The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review
Abstract
:1. Introduction
2. Arthritis
2.1. Joint
2.2. RA
2.3. OA
3. The Mechanism of PBM on Arthritis Treatment
3.1. ATP
3.2. Blood Flow
3.3. Regulation of Cytokines
3.4. Enzyme
3.5. Gene
4. PBM Regulates Arthritis-Related Cells
4.1. Polymorphonuclear Cells
4.2. Macrophages
4.3. T (Treg) Cells
4.4. Fibroblast-like Synoviocytes
5. PBM Regulates Arthritis Animals
5.1. Establish Arthritis Animal Models
5.2. Studies on In Vivo Treatment of Arthritis with PBM
5.3. Effects of PBM Parameters on Animal Models of Arthritis
6. Clinical Studies of PBM in the Treatment of Arthritis
6.1. Clinical Evaluation of Arthritis
6.2. Clinic Trials
7. Conclusions and Prospects
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Felson, D.T. Osteoarthritis as a disease of mechanics. Osteoarthr. Cartil. 2013, 21, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Litwic, A.; Edwards, M.H.; Dennison, E.M.; Cooper, C. Epidemiology and burden of osteoarthritis. Br. Med. Bull. 2013, 105, 185–199. [Google Scholar] [CrossRef] [PubMed]
- Guo, Q.; Wang, Y.; Xu, D.; Nossent, J.; Pavlos, N.J.; Xu, J. Rheumatoid arthritis: Pathological mechanisms and modern pharmacologic therapies. Bone Res. 2018, 6, 15. [Google Scholar] [CrossRef] [PubMed]
- Ma, V.Y.; Chan, L.; Carruthers, K.J. Incidence, Prevalence, Costs, and Impact on Disability of Common Conditions Requiring Rehabilitation in the United States: Stroke, Spinal Cord Injury, Traumatic Brain Injury, Multiple Sclerosis, Osteoarthritis, Rheumatoid Arthritis, Limb Loss, and Back Pain. Arch. Phys. Med. Rehabil. 2014, 95, 986–995. [Google Scholar] [CrossRef] [PubMed]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; McInnes, I.B.; Sepriano, A.; van Vollenhoven, R.F.; de Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.-J.; Anzaghe, M.; Schuelke, S. Update on the Pathomechanism, Diagnosis, and Treatment Options for Rheumatoid Arthritis. Cells 2020, 9, 880. [Google Scholar] [CrossRef] [PubMed]
- Song, S.; Zhou, F.; Chen, W.R. Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: Implications for neurodegenerative diseases. J. Neuroinflamm. 2012, 9, 219. [Google Scholar] [CrossRef]
- Avci, P.; Gupta, A.; Sadasivam, M.; Vecchio, D.; Pam, Z.; Pam, N.; Hamblin, M.R. Low-Level Laser (Light) Therapy (LLLT) in Skin: Stimulating, Healing, Restoring. Semin. Cutan. Med. Surg. 2013, 32, 41–52. [Google Scholar]
- Zhang, R.; Zhou, T.; Liu, L.; Ohulchanskyy, T.Y.; Qu, J. Dose–effect relationships for PBM in the treatment of Alzheimer’s disease. J. Phys. D Appl. Phys. 2021, 54, 353001. [Google Scholar] [CrossRef]
- Zhang, R.; Zhou, T.; Samanta, S.; Luo, Z.; Li, S.; Xu, H.; Qu, J. Synergistic photobiomodulation with 808-nm and 1064-nm lasers to reduce the β-amyloid neurotoxicity in the in vitro Alzheimer’s disease models. Front. Neuroimaging 2022, 1, 903531. [Google Scholar] [CrossRef]
- de Freitas, L.F.; Hamblin, M.R. Proposed Mechanisms of Photobiomodulation or Low-Level Light Therapy. IEEE J. Sel. Top. Quantum Electron. 2016, 22, 348–364. [Google Scholar] [CrossRef] [PubMed]
- Chung, H.; Dai, T.H.; Sharma, S.K.; Huang, Y.Y.; Carroll, J.D.; Hamblin, M.R. The Nuts and Bolts of Low-level Laser (Light) Therapy. Ann. Biomed. Eng. 2012, 40, 516–533. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Dehaini, D.; Zhang, Y.; Zhou, J.; Chen, X.; Zhang, L.; Fang, R.H.; Gao, W.; Zhang, L. Neutrophil membrane-coated nanoparticles inhibit synovial inflammation and alleviate joint damage in inflammatory arthritis. Nat. Nanotechnol. 2018, 13, 1182–1190. [Google Scholar] [CrossRef] [PubMed]
- Stadler, I.; Lanzafame, R.J.; Oskoui, P.; Zhang, R.Y.; Coleman, J.; Whittaker, M. Alteration of skin temperature during low-level laser irradiation at 830 nm in a mouse model. Photomed. Laser Surg. 2004, 22, 227–231. [Google Scholar] [CrossRef]
- Rochkind, S.; Barrnea, L.; Razon, N.; Bartal, A.; Schwartz, M. Stimulatory effect of he-ne low-dose laser on injured sciatic-nerves of rats. Neurosurgery 1987, 20, 843–847. [Google Scholar] [CrossRef] [PubMed]
- Rojas, J.C.; Gonzalez-Lima, F. Neurological and psychological applications of transcranial lasers and LEDs. Biochem. Pharmacol. 2013, 86, 447–457. [Google Scholar] [CrossRef] [PubMed]
- Avci, P.; Gupta, G.K.; Clark, J.; Wikonkal, N.; Hamblin, M.R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. 2014, 46, 144–151. [Google Scholar] [CrossRef]
- Hamblin, M.R. Can osteoarthritis be treated with light? Arthritis Res. Ther. 2013, 15, 120. [Google Scholar] [CrossRef]
- Brosseau, L.; Welch, V.; Wells, G.; Tugwell, P.; de Bie, R.; Gam, A.; Harman, K.; Shea, B.; Morin, M. Low level laser therapy for osteoarthritis and rheumatoid arthritis: A metaanalysis. J. Rheumatol. 2000, 27, 1961–1969. [Google Scholar]
- Tascioglu, F.; Armagan, O.; Tabak, Y.; Corapci, I.; Oner, C. Low power laser treatment in patients with knee osteoarthritis. Swiss. Med. Wkly. 2004, 134, 254–258. [Google Scholar] [CrossRef]
- Brosseau, L.; Wells, G.; Marchand, S.; Gaboury, I.; Stokes, B.; Morin, M.; Casimiro, L.; Yonge, K.; Tugwell, P. Randomized controlled trial on low level laser therapy (LLLT) in the treatment of osteoarthritis (OA) of the hand. Lasers Surg. Med. 2005, 36, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Meireles, S.M.; Jones, A.; Jennings, F.; Suda, A.L.; Parizotto, N.A.; Natour, J. Assessment of the effectiveness of low-level laser therapy on the hands of patients with rheumatoid arthritis: A randomized double-blind controlled trial. Clin. Rheumatol. 2010, 29, 501–509. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, X.; Wang, S.C.; Jing, Y.Y.; Su, J.C. Subchondral bone microenvironment in osteoarthritis and pain. Bone Res. 2021, 9, 20. [Google Scholar] [CrossRef] [PubMed]
- Scanzello, C.R.; Goldring, S.R. The role of synovitis in osteoarthritis pathogenesis. Bone 2012, 51, 249–257. [Google Scholar] [CrossRef] [PubMed]
- Geenen, R.; Overman, C.L.; Christensen, R.; Asenlof, P.; Capela, S.; Huisinga, K.L.; Husebo, M.E.P.; Koke, A.J.A.; Paskins, Z.; Pitsillidou, I.A.; et al. EULAR recommendations for the health professional’s approach to pain management in inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018, 77, 797–807. [Google Scholar] [CrossRef] [PubMed]
- England, B.R.; Thiele, G.M.; Anderson, D.R.; Mikuls, T.R. Increased cardiovascular risk in rheumatoid arthritis: Mechanisms and implications. BMJ 2018, 361, k1036. [Google Scholar] [CrossRef]
- Yang, R.; Yao, Y.; Wang, P. Hypoxia-induced the upregulation of stromal cell-derived factor 1 in fibroblast-like synoviocytes contributes to migration of monocytes into synovium tissue in rheumatoid arthritis. Cell Biosci. 2018, 8, 11. [Google Scholar] [CrossRef] [PubMed]
- Bottini, N.; Firestein, G.S. Duality of fibroblast-like synoviocytes in RA: Passive responders and imprinted aggressors. Nat. Rev. Rheumatol. 2013, 9, 24–33. [Google Scholar] [CrossRef]
- Mahdi, H.; Fisher, B.A.; Kallberg, H.; Plant, D.; Malmstrom, V.; Ronnelid, J.; Charles, P.; Ding, B.; Alfredsson, L.; Padyukov, L.; et al. Specific interaction between genotype, smoking and autoimmunity to citrullinated alpha-enolase in the etiology of rheumatoid arthritis. Nat. Genet. 2009, 41, 1319–1324. [Google Scholar] [CrossRef]
- Gupta, S.; Kaplan, M.J. The role of neutrophils and NETosis in autoimmune and renal diseases. Nat. Rev. Nephrol. 2016, 12, 402–413. [Google Scholar] [CrossRef]
- Navegantes, K.C.; Gomes, R.D.; Pereira, P.A.T.; Czaikoski, P.G.; Azevedo, C.H.M.; Monteiro, M.C. Immune modulation of some autoimmune diseases: The critical role of macrophages and neutrophils in the innate and adaptive immunity. J. Transl. Med. 2017, 15, 36. [Google Scholar] [CrossRef]
- Malmstrom, V.; Catrina, A.I.; Klareskog, L. The immunopathogenesis of seropositive rheumatoid arthritis: From triggering to targeting. Nat. Rev. Immunol. 2017, 17, 60–75. [Google Scholar] [CrossRef] [PubMed]
- Kasapçopur, Ö.; Altun, S.; Aslan, M.; Karaarslan, S.; Kamburoglu-Göksel, A.; Sarıbaş, S.; Arısoy, N.; Kocazeybek, B. Diagnostic accuracy of anti-cyclic citrullinated peptide antibodies in juvenile idiopathic arthritis. Ann. Rheum. Dis. 2004, 63, 1687. [Google Scholar] [CrossRef] [PubMed]
- Bizzaro, N.; Bartoloni, E.; Morozzi, G.; Manganelli, S.; Riccieri, V.; Sabatini, P.; Filippini, M.; Tampoia, M.; Afeltra, A.; Sebastiani, G.; et al. Anti-cyclic citrullinated peptide antibody titer predicts time to rheumatoid arthritis onset in patients with undifferentiated arthritis: Results from a 2-year prospective study. Arthritis Res. Ther. 2013, 15, R16. [Google Scholar] [CrossRef] [PubMed]
- Raychaudhuri, S.; Sandor, C.; Stahl, E.A.; Freudenberg, J.; Lee, H.S.; Jia, X.; Alfredsson, L.; Padyukov, L.; Klareskog, L.; Worthington, J.; et al. Five amino acids in three HLA proteins explain most of the association between MHC and seropositive rheumatoid arthritis. Nat. Genet. 2012, 44, 291–296. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; He, B.; Liu, J.; Feng, H.; Ma, Y.; Li, D.; Guo, B.; Liang, C.; Dang, L.; Wang, L.; et al. Molecular Insight into Gut Microbiota and Rheumatoid Arthritis. Int. J. Mol. Sci. 2016, 17, 431. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wright, K.; Davis, J.M.; Jeraldo, P.; Marietta, E.V.; Murray, J.; Nelson, H.; Matteson, E.L.; Taneja, V. An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med. 2016, 8, 43. [Google Scholar] [CrossRef] [PubMed]
- Fukui, S.; Iwamoto, N.; Takatani, A.; Igawa, T.; Shimizu, T.; Umeda, M.; Nishino, A.; Horai, Y.; Hirai, Y.; Koga, T.; et al. M1 and M2 Monocytes in Rheumatoid Arthritis: A Contribution of Imbalance of M1/M2 Monocytes to Osteoclastogenesis. Front. Immunol. 2017, 8, 1958. [Google Scholar] [CrossRef]
- Burmester, G.R.; Dimitriu-Bona, A.; Waters, S.J.; Winchester, R.J. Identification of three major synovial lining cell populations by monoclonal antibodies directed to Ia antigens and antigens associated with monocytes/macrophages and fibroblasts. Scand. J. Immunol. 1983, 17, 69–82. [Google Scholar] [CrossRef]
- Lu, M.C.; Lai, N.S.; Yu, H.C.; Huang, H.B.; Hsieh, S.C.; Yu, C.L. Anti-citrullinated protein antibodies bind surface-expressed citrullinated Grp78 on monocyte/macrophages and stimulate tumor necrosis factor alpha production. Arthritis Rheum. 2010, 62, 1213–1223. [Google Scholar] [CrossRef]
- Paleolog, E.M. Angiogenesis in rheumatoid arthritis. Arthritis Res. Ther. 2002, 4, S81–S90. [Google Scholar] [CrossRef] [PubMed]
- Elshabrawy, H.A.; Chen, Z.; Volin, M.V.; Ravella, S.; Virupannavar, S.; Shahrara, S. The pathogenic role of angiogenesis in rheumatoid arthritis. Angiogenesis 2015, 18, 433–448. [Google Scholar] [CrossRef] [PubMed]
- Shibuya, M. Structure and function of VEGF/VEGF-receptor system involved in angiogenesis. Cell Struct. Funct. 2001, 26, 25–35. [Google Scholar] [CrossRef] [PubMed]
- Crofford, L.J. Use of NSAIDs in treating patients with arthritis. Arthritis Res. Ther. 2013, 15, S2. [Google Scholar] [CrossRef] [PubMed]
- Hoes, J.N.; Jacobs, J.W.G.; Buttgereit, F.; Bijlsma, J.W.J. Current view of glucocorticoid co-therapy with DMARDs in rheumatoid arthritis. Nat. Rev. Rheumatol. 2010, 6, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Sepriano, A.; Kerschbaumer, A.; Smolen, J.S.; van der Heijde, D.; Dougados, M.; van Vollenhoven, R.; McInnes, I.B.; Bijlsma, J.W.; Burmester, G.R.; de Wit, M.; et al. Safety of synthetic and biological DMARDs: A systematic literature review informing the 2019 update of the EULAR recommendations for the management of rheumatoid arthritis. Ann. Rheum. Dis. 2020, 79, 760–770. [Google Scholar] [CrossRef] [PubMed]
- Osthoff, A.K.R.; Niedermann, K.; Braun, J.; Adams, J.; Brodin, N.; Dagfinrud, H.; Duruoz, T.; Esbensen, B.A.; Gunther, K.P.; Hurkmans, E.; et al. 2018 EULAR recommendations for physical activity in people with inflammatory arthritis and osteoarthritis. Ann. Rheum. Dis. 2018, 77, 1251–1260. [Google Scholar] [CrossRef]
- Carr, A.J.; Robertsson, O.; Graves, S.; Price, A.J.; Arden, N.K.; Judge, A.; Beard, D.J. Knee replacement. Lancet 2012, 379, 1331–1340. [Google Scholar] [CrossRef]
- Knupp, M.; Skoog, A.; Tornkvist, H.; Ponzer, S. Triple arthrodesis in rheumatoid arthritis. Foot Ankle Int. 2008, 29, 293–297. [Google Scholar] [CrossRef]
- Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and Treatment of Hip and Knee Osteoarthritis A Review. JAMA-J. Am. Med. Assoc. 2021, 325, 568–578. [Google Scholar] [CrossRef]
- Getgood, A.; Brown, C.; Lording, T.; Amis, A.; Claes, S.; Geeslin, A.; Musahl, V.; Amis, A.; Brown, C.; Cavaignac, E.; et al. The anterolateral complex of the knee: Results from the International ALC Consensus Group Meeting. Knee Surg. Sports Traumatol. Arthrosc. 2019, 27, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Charlier, E.; Deroyer, C.; Ciregia, F.; Malaise, O.; Neuville, S.; Plener, Z.; Malaise, M.; de Seny, D. Chondrocyte dedifferentiation and osteoarthritis (OA). Biochem. Pharmacol. 2019, 165, 49–65. [Google Scholar] [CrossRef] [PubMed]
- Castañeda, S.; Vicente, E.F. Osteoarthritis: More than Cartilage Degeneration. Clin. Rev. Bone Miner. Metab. 2017, 15, 69–81. [Google Scholar] [CrossRef]
- Intema, F.; Sniekers, Y.H.; Weinans, H.; Vianen, M.E.; Yocum, S.A.; Zuurmond, A.M.; DeGroot, J.; Lafeber, F.P.; Mastbergen, S.C. Similarities and discrepancies in subchondral bone structure in two differently induced canine models of osteoarthritis. J. Bone Min. Res. 2010, 25, 1650–1657. [Google Scholar] [CrossRef] [PubMed]
- Gidwani, S.; Fairbank, A. The orthopaedic approach to managing osteoarthritis of the knee. BMJ-Brit. Med. J. 2004, 329, 1220–1224a. [Google Scholar] [CrossRef] [PubMed]
- Karu, T. Primary and secondary mechanisms of action of visible to near-IR radiation on cells. J. Photochem. Photobiol. B Biol. 1999, 49, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mason, M.G.; Nicholls, P.; Wilson, M.T.; Cooper, C.E. Nitric oxide inhibition of respiration involves both competitive (heme) and noncompetitive (copper) binding to cytochrome c oxidase. Proc. Natl. Acad. Sci. USA 2006, 103, 708–713. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Mechanisms and Mitochondrial Redox Signaling in Photobiomodulation. Photochem. Photobiol. 2018, 94, 199–212. [Google Scholar] [CrossRef]
- Hamblin, M.; Demidova, T. Mechanisms of Low Level Light Therapy; SPIE: Bellingham, WA, USA, 2006; Volume 6140. [Google Scholar]
- Tomlinson, R.E.; Silva, M.J. Skeletal Blood Flow in Bone Repair and Maintenance. Bone Res. 2013, 1, 311–322. [Google Scholar] [CrossRef]
- Compston, J.E. Bone marrow and bone: A functional unit. J. Endocrinol. 2002, 173, 387–394. [Google Scholar] [CrossRef]
- Sharma, S.K.; Kharkwal, G.B.; Sajo, M.; Huang, Y.-Y.; De Taboada, L.; McCarthy, T.; Hamblin, M.R. Dose Response Effects of 810 nm Laser Light on Mouse Primary Cortical Neurons. Lasers Surg. Med. 2011, 43, 851–859. [Google Scholar] [CrossRef]
- Lohr, N.L.; Keszler, A.; Pratt, P.; Bienengraber, M.; Warltier, D.C.; Hogg, N. Enhancement of nitric oxide release from nitrosyl hemoglobin and nitrosyl myoglobin by red/near infrared radiation: Potential role in cardioprotection. J. Mol. Cell. Cardiol. 2009, 47, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Karu, T.; Pyatibrat, L.; Afanasyeva, N. Cellular Effects of Low Power Laser Therapy Can be Mediated by Nitric Oxide. Lasers Surg. Med. 2005, 36, 307–314. [Google Scholar] [CrossRef] [PubMed]
- Ball, K.A.; Castello, P.R.; Poyton, R.O. Low intensity light stimulates nitrite-dependent nitric oxide synthesis but not oxygen consumption by cytochrome c oxidase: Implications for phototherapy. J. Photochem. Photobiol. B Biol. 2011, 102, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. The role of nitric oxide in low level light therapy—Art. no. 684602. In Mechanisms for Low-Light Therapy Iii; Hamblin, M.R., Waynant, R.W., Anders, J., Eds.; SPIE: Bellingham, WA, USA, 2008; Volume 6846, p. 84602. [Google Scholar]
- Tim, C.R.; Bossini, P.S.; Kido, H.W.; Malavazi, I.; von Zeska Kress, M.R.; Carazzolle, M.F.; Parizotto, N.A.; Renno, A.C. Effects of low level laser therapy on inflammatory and angiogenic gene expression during the process of bone healing: A microarray analysis. J. Photochem. Photobiol. B 2016, 154, 8–15. [Google Scholar] [CrossRef]
- Aud, D.; Peng, S.L. Mechanisms of disease: Transcription factors in inflammatory arthritis. Nat. Clin. Pract. Rheum 2006, 2, 434–442. [Google Scholar] [CrossRef] [PubMed]
- dos Santos, S.A.; Alves, A.C.A.; Leal, E.C.P.; Albertini, R.; Vieira, R.D.; Ligeiro, A.P.; Silva, J.A.; de Carvalho, P.D.C. Comparative analysis of two low-level laser doses on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Lasers Med. Sci. 2014, 29, 1051–1058. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, L.M.J.; Salvador, P.A.; de Souza, Á, C.; de Souza da Fonseca, A.; de Paoli, F.; Gameiro, J. Modulation of immune response to induced-arthritis by low-level laser therapy. J. Biophotonics 2019, 12, e201800120. [Google Scholar] [CrossRef]
- Fukuda, T.Y.; Tanji, M.M.; Silva, S.R.; Sato, M.N.; Plapler, H. Infrared low-level diode laser on inflammatory process modulation in mice: Pro- and anti-inflammatory cytokines. Lasers Med. Sci. 2013, 28, 1305–1313. [Google Scholar] [CrossRef]
- Torres-Silva, R.; Lopes-Martins, R.A.B.; Bjordal, J.M.; Frigo, L.; Rahouadj, R.; Arnold, G.; Leal, E.C.P.; Magdalou, J.; Pallotta, R.; Marcos, R.L. The low level laser therapy (LLLT) operating in 660 nm reduce gene expression of inflammatory mediators in the experimental model of collagenase-induced rat tendinitis. Lasers Med. Sci. 2015, 30, 1985–1990. [Google Scholar] [CrossRef]
- Nie, H.; Zheng, Y.; Li, R.; Guo, T.B.; He, D.; Fang, L.; Liu, X.; Xiao, L.; Chen, X.; Wan, B.; et al. Phosphorylation of FOXP3 controls regulatory T cell function and is inhibited by TNF-α in rheumatoid arthritis. Nat. Med. 2013, 19, 322–328. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Tanaka, T. Interleukin 6 and rheumatoid arthritis. Biomed. Res. Int. 2014, 2014, 698313. [Google Scholar] [CrossRef] [PubMed]
- Dinarello, C.A. Interleukin-1 in the pathogenesis and treatment of inflammatory diseases. Blood 2011, 117, 3720–3732. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.A.; Vieira, R.d.P.; Leal-Junior, E.C.P.; dos Santos, S.A.; Ligeiro, A.P.; Albertini, R.; Junior, J.A.S.; de Carvalho, P.d.T.C. Effect of low-level laser therapy on the expression of inflammatory mediators and on neutrophils and macrophages in acute joint inflammation. Arthritis Res. Ther. 2013, 15, R116. [Google Scholar] [CrossRef] [PubMed]
- Assis, L.; Milares, L.P.; Almeida, T.; Tim, C.; Magri, A.; Fernandes, K.R.; Medalha, C.; Muniz Renno, A.C. Aerobic exercise training and low-level laser therapy modulate inflammatory response and degenerative process in an experimental model of knee osteoarthritis in rats. Osteoarthr. Cartil. 2016, 24, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Oshima, Y.; Coutts, R.D.; Badlani, N.M.; Healey, R.M.; Kubo, T.; Amiel, D. Effect of light-emitting diode (LED) therapy on the development of osteoarthritis (OA) in a rabbit model. Biomed. Pharmacother. 2011, 65, 224–229. [Google Scholar] [CrossRef] [PubMed]
- Adly, A.S.; Adly, A.S.; Adly, M.S. Effects of laser acupuncture tele-therapy for rheumatoid arthritis elderly patients. Lasers Med. Sci. 2022, 37, 499–504. [Google Scholar] [CrossRef] [PubMed]
- Travis, M.A.; Sheppard, D. TGF-β activation and function in immunity. Annu Rev Immunol 2014, 32, 51–82. [Google Scholar] [CrossRef]
- Liu, Z.-W.; Zhang, Y.-M.; Zhang, L.-Y.; Zhou, T.; Li, Y.-Y.; Zhou, G.-C.; Miao, Z.-M.; Shang, M.; He, J.-P.; Ding, N.; et al. Duality of Interactions Between TGF-β and TNF-α During Tumor Formation. Front. Immunol. 2022, 12, 810286. [Google Scholar] [CrossRef]
- Bartoli, D.M.F.; Felizatti, A.L.; do Bomfim, F.R.C.; Bovo, J.L.; de Aro, A.A.; do Amaral, M.E.C.; Esquisatto, M.A.M. Laser treatment of synovial inflammatory process in experimentally induced microcrystalline arthritis in Wistar rats. Lasers Med. Sci. 2021, 36, 529–540. [Google Scholar] [CrossRef]
- Hamblin, M.R. Mechanisms and applications of the anti-inflammatory effects of photobiomodulation. Aims Biophys. 2017, 4, 337–361. [Google Scholar] [CrossRef] [PubMed]
- Park, J.Y.; Pillinger, M.H.; Abramson, S.B. Prostaglandin E2 synthesis and secretion: The role of PGE2 synthases. Clin. Immunol. 2006, 119, 229–240. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, J.A.; Larkin, S.; Williams, T.J. Cyclooxygenase-2—Regulation and Relevance in Inflammation. Biochem. Pharmacol. 1995, 50, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, M.C. COX-2 selective inhibitors in the treatment of arthritis: A rheumatologist perspective. Curr. Top. Med. Chem. 2005, 5, 443–448. [Google Scholar] [CrossRef] [PubMed]
- Burrage, P.S.; Mix, K.S.; Brinckerhoff, C.E. Matrix metalloproteinases: Role in arthritis. Front. Biosci-Landmrk 2006, 11, 529–543. [Google Scholar] [CrossRef]
- Pope, R.M. Apoptosis as a therapeutic tool in rheumatoid arthritis. Nat. Rev. Immunol. 2002, 2, 527–535. [Google Scholar] [CrossRef] [PubMed]
- Dos Anjos, L.M.J.; da Fonseca, A.S.; Gameiro, J.; de Paoli, F. Apoptosis induced by low-level laser in polymorphonuclear cells of acute joint inflammation: Comparative analysis of two energy densities. Lasers Med. Sci. 2017, 32, 975–983. [Google Scholar] [CrossRef] [PubMed]
- Firestein, G.S. Evolving concepts of rheumatoid arthritis. Nature 2003, 423, 356–361. [Google Scholar] [CrossRef]
- Zhang, L.; Kajiwara, H.; Kuboyama, N.; Abiko, Y. Reduction of CXCR4 expression in Rheumatoid Arthritis Rat Joints by low level diode laser irradiation. Laser Ther. 2011, 20, 53–58. [Google Scholar] [CrossRef]
- Pap, T.; Korb-Pap, A. Cartilage damage in osteoarthritis and rheumatoid arthritis-two unequal siblings. Nat. Rev. Rheumatol. 2015, 11, 606–615. [Google Scholar] [CrossRef]
- Carlos, F.P.; de Paula Alves da Silva, M.; de Lemos Vasconcelos Silva Melo, E.; Costa, M.S.; Zamuner, S.R. Protective effect of low-level laser therapy (LLLT) on acute zymosan-induced arthritis. Lasers Med. Sci. 2014, 29, 757–763. [Google Scholar] [CrossRef]
- Karu, T.I. Mitochondrial signaling in mammalian cells activated by red and near-IR radiation. Photochem. Photobiol. 2008, 84, 1091–1099. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat. Rev. Immunol. 2007, 7, 429–442. [Google Scholar] [CrossRef]
- Szekanecz, Z.; Pakozdi, A.; Szentpetery, A.; Besenyei, T.; Koch, A.E. Chemokines and angiogenesis in rheumatoid arthritis. Front. Biosci. (Elite Ed.) 2009, 1, 44–51. [Google Scholar] [CrossRef] [PubMed]
- Nishimoto, N.; Kishimoto, T. Interleukin 6: From bench to bedside. Nat. Clin. Pr. Rheum. 2006, 2, 619–626. [Google Scholar] [CrossRef]
- Souza, N.H.C.; Mesquita-Ferrari, R.A.; Rodrigues, M.; da Silva, D.F.T.; Ribeiro, B.G.; Alves, A.N.; Garcia, M.P.; Nunes, F.D.; da Silva Junior, E.M.; França, C.M.; et al. Photobiomodulation and different macrophages phenotypes during muscle tissue repair. J. Cell. Mol. Med. 2018, 22, 4922–4934. [Google Scholar] [CrossRef] [PubMed]
- Maddur, M.S.; Miossec, P.; Kaveri, S.V.; Bayry, J. Th17 cells: Biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am. J. Pathol. 2012, 181, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Byng-Maddick, R.; Ehrenstein, M.R. The impact of biological therapy on regulatory T cells in rheumatoid arthritis. Rheumatology 2015, 54, 768–775. [Google Scholar] [CrossRef]
- Cooles, F.A.; Isaacs, J.D.; Anderson, A.E. Treg cells in rheumatoid arthritis: An update. Curr. Rheumatol. Rep. 2013, 15, 352. [Google Scholar] [CrossRef]
- McInnes, I.B.; Schett, G. MECHANISMS OF DISEASE The Pathogenesis of Rheumatoid Arthritis. N. Engl. J. Med. 2011, 365, 2205–2219. [Google Scholar] [CrossRef]
- Choy, E. Understanding the dynamics: Pathways involved in the pathogenesis of rheumatoid arthritis. Rheumatology 2012, 51, V3–V11. [Google Scholar] [CrossRef] [PubMed]
- Carvalheiro, H.; da Silva, J.A.P.; Souto-Carneiro, M.M. Potential roles for CD8(+) T cells in rheumatoid arthritis. Autoimmun. Rev. 2013, 12, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, G.; Firestein, G.S. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nat. Rev. Rheumatol. 2020, 16, 316–333. [Google Scholar] [CrossRef] [PubMed]
- Yamaura, M.; Yao, M.; Yaroslavsky, I.; Cohen, R.; Smotrich, M.; Kochevar, I.E. Low level light effects on inflammatory cytokine production by rheumatoid arthritis synoviocytes. Lasers Surg. Med. 2009, 41, 282–290. [Google Scholar] [CrossRef] [PubMed]
- Song, J.W.; Li, K.; Liang, Z.W.; Dai, C.; Shen, X.F.; Gong, Y.Z.; Wang, S.; Hu, X.Y.; Wang, Z. Low-level laser facilitates alternatively activated macrophage/microglia polarization and promotes functional recovery after crush spinal cord injury in rats. Sci. Rep. 2017, 7, 620. [Google Scholar] [CrossRef]
- Souza, N.H.; Ferrari, R.A.; Silva, D.F.; Nunes, F.D.; Bussadori, S.K.; Fernandes, K.P. Effect of low-level laser therapy on the modulation of the mitochondrial activity of macrophages. Braz. J. Phys. Ther. 2014, 18, 308–314. [Google Scholar] [CrossRef] [PubMed]
- Fahimipour, F.; Mahdian, M.; Houshmand, B.; Asnaashari, M.; Sadrabadi, A.N.; Farashah, S.E.N.; Mousavifard, S.M.; Khojasteh, A. The effect of He-Ne and Ga-Al-As laser light on the healing of hard palate mucosa of mice. Lasers Med. Sci. 2013, 28, 93–100. [Google Scholar] [CrossRef]
- Hsieh, Y.L.; Cheng, Y.J.; Huang, F.C.; Yang, C.C. The Fluence Effects of Low-Level Laser Therapy on Inflammation, Fibroblast-Like Synoviocytes, and Synovial Apoptosis in Rats with Adjuvant-Induced Arthritis. Photomed. Laser Surg. 2014, 32, 669–677. [Google Scholar] [CrossRef]
- Burger, E.; Mendes, A.C.S.C.; Bani, G.M.A.C.; Brigagao, M.R.P.L.; Santos, G.B.; Malaquias, L.C.C.; Chavasco, J.K.; Verinaud, L.M.; de Camargo, Z.P.; Hamblin, M.R.; et al. Low-level Laser Therapy to the Mouse Femur Enhances the Fungicidal Response of Neutrophils against Paracoccidioides brasiliensis. PLoS Neglected Trop. Dis. 2015, 9, e0003541. [Google Scholar] [CrossRef]
- Cerdeira, C.D.; Pereira Lima Brigagao, M.R.; de Carli, M.L.; Ferreira, C.d.S.; Isac Moraes, G.d.O.; Hadad, H.; Costa Hanemann, J.A.; Hamblin, M.R.; Sperandio, F.F. Low-level laser therapy stimulates the oxidative burst in human neutrophils and increases their fungicidal capacity. J. Biophotonics 2016, 9, 1180–1188. [Google Scholar] [CrossRef]
- Fahimipour, F.; Houshmand, B.; Alemi, P.; Asnaashari, M.; Tafti, M.A.; Akhoundikharanagh, F.; Farashah, S.E.N.; Aminisharifabad, M.; Korani, A.S.; Mahdian, M.; et al. The effect of He-Ne and Ga-Al-As lasers on the healing of oral mucosa in diabetic mice. J. Photochem. Photobiol. B-Biol. 2016, 159, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Trentham, D.E.; Townes, A.S.; Kang, A.H. Autoimmunity to type II collagen an experimental model of arthritis. J. Exp. Med. 1977, 146, 857–868. [Google Scholar] [CrossRef]
- Trentham, D.E. Collagen arthritis in rats, arthritogenic lymphokines and other aspects. Int. Rev. Immunol. 1988, 4, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Pearson, C.M.; Wood, F.D.; McDaniel, E.G.; Daft, F.S. Adjuvant Arthritis Induced In Germ-Free Rats. Proc. Soc. Exp. Biol. Med. 1963, 112, 91–93. [Google Scholar] [CrossRef] [PubMed]
- Karumuthil-Melethil, S.; Sofi, M.H.; Gudi, R.; Johnson, B.M.; Perez, N.; Vasu, C. TLR2-and Dectin 1-Associated Innate Immune Response Modulates T-Cell Response to Pancreatic beta-Cell Antigen and Prevents Type 1 Diabetes. Diabetes 2015, 64, 1341–1357. [Google Scholar] [CrossRef] [PubMed]
- Frasnelli, M.E.; Tarussio, D.; Chobaz-Peclat, V.; Busso, N.; So, A. TLR2 modulates inflammation in zymosan-induced arthritis in mice. Arthritis Res. Ther. 2005, 7, R370–R379. [Google Scholar] [CrossRef] [PubMed]
- Keystone, E.C.; Schorlemmer, H.U.; Pope, C.; Allison, A.C. Zymosan-induced arthritis: A model of chronic proliferative arthritis following activation of the alternative pathway of complement. Arthritis Rheum. 1977, 20, 1396–1401. [Google Scholar] [CrossRef]
- Rocha, F.A.; Aragão, A.G., Jr.; Oliveira, R.C.; Pompeu, M.M.; Vale, M.R.; Ribeiro, R.A. Periarthritis promotes gait disturbance in zymosan-induced arthritis in rats. Inflamm. Res. Off. J. Eur. Histamine Res. Soc. 1999, 48, 485–490. [Google Scholar] [CrossRef]
- Lin, Y.S.; Huang, M.H.; Chai, C.Y. Effects of helium–neon laser on the mucopolysaccharide induction in experimental osteoarthritic cartilage. Osteoarthr. Cartil. 2006, 14, 377–383. [Google Scholar] [CrossRef]
- da Rosa, A.S.; dos Santos, A.F.; da Silva, M.M.; Facco, G.G.; Perreira, D.M.; Alves, A.C.A.; Leal Junior, E.C.P.; de Carvalho, P.d.T.C. Effects of Low-level Laser Therapy at Wavelengths of 660 and 808 nm in Experimental Model of Osteoarthritis. Photochem. Photobiol. 2012, 88, 161–166. [Google Scholar] [CrossRef]
- Murray, D.G. Experimentally induced arthritis using intra-articular papain. Arthritis Rheum. 1964, 7, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Ramonda, R.; Frallonardo, P.; Oliviero, F.; Lorenzin, M.; Ortolan, A.; Scanu, A.; Punzi, L. Pain and microcrystalline arthritis. Reumatismo 2014, 66, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Soriano, F.; Campana, V.; Moya, M.; Gavotto, A.; Simes, J.; Soriano, M.; Soriano, R.; Spitale, L.; Palma, J. Photobiomodulation of pain and inflammation in microcrystalline arthropathies: Experimental and clinical results. Photomed. Laser Surg. 2006, 24, 140–150. [Google Scholar] [CrossRef] [PubMed]
- Bossini, P.S.; Renno, A.C.M.; Ribeiro, D.A.; Fangel, R.; Ribeiro, A.C.; Lahoz, M.D.; Parizotto, N.A. Low level laser therapy (830 nm) improves bone repair in osteoporotic rats: Similar outcomes at two different dosages. Exp. Gerontol. 2012, 47, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Zhen, G.H.; Wen, C.Y.; Jia, X.F.; Li, Y.; Crane, J.L.; Mears, S.C.; Askin, F.B.; Frassica, F.J.; Chang, W.Z.; Yao, J.; et al. Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat. Med. 2013, 19, 704–712. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Bradley, E.W.; Weivoda, M.M.; Hwang, S.M.; Pirtskhalava, T.; Decklever, T.; Curran, G.L.; Ogrodnik, M.; Jurk, D.; Johnson, K.O.; et al. Transplanted Senescent Cells Induce an Osteoarthritis-Like Condition in Mice. J. Gerontol. Ser. A-Biol. Sci. Med. Sci. 2017, 72, 780–785. [Google Scholar] [CrossRef] [PubMed]
- Coppé, J.P.; Patil, C.K.; Rodier, F.; Sun, Y.; Muñoz, D.P.; Goldstein, J.; Nelson, P.S.; Desprez, P.Y.; Campisi, J. Senescence-associated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol. 2008, 6, 2853–2868. [Google Scholar] [CrossRef]
- Kuilman, T.; Michaloglou, C.; Vredeveld, L.C.; Douma, S.; van Doorn, R.; Desmet, C.J.; Aarden, L.A.; Mooi, W.J.; Peeper, D.S. Oncogene-induced senescence relayed by an interleukin-dependent inflammatory network. Cell 2008, 133, 1019–1031. [Google Scholar] [CrossRef]
- Takao, K.; Miyakawa, T. Genomic responses in mouse models greatly mimic human inflammatory diseases. Proc. Natl. Acad. Sci. USA 2015, 112, 1167–1172. [Google Scholar] [CrossRef]
- Smith, C.L.; Blake, J.A.; Kadin, J.A.; Richardson, J.E.; Bult, C.J.; Mouse Genome Database, G. Mouse Genome Database (MGD)-2018: Knowledgebase for the laboratory mouse. Nucleic Acids Res. 2018, 46, D836–D842. [Google Scholar] [CrossRef]
- Kuboyama, N.; Ohta, M.; Sato, Y.; Abiko, Y. Anti-inflammatory Activities of Light Emitting Diode Irradiation on Collagen-induced Arthritis in Mice. Nippon. Laser Igakkaishi 2012, 33, 19–25. [Google Scholar] [CrossRef]
- de Morais, N.C.R.; Barbosa, A.M.; Vale, M.L.; Villaverde, A.B.; de Lima, C.J.; Cogo, J.C.; Zamuner, S.R. Anti-Inflammatory Effect of Low-Level Laser and Light-Emitting Diode in Zymosan-Induced Arthritis. Photomed. Laser Surg. 2010, 28, 227–232. [Google Scholar] [CrossRef] [PubMed]
- Peimani, A.; Sardary, F. Effect of low-level laser on healing of temporomandibular joint osteoarthritis in rats. J. Dent. (Tehran Iran) 2014, 11, 319–327. [Google Scholar]
- Mangueira, N.M.; Xavier, M.; de Souza, R.A.; Salgado, M.A.; Silveira, L., Jr.; Villaverde, A.B. Effect of low-level laser therapy in an experimental model of osteoarthritis in rats evaluated through Raman spectroscopy. Photomed. Laser Surg. 2015, 33, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Kang, H.; Son, T.; Lee, A.; Youn, I.; Seo, D.H.; Kim, H.S.; Jung, B. The effects of a minimally invasive laser needle system on complete Freund’s adjuvant-induced arthritis. Lasers Med. Sci. 2014, 29, 1599–1606. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhao, J.; Kuboyama, N.; Abiko, Y. Low-level laser irradiation treatment reduces CCL2 expression in rat rheumatoid synovia via a chemokine signaling pathway. Lasers Med. Sci. 2011, 26, 707–717. [Google Scholar] [CrossRef] [PubMed]
- Castano, A.P.; Dai, T.H.; Yaroslavsky, I.; Cohen, R.; Apruzzese, W.A.; Smotrich, M.H.; Hamblin, M.R. Low-level laser therapy for zymosan-induced arthritis in rats: Importance of illumination time. Lasers Surg. Med. 2007, 39, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Alves, A.C.; de Carvalho, P.T.; Parente, M.; Xavier, M.; Frigo, L.; Aimbire, F.; Leal Junior, E.C.; Albertini, R. Low-level laser therapy in different stages of rheumatoid arthritis: A histological study. Lasers Med. Sci. 2013, 28, 529–536. [Google Scholar] [CrossRef]
- Lemos, G.A.; Rissi, R.; de Souza Pires, I.L.; de Oliveira, L.P.; de Aro, A.A.; Pimentel, E.R.; Palomari, E.T. Low-level laser therapy stimulates tissue repair and reduces the extracellular matrix degradation in rats with induced arthritis in the temporomandibular joint. Lasers Med. Sci. 2016, 31, 1051–1059. [Google Scholar] [CrossRef]
- Neves, M.; Retameiro, A.C.B.; Tavares, A.L.F.; Reginato, A.; Menolli, R.A.; Leal, T.; Ribeiro, L.F.C.; Bertolini, G.R.F. Physical exercise and low-level laser therapy on the nociception and leukocyte migration of Wistar rats submitted to a model of rheumatoid arthritis. Lasers Med. Sci. 2020, 35, 1277–1287. [Google Scholar] [CrossRef]
- Udalova, I.A.; Mantovani, A.; Feldmann, M. Macrophage heterogeneity in the context of rheumatoid arthritis. Nat. Rev. Rheumatol. 2016, 12, 472–485. [Google Scholar] [CrossRef] [PubMed]
- Yasuda, K.; Takeuchi, Y.; Hirota, K. The pathogenicity of Th17 cells in autoimmune diseases. Semin. Immunopathol. 2019, 41, 283–297. [Google Scholar] [CrossRef] [PubMed]
- Mazulo-Neto, J.C.R.; Souza, L.G.; Mazulo, F.R.d.S.; Filgueiras, M.d.C. Effects of photobiomodulation in pain and articular degeneration in mice arthritis model. BrJP 2021, 4, 104–107. [Google Scholar] [CrossRef]
- Capaldi, R.A. structure and function of cytochrome c oxidase. Annu. Rev. Biochem. 1990, 59, 569–596. [Google Scholar] [CrossRef] [PubMed]
- Salehpour, F.; Mahmoudi, J.; Kamari, F.; Sadigh-Eteghad, S.; Rasta, S.H.; Hamblin, M.R. Brain Photobiomodulation Therapy: A Narrative Review. Mol. Neurobiol. 2018, 55, 6601–6636. [Google Scholar] [CrossRef]
- Sommer, A.P.; Bieschke, J.; Friedrich, R.P.; Zhu, D.; Wanker, E.E.; Fecht, H.J.; Mereles, D.; Hunstein, W. 670 nm laser light and EGCG complementarily reduce amyloid-β aggregates in human neuroblastoma cells: Basis for treatment of Alzheimer’s disease? Photomed. Laser Surg. 2012, 30, 54–60. [Google Scholar] [CrossRef] [PubMed]
- Kuboyama, N.; Ohta, M.; Sato, Y.; Abiko, Y. Anti-inflammatory activities of light emitting diode irradiation on collagen-induced arthritis in mice (a secondary publication). Laser Ther. 2014, 23, 191–199. [Google Scholar] [CrossRef]
- Algarni, A.D.; Alrabai, H.M.; Al-Ahaideb, A.; Kachanathu, S.J.; AlShammari, S.A. Arabic translation, cultural adaptation, and validation study of Knee Outcome Survey: Activities of Daily Living Scale (KOS-ADLS). Rheumatol. Int. 2017, 37, 1585–1589. [Google Scholar] [CrossRef]
- Ip, D. Does addition of low-level laser therapy (LLLT) in conservative care of knee arthritis successfully postpone the need for joint replacement? Lasers Med. Sci. 2015, 30, 2335–2339. [Google Scholar] [CrossRef]
- Tashjian, R.Z.; Hung, M.; Keener, J.D.; Bowen, R.C.; McAllister, J.; Chen, W.; Ebersole, G.; Granger, E.K.; Chamberlain, A.M. Determining the minimal clinically important difference for the American Shoulder and Elbow Surgeons score, Simple Shoulder Test, and visual analog scale (VAS) measuring pain after shoulder arthroplasty. J. Shoulder Elb. Surg. 2017, 26, 144–148. [Google Scholar] [CrossRef]
- Dasgupta, B.; Cimmino, M.A.; Maradit-Kremers, H.; Schmidt, W.A.; Schirmer, M.; Salvarani, C.; Bachta, A.; Dejaco, C.; Duftner, C.; Jensen, H.S.; et al. 2012 provisional classification criteria for polymyalgia rheumatica: A European League Against Rheumatism/American College of Rheumatology collaborative initiative. Ann. Rheum. Dis. 2012, 71, 484–492. [Google Scholar] [CrossRef]
- Kelly, C.A.; Saravanan, V.; Nisar, M.; Arthanari, S.; Woodhead, F.A.; Price-Forbes, A.N.; Dawson, J.; Sathi, N.; Ahmad, Y.; Koduri, G.; et al. Rheumatoid arthritis-related interstitial lung disease: Associations, prognostic factors and physiological and radiological characteristics-a large multicentre UK study. Rheumatology 2014, 53, 1676–1682. [Google Scholar] [CrossRef] [PubMed]
- Alam, J.; Jantan, I.; Bukhari, S.N.A. Rheumatoid arthritis: Recent advances on its etiology, role of cytokines and pharmacotherapy. Biomed. Pharmacother. 2017, 92, 615–633. [Google Scholar] [CrossRef] [PubMed]
- Gerlag, D.M.; Safy, M.; Maijer, K.I.; Tang, M.W.; Tas, S.W.; Starmans-Kool, M.J.F.; van Tubergen, A.; Janssen, M.; de Hair, M.; Hansson, M.; et al. Effects of B-cell directed therapy on the preclinical stage of rheumatoid arthritis: The PRAIRI study. Ann. Rheum. Dis. 2019, 78, 179–185. [Google Scholar] [CrossRef] [PubMed]
- Sokka, T.; Pincus, T. Erythrocyte Sedimentation Rate, C-Reactive Protein, or Rheumatoid Factor Are Normal at Presentation in 35%-45% of Patients with Rheumatoid Arthritis Seen Between 1980 and 2004: Analyses from Finland and the United States. J. Rheumatol. 2009, 36, 1387–1390. [Google Scholar] [CrossRef] [PubMed]
- S, G.N.; Kamal, W.; George, J.; Manssor, E. Radiological and biochemical effects (CTX-II, MMP-3, 8, and 13) of low-level laser therapy (LLLT) in chronic osteoarthritis in Al-Kharj, Saudi Arabia. Lasers Med. Sci. 2017, 32, 297–303. [Google Scholar] [CrossRef] [PubMed]
- Hegedus, B.; Viharos, L.; Gervain, M.; Gálfi, M. The effect of low-level laser in knee osteoarthritis: A double-blind, randomized, placebo-controlled trial. Photomed. Laser Surg. 2009, 27, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.; Omar, M.T.; Al-Askar, A.B.; Al-Muteri, N.K. Effect of low-level laser therapy in patients with chronic knee osteoarthritis: A single-blinded randomized clinical study. Lasers Med. Sci. 2014, 29, 749–755. [Google Scholar] [CrossRef]
- Gur, A.; Cosut, A.; Sarac, A.J.; Cevik, R.; Nas, K.; Uyar, A. Efficacy of different therapy regimes of low-power laser in painful osteoarthritis of the knee: A double-blind and randomized-controlled trial. Lasers Surg. Med. 2003, 33, 330–338. [Google Scholar] [CrossRef]
- Alfredo, P.P.; Bjordal, J.M.; Dreyer, S.H.; Meneses, S.R.; Zaguetti, G.; Ovanessian, V.; Fukuda, T.Y.; Junior, W.S.; Lopes Martins, R.; Casarotto, R.A.; et al. Efficacy of low level laser therapy associated with exercises in knee osteoarthritis: A randomized double-blind study. Clin. Rehabil. 2012, 26, 523–533. [Google Scholar] [CrossRef]
- Al Rashoud, A.S.; Abboud, R.J.; Wang, W.; Wigderowitz, C. Efficacy of low-level laser therapy applied at acupuncture points in knee osteoarthritis: A randomised double-blind comparative trial. Physiotherapy 2014, 100, 242–248. [Google Scholar] [CrossRef] [PubMed]
- Kheshie, A.R.; Alayat, M.S.; Ali, M.M. High-intensity versus low-level laser therapy in the treatment of patients with knee osteoarthritis: A randomized controlled trial. Lasers Med. Sci. 2014, 29, 1371–1376. [Google Scholar] [CrossRef] [PubMed]
- Baltzer, A.W.; Ostapczuk, M.S.; Stosch, D. Positive effects of low level laser therapy (LLLT) on Bouchard’s and Heberden’s osteoarthritis. Lasers Surg. Med. 2016, 48, 498–504. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, V.O.; Fukuda, T.Y.; Guimarães, M.; Shiwa, S.; de Lima Bdel, C.; Martins, R.; Casarotto, R.A.; Alfredo, P.P.; Bjordal, J.M.; Fucs, P.M. Short-Term Efficacy Of Low-Level Laser Therapy In Patients With Knee Osteoarthritis: A Randomized Placebo-Controlled, Double-Blind Clinical Trial. Rev. Bras. De Ortop. 2011, 46, 526–533. [Google Scholar] [CrossRef]
- Stelian, J.; Gil, I.; Habot, B.; Rosenthal, M.; Abramovici, I.; Kutok, N.; Khahil, A. Improvement of pain and disability in elderly patients with degenerative osteoarthritis of the knee treated with narrow-band light therapy. J. Am. Geriatr. Soc. 1992, 40, 23–26. [Google Scholar] [CrossRef]
- Djavid, G.E.; Mehrdad, R.; Ghasemi, M.; Hasan-Zadeh, H.; Sotoodeh-Manesh, A.; Pouryaghoub, G. In chronic low back pain, low level laser therapy combined with exercise is more beneficial than exercise alone in the long term: A randomised trial. Aust. J. Physiother. 2007, 53, 155–160. [Google Scholar] [CrossRef] [PubMed]
- Heussler, J.K.; Hinchey, G.; Margiotta, E.; Quinn, R.; Butler, P.; Martin, J.; Sturgess, A.D. A double blind randomised trial of low power laser treatment in rheumatoid arthritis. Ann. Rheum. Dis. 1993, 52, 703–706. [Google Scholar] [CrossRef]
- Bliddal, H.; Hellesen, C.; Ditlevsen, P.; Asselberghs, J.; Lyager, L. Soft-laser therapy of rheumatoid arthritis. Scand. J. Rheumatol. 1987, 16, 225–228. [Google Scholar] [CrossRef]
- Paolillo, A.R.; Paolillo, F.R.; João, J.P.; João, H.A.; Bagnato, V.S. Synergic effects of ultrasound and laser on the pain relief in women with hand osteoarthritis. Lasers Med. Sci. 2015, 30, 279–286. [Google Scholar] [CrossRef]
- Ferreira de Meneses, S.R.; Hunter, D.J.; Young Docko, E.; Pasqual Marques, A. Effect of low-level laser therapy (904 nm) and static stretching in patients with knee osteoarthritis: A protocol of randomised controlled trial. BMC Musculoskelet. Disord. 2015, 16, 252. [Google Scholar] [CrossRef]
Type of Arthritis | Methods | Mechanism |
---|---|---|
OA | surgical intervention | surgical methods, such as destabilization of the medial meniscus, can be used to create an animal model that mimics the mechanical stress and inflammation that occur in human OA. |
papain solution | papain is a proteolytic enzyme that can break down cartilage and induce arthritis in animal models. It is commonly used to create OA models. | |
injecting small amounts of senescent cells | Injecting small amounts of senescent cells: senescent cells are cells that have stopped dividing but remain active and can secrete proinflammatory cytokines. Injecting small amounts of these cells can induce arthritis in animal models. | |
RA | CIA | collagen-induced arthritis (CIA) is an autoimmune disease model that involves immunization with type II collagen and adjuvant to induce an autoimmune response against the animal’s own cartilage. |
CFA | complete Freund’s adjuvant (CFA) is a non-specific immunostimulant that can induce inflammation and arthritis in animal models. | |
other types of arthritis | microcrystalline arthritis | microcrystalline compounds, such as monosodium urate and calcium pyrophosphate dihydrate, can induce arthritis in animal models by stimulating the immune system and causing inflammation. |
zymosan | zymosan is a polysaccharide derived from yeast cell walls that can activate the immune system and induce inflammation and arthritis in animal models. |
Modeling Method | Wavelength (nm) | Power Density (mW/cm2) | Dose (J/cm2) | Light Source | Effect | Reference |
---|---|---|---|---|---|---|
The OA model was induced by anterior cruciate ligament transection | 808 | 1700 | 50 | (GaAlAs) diode laser | These results suggest that exercise training and LLLT were effective in preventing cartilage degeneration and modulating inflammatory processes induced by knee OA. | [77] |
intradermal injection of an emulsion of bovine type II collagen and complete Freund’s adjuvant | 570, 940 | 141.54 | 5 | LED | the 940 nm light can inhibit the swelling of arthritis and reduce the production of IL-1β, IL-6 and MMP-3. | [133] |
injection of zymosan | 628, 685, 830 | 25 | 2.5 | Laser (685 nm and 830 nm) and LED (628 nm) | Laser light significantly inhibited edema, vascular permeability and pain perception, while LED light had no effect. | [134] |
injection of zymosan | 830 | 200 | 3, 30 | AlGaAs laser | PMN cells pro-apoptotic gene expression increased PBM at 30 J/cm2. | [89] |
anterior cruciate ligament transection | 630, 870 | N/A | 2 (red), 2.5 (IR) | LED | PBM effectively reduced inflammation levels in arthritis. | [78] |
injection of CFA | 880 | 4976.11 | 2985.668 | laser | PBM improved cartilage defects and reduced inflammatory cells. | [135] |
injection of collagenase | 660, 780 | 750 | 7.5 | laser | PBM can accelerate the initial breakdown of collagenase damaged cartilage and stimulate fibroblast synthesis of repaired collagen iii. | [136] |
Papain-induced inflammation | 808 | 1785.71, 3571.42 | 142.4 | laser | 50 mW LLLT is more effective in regulating inflammatory mediators (IL-1B, IL-6) and inflammatory cells (macrophages and neutrophils). | [76] |
injection of CFA | 658 | 69.11 | N/A | diode laser | PBM reduced macrophage number and relieves swelling. | [137] |
injection of papain solution | 632 | 3.1 | 2.79 | He-Ne lasers | PBM enhanced the biosynthesis of arthritic cartilage and lead to the improvement of arthritic histopathological changes. | [121] |
bone defect by motorized round drill | 830 | 2653.92 | 249.47 | laser | PBM may promote the development of new bone by regulating the expression of inflammatory genes and angiogenic genes as well as the immune expression of COX2 and VEGF in the early stage of bone healing. | [67] |
injection of papain solution | 660, 808 | 3570 | 142.8 | InGaAlP (660 nm), AsGaAl (808 nm) | PBM on 808 nm laser promoteed angiogenesis and reduces the formation of fibrosis. | [122] |
injection of CFA | 780 | 150 and 400 | 4.5 and 72 | GaAlAs laser | PBM effectively reduced the inflammatory response and FLS cell number in the inflammatory site. | [110] |
surgical procedure | 780 | 500 | 10 | AsGaAl diode laser | PBM decreased the release of TNF-α and IFN-γ in monocytes. | [71] |
Induced microcrystalline arthritis | 670 | 1500 | 18 | InGaAlP laser | PBM reduced the synovium inflammatory process and tissue injuries. | [82] |
Bilateral translumbar aortic incision | 830 | 3530 and 7060 | 60 and 12 | GaAlAs laser | PBM stimulated new bone formation, vascular fibrosis, and angiogenesis. | [126] |
collagenase injection | 660 | 3570 | 35.71 and 107.14 | infrared laser unit | PBM reduced the production of pro-inflammatory markers such as IL-6 and TNF-α. | [72] |
collagen-induced arthritis | 830 | 6.4 | 7.64 | Ga-Al-As diode laser device | PBM inhibited the CCL2 productions in CIA rats. | [138] |
injection of zymosan | 810 | 5 and 50 | 3 and 30 | A diode laser | PBM reduces PGE2 production, and long-term PBM is more effective in treating arthritis. | [139] |
collagen-induced arthritis | 780 nm | 100 | 7.7 | laser | PBM could modulate the inflammatory response both in early as well as in late progression stages of RA. | [140] |
injection of CFA | 830 | 250 | 3 | GaAlAs laser | PBM could increase the remodeling and enhancing tissue repair in arthritis. | [141] |
injection of zymosan | 830 | 200 | 30 | (GaAlAs) low-level infrared laser | PBM could alter the inflammatory state and stimulate immune cells to accelerate the relief of arthritis symptoms. | [70] |
surgical procedure | 660 and 780 | 1750 | 25.025 | AlGaInP (660 nm) and AlGaAs (780 nm) | PBM was able to modulate the inflammation phase, optimize the transition from the inflammatory to the regeneration phase and improve the final step of regeneration, enhancing tissue repair. | [98] |
Inducing microcrystalline arthritis | 632.8 | 200 | 8 | He-Ne Laser | PBM reduced TNF-α and PGE2 production in the treatment of microcrystalline arthritis. | [125] |
injection of CFA | 660 nm | 500 | 5 | InGaAIP | PBM could reduce leukocyte migration and restore joint function. | [142] |
injection of zymosan | 660 | 250 | 2.5 | InGaAIP | PBM could effectively reduce inflammation and inhibit collagen degradation. | [93] |
collagen-induced arthritis | 830 | 100 | 5 | Ga-Al-As diode laser device | PBM effectively reduced CXCR4 gene expression. | [91] |
Class | Evaluate Methods | Performance |
---|---|---|
subjective judgment | VAS | The pain score ranges from 1 to 10, with 0 indicating no pain and 10 indicating the most severe pain |
DASH | DASH is a patient assessment of upper limb function. The two-part rating scale contains 30 indicators, mainly by examining activities related to daily life, including the degree of limitation of living ability and social activity ability | |
HAQ | The content of the survey is to select and score each joint site according to its difficulty in daily life. | |
WOMAC | The structure and function of the hip and knee were evaluated from pain, stiffness and joint function, and the functional description was mainly aimed at the lower limbs. | |
objective judgment | ROM | A universal goniometer will be used to measure the angular range of knee motion in patients with knee arthritis |
Peripheral blood assay | The contents of IL-6, NK-KB, C-reactive protein and erythrocyte sedimentation rate in peripheral blood were determined. | |
Radiographic analysi | The structure of the patient’s joints was reconstructed by X-CT and MRI and so on. | |
stiffness time | The longer the morning stiffness, the worse the arthritis |
Types of Arthritis | Objects | Wavelengths (nm) | Power Density (mW/cm2) | Evaluation Methods | Effects | Reference |
---|---|---|---|---|---|---|
RA | 82 RA patients | 785 | 70 | VAS, HAQ and DASH | Low levels of aluminum-gallium arsenide laser therapy were ineffective in wavelength, dose, and power for hand treatment in patients with rheumatoid arthritis. | [22] |
60 RA patients | 808 | 100 | HAQ, ELISA, and blood routine test | It could be concluded that laser acupuncture is effective in the adjuvant treatment of elderly rheumatoid arthritis. | [79] | |
18 RA patients | 633 | 10 | ROM, VAS and morning stiffness (MS) | Of these cases, 2 had a positive development on the joint ability score but not on the VAS or MS, while the third patient had an improvement on the VAS but not on the other parameters. | [170] | |
25 female RA patients | 820 | 50 | VAS, Blood test for hand function | A total of 72 percent of patients reported pain relief. There were no significant changes in other clinical, functional, scintillation, or laboratory features. | [169] | |
OA | One hundred consecutive randomly selected elderly patients with bilateral symptomatic knee arthritis | 810 | 20 | WOMAC | After 6 years of follow-up, patients in the PBM group benefited significantly, only 1 patient needed joint replacement, and 9 patients in the non-PBM group needed surgery (p < 0.05). | [151] |
22 female and 5 male knee OA patients | 830 | 50 | VAS, blood and urine tests | The results showed that PBM could alleviate pain and improve microcirculation in the irradiated area of KOA. | [159] | |
145 patients aged 50 to 75 years with knee joint | 904 | 40 | WOMAC, VAS, ROM | The specific PBM parameters need to be better defined. | [172] | |
40 knee OA patients | 850 | 50 | WOMAC, and VAS | PBM appeared to be an effective method for short-term pain relief and functional improvement in patients with chronic knee osteoarthritis. | [160] | |
90 knee OA patients | 904 | 10–20 | WOMAC, and VAS | The use of different doses and durations of PBM did not affect the results, and both regimens are safe and effective for the treatment of knee OA. | [161] | |
40 knee OA patients | 904 | 60 | WOMAC, VAS, muscle strength testing and ROM | PBM combined with exercise can effectively relieve pain, function, and mobility in patients with knee osteoarthritis. | [162] | |
49 knee OA patients | 830 | 30 | VAS | PBM applied to specific acupoints in a short period of time, together with exercise, can effectively reduce the pain of knee osteoarthritis patients and improve their quality of life. | [163] | |
53 male knee OA patients | 830 | 50 | WOMAC and VAS | In the treatment of patients with osteoarthritis, high-intensity laser therapy combined with exercise was more effective than low-intensity laser therapy combined with exercise, and both treatments were better than exercise alone. | [164] | |
60 knee OA patients | 830 | 50 | WOMAC | PBM had no effect on pain in patients with knee OA. | [20] | |
34 knee OA patients (32 female) | 658, 785 | 40 | VAS, and ROM | PBM is a safe, noninvasive, efficient, and effective method to reduce pain, swelling, and increase joint mobility in patients with Heboden and Buchar osteoarthritis. | [165] | |
34 chronic knee OA patients | 905 | 500 | VAS, X-CT, Biochemical test analysis (urine) | PBM treatment is effective in reducing pain and improving cartilage thickness through biochemical changes. | [158] | |
88 hands OA patients | 860 | 3000 | VAS, and ROM | PBM was no better than placebo in reducing pain, morning stiffness, or improving functional status. | [21] | |
37 hands OA patients | 808 | 40 | Pain stress tests, hand grip tests | PBM did not improve hand grip strength significantly, but it reduces the pain. | [171] | |
47 knee OA patients | 904 | 60 | VAS, HAQ, and ROM | PBM can improve pain and function in patients with knee osteoarthritis in the short term. | [166] | |
36 female and 14 males had degenerative osteoarthritis in both knees | 633, 830 | 8–122 | VAS | PBM is effective in relieving pain and disability in degenerative knee osteoarthritis. | [171] | |
Other | 61 patients with lower back pain for at least 12 weeks | 810 | 50 | VAS and ROM | In chronic low back pain, PBM combined with exercise is more beneficial than long-term exercise alone. | [168] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, R.; Qu, J. The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. Int. J. Mol. Sci. 2023, 24, 14293. https://doi.org/10.3390/ijms241814293
Zhang R, Qu J. The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. International Journal of Molecular Sciences. 2023; 24(18):14293. https://doi.org/10.3390/ijms241814293
Chicago/Turabian StyleZhang, Renlong, and Junle Qu. 2023. "The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review" International Journal of Molecular Sciences 24, no. 18: 14293. https://doi.org/10.3390/ijms241814293
APA StyleZhang, R., & Qu, J. (2023). The Mechanisms and Efficacy of Photobiomodulation Therapy for Arthritis: A Comprehensive Review. International Journal of Molecular Sciences, 24(18), 14293. https://doi.org/10.3390/ijms241814293