Genome (Mb) | Annotation |
---|---|---|---|---|---|---|
1 | i02927Gh | Gohir.A01G208700 | A01 | AP1, FT, LFY | 117.19592 | Trihelix transcription factor PTL |
2 | i43992Gh | Gohir.A08G034500 | A08 | FT | 4.35425 | MYB3-like transcription factor |
3 | i13158Gh | Gohir.A13G050400 | A13 | FT, LFY | 7.06423 | GATA transcription factor 28-like |
4 | i09222Gh; i00443Gh | Gohir.D05G103700 | D05 | AP1 | 8.73032 | GATA transcription factor 11-like |
5 | i08185Gh | Gohir.D12G153600 | D12 | FUL, SOC1 | 48.44348 | SQUAMOSA promoter binding-like transcription factor |
6 | i13848Gh; i13851Gh | Gohir.D13G236200 | D13 | LFY | 64.67230 | Homeobox-leucine zipper protein REVOLUTA-like |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Naveed, S.; Gandhi, N.; Billings, G.; Jones, Z.; Campbell, B.T.; Jones, M.; Rustgi, S. Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton (Gossypium hirsutum L.). Int. J. Mol. Sci. 2023, 24, 14174. https://doi.org/10.3390/ijms241814174
Naveed S, Gandhi N, Billings G, Jones Z, Campbell BT, Jones M, Rustgi S. Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences. 2023; 24(18):14174. https://doi.org/10.3390/ijms241814174
Chicago/Turabian StyleNaveed, Salman, Nitant Gandhi, Grant Billings, Zachary Jones, B. Todd Campbell, Michael Jones, and Sachin Rustgi. 2023. "Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton (Gossypium hirsutum L.)" International Journal of Molecular Sciences 24, no. 18: 14174. https://doi.org/10.3390/ijms241814174
APA StyleNaveed, S., Gandhi, N., Billings, G., Jones, Z., Campbell, B. T., Jones, M., & Rustgi, S. (2023). Alterations in Growth Habit to Channel End-of-Season Perennial Reserves towards Increased Yield and Reduced Regrowth after Defoliation in Upland Cotton (Gossypium hirsutum L.). International Journal of Molecular Sciences, 24(18), 14174. https://doi.org/10.3390/ijms241814174