Multigene Panel Sequencing Identifies a Novel Germline Mutation Profile in Male Breast Cancer Patients
Abstract
:1. Introduction
2. Results
2.1. Patient Characteristics
2.2. Germline Pathogenic and Likely Pathogenic Variants
2.3. MBC Patients with Germline Variants
2.4. Clinical and Family Characteristics of MBC PV/LPV Patients
2.5. Study of the 14 MBC PV/LPV-Carrying Genes in a Population of High-risk Breast Cancer Women
3. Discussion
4. Materials and Methods
4.1. Patient Cohort
4.2. NGS Analysis Panel of 585 Genes
4.3. Germline Data Analysis
4.4. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cottenet, J.; Dabakuyo-Yonli, T.S.; Mariet, A.; Roussot, A.; Arveux, P.; Quantin, C. Prevalence of Patients Hospitalised for Male Breast Cancer in France Using the French Nationwide Hospital Administrative Database. Eur. J. Cancer Care 2019, 28, e13117. [Google Scholar] [CrossRef]
- Hassett, M.J.; Somerfield, M.R.; Baker, E.R.; Cardoso, F.; Kansal, K.J.; Kwait, D.C.; Plichta, J.K.; Ricker, C.; Roshal, A.; Ruddy, K.J.; et al. Management of Male Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1849–1863. [Google Scholar] [CrossRef]
- Korde, L.A.; Zujewski, J.A.; Kamin, L.; Giordano, S.; Domchek, S.; Anderson, W.F.; Bartlett, J.M.S.; Gelmon, K.; Nahleh, Z.; Bergh, J.; et al. Multidisciplinary Meeting on Male Breast Cancer: Summary and Research Recommendations. J. Clin. Oncol. 2010, 28, 2114–2122. [Google Scholar] [CrossRef]
- Giordano, S.H.; Cohen, D.S.; Buzdar, A.U.; Perkins, G.; Hortobagyi, G.N. Breast Carcinoma in Men: A Population-Based Study. Cancer 2004, 101, 51–57. [Google Scholar] [CrossRef]
- Johansson, I.; Ringnér, M.; Hedenfalk, I. The Landscape of Candidate Driver Genes Differs between Male and Female Breast Cancer. PLoS ONE 2013, 8, e78299. [Google Scholar] [CrossRef] [PubMed]
- Johansson, I.; Nilsson, C.; Berglund, P.; Strand, C.; Jönsson, G.; Staaf, J.; Ringnér, M.; Nevanlinna, H.; Barkardottir, R.B.; Borg, A.; et al. High-Resolution Genomic Profiling of Male Breast Cancer Reveals Differences Hidden behind the Similarities with Female Breast Cancer. Breast Cancer Res. Treat. 2011, 129, 747–760. [Google Scholar] [CrossRef] [PubMed]
- André, S.; Nunes, P.S.; Silva, F.; Henrique, R.; Félix, A.; Jerónimo, C. Analysis of Epigenetic Alterations in Homologous Recombination DNA Repair Genes in Male Breast Cancer. Int. J. Mol. Sci. 2020, 21, 2715. [Google Scholar] [CrossRef] [PubMed]
- Brinton, L.A.; Richesson, D.A.; Gierach, G.L.; Lacey, J.V.; Park, Y.; Hollenbeck, A.R.; Schatzkin, A. Prospective Evaluation of Risk Factors for Male Breast Cancer. J. Natl. Cancer Inst. 2008, 100, 1477–1481. [Google Scholar] [CrossRef]
- Anderson, W.F.; Althuis, M.D.; Brinton, L.A.; Devesa, S.S. Is Male Breast Cancer Similar or Different than Female Breast Cancer? Breast Cancer Res. Treat. 2004, 83, 77–86. [Google Scholar] [CrossRef]
- Weiss, J.R.; Moysich, K.B.; Swede, H. Epidemiology of Male Breast Cancer. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 20–26. [Google Scholar] [CrossRef]
- Brinton, L.A.; Cook, M.B.; McCormack, V.; Johnson, K.C.; Olsson, H.; Casagrande, J.T.; Cooke, R.; Falk, R.T.; Gapstur, S.M.; Gaudet, M.M.; et al. Anthropometric and Hormonal Risk Factors for Male Breast Cancer: Male Breast Cancer Pooling Project Results. J. Natl. Cancer Inst. 2014, 106, djt465. [Google Scholar] [CrossRef] [PubMed]
- Abdelwahab Yousef, A.J. Male Breast Cancer: Epidemiology and Risk Factors. Semin. Oncol. 2017, 44, 267–272. [Google Scholar] [CrossRef]
- Pritzlaff, M.; Summerour, P.; McFarland, R.; Li, S.; Reineke, P.; Dolinsky, J.S.; Goldgar, D.E.; Shimelis, H.; Couch, F.J.; Chao, E.C.; et al. Male Breast Cancer in a Multi-Gene Panel Testing Cohort: Insights and Unexpected Results. Breast Cancer Res. Treat. 2017, 161, 575–586. [Google Scholar] [CrossRef] [PubMed]
- Tedaldi, G.; Tebaldi, M.; Zampiga, V.; Cangini, I.; Pirini, F.; Ferracci, E.; Danesi, R.; Arcangeli, V.; Ravegnani, M.; Martinelli, G.; et al. Male Breast Cancer: Results of the Application of Multigene Panel Testing to an Italian Cohort of Patients. Diagnostics 2020, 10, 269. [Google Scholar] [CrossRef] [PubMed]
- Fostira, F.; Saloustros, E.; Apostolou, P.; Vagena, A.; Kalfakakou, D.; Mauri, D.; Tryfonopoulos, D.; Georgoulias, V.; Yannoukakos, D.; Fountzilas, G.; et al. Germline Deleterious Mutations in Genes Other than BRCA2 Are Infrequent in Male Breast Cancer. Breast Cancer Res. Treat. 2018, 169, 105–113. [Google Scholar] [CrossRef]
- Bucalo, A.; Conti, G.; Valentini, V.; Capalbo, C.; Bruselles, A.; Tartaglia, M.; Bonanni, B.; Calistri, D.; Coppa, A.; Cortesi, L.; et al. Male Breast Cancer Risk Associated with Pathogenic Variants in Genes Other than BRCA1/2: An Italian Case-Control Study. Eur. J. Cancer 2023, 188, 183–191. [Google Scholar] [CrossRef]
- Ben Kridis-Rejeb, W.; Ben Ayed-Guerfali, D.; Ammous-Boukhris, N.; Ayadi, W.; Kifagi, C.; Charfi, S.; Saguem, I.; Sellami-Boudawara, T.; Daoud, J.; Khanfir, A.; et al. Identification of Novel Candidate Genes by Exome Sequencing in Tunisian Familial Male Breast Cancer Patients. Mol. Biol. Rep. 2020, 47, 6507–6516. [Google Scholar] [CrossRef]
- Campos, F.A.B.; Rouleau, E.; Torrezan, G.T.; Carraro, D.M.; Casali da Rocha, J.C.; Mantovani, H.K.; da Silva, L.R.; de Osório, C.A.B.T.; Moraes Sanches, S.; Caputo, S.M.; et al. Genetic Landscape of Male Breast Cancer. Cancers 2021, 13, 3535. [Google Scholar] [CrossRef]
- Maguire, S.; Perraki, E.; Tomczyk, K.; Jones, M.E.; Fletcher, O.; Pugh, M.; Winter, T.; Thompson, K.; Cooke, R.; kConFab Consortium; et al. Common Susceptibility Loci for Male Breast Cancer. J. Natl. Cancer Inst. 2021, 113, 453–461. [Google Scholar] [CrossRef]
- Cardoso, F.; Bartlett, J.M.S.; Slaets, L.; van Deurzen, C.H.M.; van Leeuwen-Stok, E.; Porter, P.; Linderholm, B.; Hedenfalk, I.; Schröder, C.; Martens, J.; et al. Characterization of Male Breast Cancer: Results of the EORTC 10085/TBCRC/BIG/NABCG International Male Breast Cancer Program. Ann. Oncol. 2018, 29, 405–417. [Google Scholar] [CrossRef]
- Rizzolo, P.; Zelli, V.; Silvestri, V.; Valentini, V.; Zanna, I.; Bianchi, S.; Masala, G.; Spinelli, A.M.; Tibiletti, M.G.; Russo, A.; et al. Insight into Genetic Susceptibility to Male Breast Cancer by Multigene Panel Testing: Results from a Multicenter Study in Italy. Int. J. Cancer 2019, 145, 390–400. [Google Scholar] [CrossRef] [PubMed]
- Kircher, M.; Witten, D.M.; Jain, P.; O’Roak, B.J.; Cooper, G.M.; Shendure, J. A General Framework for Estimating the Relative Pathogenicity of Human Genetic Variants. Nat. Genet. 2014, 46, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Rentzsch, P.; Witten, D.; Cooper, G.M.; Shendure, J.; Kircher, M. CADD: Predicting the Deleteriousness of Variants throughout the Human Genome. Nucleic Acids Res. 2019, 47, D886–D894. [Google Scholar] [CrossRef]
- Richards, S.; Aziz, N.; Bale, S.; Bick, D.; Das, S.; Gastier-Foster, J.; Grody, W.W.; Hegde, M.; Lyon, E.; Spector, E.; et al. Standards and Guidelines for the Interpretation of Sequence Variants: A Joint Consensus Recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 2015, 17, 405–423. [Google Scholar] [CrossRef] [PubMed]
- Takayama, K.; Danks, D.M.; Salazar, E.P.; Cleaver, J.E.; Weber, C.A. DNA Repair Characteristics and Mutations in the ERCC2 DNA Repair and Transcription Gene in a Trichothiodystrophy Patient. Hum. Mutat. 1997, 9, 519–525. [Google Scholar] [CrossRef]
- Fujimoto, M.; Leech, S.N.; Theron, T.; Mori, M.; Fawcett, H.; Botta, E.; Nozaki, Y.; Yamagata, T.; Moriwaki, S.-I.; Stefanini, M.; et al. Two New XPD Patients Compound Heterozygous for the Same Mutation Demonstrate Diverse Clinical Features. J. Investig. Dermatol. 2005, 125, 86–92. [Google Scholar] [CrossRef]
- Horibata, K.; Kono, S.; Ishigami, C.; Zhang, X.; Aizawa, M.; Kako, Y.; Ishii, T.; Kosaki, R.; Saijo, M.; Tanaka, K. Constructive Rescue of TFIIH Instability by an Alternative Isoform of XPD Derived from a Mutated XPD Allele in Mild but Not Severe XP-D/CS. J. Hum. Genet. 2015, 60, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Brunet, T.; Berutti, R.; Dill, V.; Hecker, J.S.; Choukair, D.; Andres, S.; Deschauer, M.; Diehl-Schmid, J.; Krenn, M.; Eckstein, G.; et al. Clonal Hematopoiesis as a Pitfall in Germline Variant Interpretation in the Context of Mendelian Disorders. Hum. Mol. Genet. 2022, 31, 2386–2395. [Google Scholar] [CrossRef]
- Pogue-Geile, K.L.; Chen, R.; Bronner, M.P.; Crnogorac-Jurcevic, T.; Moyes, K.W.; Dowen, S.; Otey, C.A.; Crispin, D.A.; George, R.D.; Whitcomb, D.C.; et al. Palladin Mutation Causes Familial Pancreatic Cancer and Suggests a New Cancer Mechanism. PLoS Med. 2006, 3, e516. [Google Scholar] [CrossRef]
- Liotta, L.; Lange, S.; Maurer, H.C.; Olive, K.P.; Braren, R.; Pfarr, N.; Burger, S.; Muckenhuber, A.; Jesinghaus, M.; Steiger, K.; et al. PALLD Mutation in a European Family Conveys a Stromal Predisposition for Familial Pancreatic Cancer. JCI Insight 2021, 6, e141532. [Google Scholar] [CrossRef]
- Gamboa-Loira, B.; López-Carrillo, L.; Mar-Sánchez, Y.; Stern, D.; Cebrián, M.E. Epidemiologic Evidence of Exposure to Polycyclic Aromatic Hydrocarbons and Breast Cancer: A Systematic Review and Meta-Analysis. Chemosphere 2022, 290, 133237. [Google Scholar] [CrossRef] [PubMed]
- Rofes, P.; Del Valle, J.; Torres-Esquius, S.; Feliubadaló, L.; Stradella, A.; Moreno-Cabrera, J.M.; López-Doriga, A.; Munté, E.; De Cid, R.; Campos, O.; et al. BARD1 Pathogenic Variants Are Associated with Triple-Negative Breast Cancer in a Spanish Hereditary Breast and Ovarian Cancer Cohort. Genes 2021, 12, 150. [Google Scholar] [CrossRef] [PubMed]
- Weterman, M.A.; Wilbrink, M.; Geurts van Kessel, A. Fusion of the Transcription Factor TFE3 Gene to a Novel Gene, PRCC, in t(X;1)(P11;Q21)-Positive Papillary Renal Cell Carcinomas. Proc. Natl. Acad. Sci. USA 1996, 93, 15294–15298. [Google Scholar] [CrossRef] [PubMed]
- Aryal, S.; Zhang, Y.; Wren, S.; Li, C.; Lu, R. Molecular Regulators of HOXA9 in Acute Myeloid Leukemia. FEBS J. 2021, 290, 321–339. [Google Scholar] [CrossRef]
- Martin-Giacalone, B.A.; Rideau, T.-T.; Scheurer, M.E.; Lupo, P.J.; Wang, L.L. Cancer Risk among RECQL4 Heterozygotes. Cancer Genet. 2022, 262–263, 107–110. [Google Scholar] [CrossRef]
- Lauper, J.M.; Krause, A.; Vaughan, T.L.; Monnat, R.J. Spectrum and Risk of Neoplasia in Werner Syndrome: A Systematic Review. PLoS ONE 2013, 8, e59709. [Google Scholar] [CrossRef]
- Tanaka, Y.; Sasaki, M.; Kaneuchi, M.; Shiina, H.; Igawa, M.; Dahiya, R. Polymorphisms of the CYP1B1 Gene Have Higher Risk for Prostate Cancer. Biochem. Biophys. Res. Commun. 2002, 296, 820–826. [Google Scholar] [CrossRef]
- Liu, J.-Y.; Yang, Y.; Liu, Z.-Z.; Xie, J.-J.; Du, Y.-P.; Wang, W. Association between the CYP1B1 Polymorphisms and Risk of Cancer: A Meta-Analysis. Mol. Genet. Genomics 2015, 290, 739–765. [Google Scholar] [CrossRef]
- Palli, D.; Masala, G.; Mariani-Costantini, R.; Zanna, I.; Saieva, C.; Sera, F.; Decarli, A.; Ottini, L. A Gene-Environment Interaction between Occupation and BRCA1/BRCA2 Mutations in Male Breast Cancer? Eur. J. Cancer 2004, 40, 2474–2479. [Google Scholar] [CrossRef]
- Najm, P.; El-Sibai, M. Palladin Regulation of the Actin Structures Needed for Cancer Invasion. Cell Adhes. Migr. 2014, 8, 29–35. [Google Scholar] [CrossRef]
- Landi, S. Genetic Predisposition and Environmental Risk Factors to Pancreatic Cancer: A Review of the Literature. Mutat. Res. 2009, 681, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Lang, G.-T.; Shi, J.-X.; Huang, L.; Cao, A.-Y.; Zhang, C.-H.; Song, C.-G.; Zhuang, Z.-G.; Hu, X.; Huang, W.; Shao, Z.-M. Multiple Cancer Susceptible Genes Sequencing in BRCA-Negative Breast Cancer with High Hereditary Risk. Ann. Transl. Med. 2020, 8, 1417. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.-M.; He, Y.-Q.; Xue, W.-Q.; Zhang, J.-B.; Xia, Y.-F.; Deng, C.-M.; Zhang, W.-L.; Xiao, R.-W.; Liao, Y.; Yang, D.-W.; et al. Whole-Exome Sequencing Study of Familial Nasopharyngeal Carcinoma and Its Implication for Identifying High-Risk Individuals. J. Natl. Cancer Inst. 2022, 114, 1689–1697. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Pu, J.; Wen, Q.; Huang, Q.; Zhang, Q.; Huang, B.; Huang, S.; Lan, A.; Zhang, Y.; Li, J.; et al. Association between the ERCC2 Asp312Asn Polymorphism and Risk of Cancer. Oncotarget 2017, 8, 48488–48506. [Google Scholar] [CrossRef]
- Van der Auwera, G.A.; Carneiro, M.O.; Hartl, C.; Poplin, R.; Del Angel, G.; Levy-Moonshine, A.; Jordan, T.; Shakir, K.; Roazen, D.; Thibault, J.; et al. From FastQ Data to High Confidence Variant Calls: The Genome Analysis Toolkit Best Practices Pipeline. Curr. Protoc. Bioinform. 2013, 43, 11.10.1–11.10.33. [Google Scholar] [CrossRef] [PubMed]
- Koboldt, D.C.; Zhang, Q.; Larson, D.E.; Shen, D.; McLellan, M.D.; Lin, L.; Miller, C.A.; Mardis, E.R.; Ding, L.; Wilson, R.K. VarScan 2: Somatic Mutation and Copy Number Alteration Discovery in Cancer by Exome Sequencing. Genome Res. 2012, 22, 568–576. [Google Scholar] [CrossRef]
- Robinson, J.T.; Thorvaldsdóttir, H.; Wenger, A.M.; Zehir, A.; Mesirov, J.P. Variant Review with the Integrative Genomics Viewer. Cancer Res. 2017, 77, e31–e34. [Google Scholar] [CrossRef]
- Landrum, M.J.; Lee, J.M.; Benson, M.; Brown, G.R.; Chao, C.; Chitipiralla, S.; Gu, B.; Hart, J.; Hoffman, D.; Jang, W.; et al. ClinVar: Improving Access to Variant Interpretations and Supporting Evidence. Nucleic Acids Res. 2018, 46, D1062–D1067. [Google Scholar] [CrossRef]
- UniProt Consortium UniProt: The Universal Protein Knowledgebase in 2023. Nucleic Acids Res. 2023, 51, D523–D531. [CrossRef]
Age at diagnosis (years), median (range) | 66 (23–88) |
≤65 | 40 (47.1%) |
>65 | 45 (52.9%) |
Personal history of cancer | |
No | 60 (70.6%) |
Yes | 25 (29.4%) |
Bilateral breast cancer | 5 (5.9%) |
Prostate cancer | 12 (14.1%) |
Other cancer | 8 (9.4%) |
First-degree relatives with breast and/or ovarian cancer | |
No | 62 (72.9%) |
Yes | 23 (27.1%) |
First- and second-degree relatives with breast and/or ovarian cancer | |
No | 55 (64.7%) |
Yes | 30 (35.3%) |
Tobacco smoking status | |
Never | 35 (64.8%) |
Former/current | 19 (35.2%) |
Missing | 31 |
BMI, median (range) | 25.6 (17.4–35.2) |
≤25 | 26 (41.3%) |
]25-30] | 27 (42.8%) |
>30 | 10 (15.9%) |
Missing | 22 |
Histology | |
Invasive ductal carcinoma | 67 (80.7%) |
In situ ductal carcinoma | 3 (3.6%) |
Invasive lobular carcinoma | 1 (1.2%) |
Invasive mixed type | 8 (9.6%) |
Other invasive types | 4 (4.8%) |
Missing | 2 |
Tumour size (mm), median (range) | 18.5 (4.0–50.0) |
Missing | 11 |
Histological grade | |
Grade I | 7 (8.4%) |
Grade II | 55 (66.3%) |
Grade III | 21 (25.3%) |
Missing | 2 |
Lymph node status | |
Negative | 41 (55.4%) |
Positive | 33 (44.6%) |
Missing | 11 |
ER status | |
Negative | 1 (1.2%) |
Positive | 79 (98.8%) |
Missing | 5 |
PR status | |
Negative | 2 (2.5%) |
Positive | 78 (97.5%) |
Missing | 5 |
HER2 status | |
Negative | 77 (96.3%) |
Positive | 3 (3.7%) |
Missing | 5 |
Function | Patient ID | Gene | NM:cDNA | Protein | VAF (%) | p-Value | ACMG Classification Criteria | MAF |
---|---|---|---|---|---|---|---|---|
DNA repair | MBC-056 | BARD1 | NM_000465.3: c.1921C>T | p.Arg641* | 30.7 | 0.013 | PVS1 + PM2 + PP5 | 0.000016 |
MBC-002 | ERCC2 | NM_000400.3: c.1381C>G | p.Leu461Val | 47.8 | 0.0097 | PS4 + PS3 | 0.001203 | |
MBC-080 | 52.8 | |||||||
MBC-002 | NM_000400.3: c.2150C>G | p.Ala717Gly | 52.3 | 0.0097 | PS4 + PS3 | 0.000314 | ||
MBC-080 | 41.6 | |||||||
MBC-014 | NM_000400.3: c.2164C>T | p.Arg722Trp | 40.9 | 0.016 | PS3 + PM2 + PP3 | 0.000024 | ||
MBC-064 | MRE11 | NM_005591.3: c.820_821del | p.Leu274Phefs*16 | 49.5 | 0.011 | PVS1 + PS4_moderate | 0.00002 | |
MBC-067 | MUTYH | NM_001048171.1: c.1105del | p.Ala371Profs*23 | 52.5 | 0.018 | PVS1 + PM2 + PP5 | 0.000064 | |
MBC-016 | RAD51C | NM_058216.2: c.414G>C | p.Leu138Phe | 47.5 | 0.011 | PS3 + PM2 + PP5 | 0.000004 | |
MBC-042 | XPC | NM_004628.4: c.1A>G | p.Met1? | 40.0 | 0.018 | PVS1 + PM2 | 0.000007 | |
Chromatin compaction | MBC-081 | ASXL1 | NM_015338.5: c.1272_1273del | p.Tyr425Glnfs*12 | 40.6 | 0.0097 | PVS1 + PM2 | 0.000004 |
MBC-051 | DNMT3A | NM_175629.2: c.2196dup | p.Glu733* | 25.0 | 0.0097 | PVS1 + PM2 | 0.000004 | |
Cell cycle | MBC-032 | CDKN2A | NM_000077.4: c.176T>G | p.Val59Gly | 54.6 | 0.010 | PS1 + PS4 + PM2 + PP3 | 0.000005 |
Cytochrome P450 | MBC-010 | CYP1B1 | NM_000104.3: c.830del | p.Leu277* | 48.7 | 0.0097 | PVS1 + PM2 + PP5 | 0.000029 |
MBC-040 | NM_000104.3: c.985G>A | p.Gly329Ser | 49.5 | 0.013 | PS3 + PM2 | 0.000012 | ||
MBC-072 | NM_000104.3: c.1064_1076del | p.Arg355Hisfs*69 | 47.1 | 0.048 | PVS1 + PM2 + PP5 | 0.000223 | ||
Transcription regulation | MBC-018 | HOXA9 | NM_152739.3: c.802C>T | p.Arg268* | 45.2 | 0.024 | PVS1 + PM2 | 0.000084 |
DNA helicase | MBC-041 | RECQL4 | NM_004260.3: c.2547_2548del | p.Phe850Profs*33 | 44.3 | 0.011 | PVS1 + PM2 + PP5 | 0.00001 |
MBC-079 | WRN | NM_000553.5: c.2194C>T | p.Arg732* | 50.9 | 0.0097 | PVS1 + PM2 + PP5 | 0.000016 | |
Other | MBC-039 | PALLD | NM_001166108.2: c.814C>T | p.Arg272* | 51.1 | 0.0097 | PVS1 + PM2 | 0.000004 |
MBC-083 | NM_001166108.2: c.296C>A | p.Ser99* | 46.8 | 0.024 | PVS1 + PM2 | 0.000092 | ||
MBC-055 | PRCC | NM_005973.4: c.1138del | p.Gln380Argfs*47 | 52.4 | 0.011 | PVS1 + PM2 | 0.000004 | |
MBC-032 | NUTM2A | NM_001099338.1: c.692G>A | p.Trp231* | 37.0 | 0.016 | PVS1 + PM2 | 0.000026 |
MBC (%) | FBC (%) | |
---|---|---|
CYP1B1 | 3 (3.5%) | 2 (1.8%) |
ERCC2 | 3 (3.5%) | 0 (0.0%) |
PALLD | 2 (2.4%) | 0 (0.0%) |
CDKN2A | 1 (1.2%) | 0 (0.0%) |
HOXA9 | 1 (1.2%) | 0 (0.0%) |
NUTM2A | 1 (1.2%) | 0 (0.0%) |
PRCC | 1 (1.2%) | 0 (0.0%) |
RECQL4 | 1 (1.2%) | 0 (0.0%) |
WRN | 1 (1.2%) | 0 (0.0%) |
MRE11 | 1 (1.2%) | 2 (1.8%) |
BARD1 | 1 (1.2%) | 0 (0.0%) |
MUTYH | 1 (1.2%) | 0 (0.0%) |
RAD51C | 1 (1.2%) | 1 (0.9%) |
XPC | 1 (1.2%) | 0 (0.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Saati, A.; Vande Perre, P.; Plenecassagnes, J.; Gilhodes, J.; Monselet, N.; Cabarrou, B.; Lignon, N.; Filleron, T.; Telly, D.; Perello-Lestrade, E.; et al. Multigene Panel Sequencing Identifies a Novel Germline Mutation Profile in Male Breast Cancer Patients. Int. J. Mol. Sci. 2023, 24, 14348. https://doi.org/10.3390/ijms241814348
Al Saati A, Vande Perre P, Plenecassagnes J, Gilhodes J, Monselet N, Cabarrou B, Lignon N, Filleron T, Telly D, Perello-Lestrade E, et al. Multigene Panel Sequencing Identifies a Novel Germline Mutation Profile in Male Breast Cancer Patients. International Journal of Molecular Sciences. 2023; 24(18):14348. https://doi.org/10.3390/ijms241814348
Chicago/Turabian StyleAl Saati, Ayman, Pierre Vande Perre, Julien Plenecassagnes, Julia Gilhodes, Nils Monselet, Bastien Cabarrou, Norbert Lignon, Thomas Filleron, Dominique Telly, Emilie Perello-Lestrade, and et al. 2023. "Multigene Panel Sequencing Identifies a Novel Germline Mutation Profile in Male Breast Cancer Patients" International Journal of Molecular Sciences 24, no. 18: 14348. https://doi.org/10.3390/ijms241814348