The Diagnosis and Management of Cutaneous Metastases from Melanoma
Abstract
:1. Introduction
2. Classification
3. Pathogenesis
4. Clinical and Dermoscopic Features
5. Treatment
5.1. Surgery
5.2. Radiation Therapy
5.3. Isolated Limb Perfusion
5.4. Isolated Limb Infusion
5.5. Electrochemotherapy
5.6. Intralesional Therapies
T-VEC
5.7. Topical Therapies
5.7.1. Imiquimod
5.7.2. 5-Fluorouracil
5.7.3. Diphencyprone
5.8. Systemic Immunotherapies
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dreno, B.; Fargnoli, M.C.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment—Update 2019. Eur. J. Cancer 2020, 126, 159–177. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.C.; Green, A.C.; Olsen, C.M. The Growing Burden of Invasive Melanoma: Projections of Incidence Rates and Numbers of New Cases in Six Susceptible Populations through 2031. J. Investig. Dermatol. 2016, 136, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Zbytek, B.; Carlson, J.A.; Granese, J.; Ross, J.; Mihm, M.C., Jr.; Slominski, A. Current concepts of metastasis in melanoma. Expert Rev. Dermatol. 2008, 3, 569–585. [Google Scholar] [CrossRef]
- Knight, A.; Karapetyan, L.; Kirkwood, J.M. Immunotherapy in Melanoma: Recent Advances and Future Directions. Cancers 2023, 15, 1106. [Google Scholar] [CrossRef] [PubMed]
- Munhoz, R.R.; Postow, M.A. Combinatorial Approaches to the Treatment of Advanced Melanoma. Hematol. Oncol. Clin. N. Am. 2021, 35, 145–158. [Google Scholar] [CrossRef]
- Jenkins, R.W.; Fisher, D.E. Treatment of Advanced Melanoma in 2020 and Beyond. J. Investig. Dermatol. 2021, 141, 23–31. [Google Scholar] [CrossRef]
- Wong, C.Y.; Helm, M.A.; Helm, T.N.; Zeitouni, N. Patterns of skin metastases: A review of 25 years’ experience at a single cancer center. Int. J. Dermatol. 2014, 53, 56–60. [Google Scholar] [CrossRef]
- Krathen, R.A.; Orengo, I.F.; Rosen, T. Cutaneous metastasis: A meta-analysis of data. South Med. J. 2003, 96, 164–167. [Google Scholar] [CrossRef]
- Rubegni, P.; Lamberti, A.; Mandato, F.; Perotti, R.; Fimiani, M. Dermoscopic patterns of cutaneous melanoma metastases. Int. J. Dermatol. 2014, 53, 404–412. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dreno, B.; Fargnoli, M.C.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 1: Diagnostics—Update 2019. Eur. J. Cancer 2020, 126, 141–158. [Google Scholar] [CrossRef]
- Balch, C.M.; Gershenwald, J.E.; Soong, S.J.; Thompson, J.F.; Atkins, M.B.; Byrd, D.R.; Buzaid, A.C.; Cochran, A.J.; Coit, D.G.; Ding, S.; et al. Final version of 2009 AJCC melanoma staging and classification. J. Clin.Oncol. 2009, 27, 6199–6206. [Google Scholar] [CrossRef]
- Niebling, M.G.; Haydu, L.E.; Lo, S.N.; Rawson, R.V.; Lamboo, L.G.E.; Stollman, J.T.; Karim, R.Z.; Thompson, J.F.; Scolyer, R.A. The prognostic significance of microsatellites in cutaneous melanoma. Mod. Pathol. 2020, 33, 1369–1379. [Google Scholar] [CrossRef] [PubMed]
- Bastian, B.C.; Kashani-Sabet, M.; Hamm, H.; Godfrey, T.; Moore, D.H., 2nd; Brocker, E.B.; LeBoit, P.E.; Pinkel, D. Gene amplifications characterize acral melanoma and permit the detection of occult tumor cells in the surrounding skin. Cancer Res. 2000, 60, 1968–1973. [Google Scholar] [PubMed]
- North, J.P.; Kageshita, T.; Pinkel, D.; LeBoit, P.E.; Bastian, B.C. Distribution and significance of occult intraepidermal tumor cells surrounding primary melanoma. J. Investig. Dermatol. 2008, 128, 2024–2030. [Google Scholar] [CrossRef] [PubMed]
- Gambichler, T.; Scholl, L.; Bechara, F.G.; Stockfleth, E.; Stucker, M. Worse outcome for patients with recurrent melanoma after negative sentinel lymph biopsy as compared to sentinel-positive patients. Eur. J. Surg. Oncol. 2016, 42, 1420–1426. [Google Scholar] [CrossRef]
- Hsu, M.Y.; Meier, F.E.; Nesbit, M.; Hsu, J.Y.; Van Belle, P.; Elder, D.E.; Herlyn, M. E-cadherin expression in melanoma cells restores keratinocyte-mediated growth control and down-regulates expression of invasion-related adhesion receptors. Am. J. Pathol. 2000, 156, 1515–1525. [Google Scholar] [CrossRef]
- Banyard, J.; Bielenberg, D.R. The role of EMT and MET in cancer dissemination. Connect. Tissue Res. 2015, 56, 403–413. [Google Scholar] [CrossRef]
- Yeung, K.T.; Yang, J. Epithelial-mesenchymal transition in tumor metastasis. Mol. Oncol. 2017, 11, 28–39. [Google Scholar] [CrossRef]
- Caramel, J.; Papadogeorgakis, E.; Hill, L.; Browne, G.J.; Richard, G.; Wierinckx, A.; Saldanha, G.; Osborne, J.; Hutchinson, P.; Tse, G.; et al. A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma. Cancer Cell 2013, 24, 466–480. [Google Scholar] [CrossRef]
- Li, F.Z.; Dhillon, A.S.; Anderson, R.L.; McArthur, G.; Ferrao, P.T. Phenotype switching in melanoma: Implications for progression and therapy. Front. Oncol. 2015, 5, 31. [Google Scholar] [CrossRef]
- Vandamme, N.; Berx, G. Melanoma cells revive an embryonic transcriptional network to dictate phenotypic heterogeneity. Front. Oncol. 2014, 4, 352. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Ha, J.R.; Kuzel, P.; Garcia, E.; Persad, S. Cadherin switch from E- to N-cadherin in melanoma progression is regulated by the PI3K/PTEN pathway through Twist and Snail. Br. J. Dermatol. 2012, 166, 1184–1197. [Google Scholar] [CrossRef] [PubMed]
- Pearlman, R.L.; Montes de Oca, M.K.; Pal, H.C.; Afaq, F. Potential therapeutic targets of epithelial-mesenchymal transition in melanoma. Cancer Lett. 2017, 391, 125–140. [Google Scholar] [CrossRef] [PubMed]
- Thiery, J.P.; Sleeman, J.P. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 2006, 7, 131–142. [Google Scholar] [CrossRef]
- Li, G.; Satyamoorthy, K.; Herlyn, M. N-cadherin-mediated intercellular interactions promote survival and migration of melanoma cells. Cancer Res. 2001, 61, 3819–3825. [Google Scholar] [PubMed]
- Liu, Y.; Sheikh, M.S. Melanoma: Molecular Pathogenesis and Therapeutic Management. Mol. Cell Pharmacol. 2014, 6, 228. [Google Scholar]
- Hendrix, M.J.; Seftor, E.A.; Meltzer, P.S.; Gardner, L.M.; Hess, A.R.; Kirschmann, D.A.; Schatteman, G.C.; Seftor, R.E. Expression and functional significance of VE-cadherin in aggressive human melanoma cells: Role in vasculogenic mimicry. Proc. Natl. Acad. Sci. USA 2001, 98, 8018–8023. [Google Scholar] [CrossRef]
- Murakami, T.; Cardones, A.R.; Hwang, S.T. Chemokine receptors and melanoma metastasis. J. Dermatol. Sci. 2004, 36, 71–78. [Google Scholar] [CrossRef]
- Martinez-Rodriguez, M.; Thompson, A.K.; Monteagudo, C. High CCL27 immunoreactivity in ‘supratumoral’ epidermis correlates with better prognosis in patients with cutaneous malignant melanoma. J. Clin. Pathol. 2017, 70, 15–19. [Google Scholar] [CrossRef]
- Ben-Baruch, A. Organ selectivity in metastasis: Regulation by chemokines and their receptors. Clin. Exp. Metastasis 2008, 25, 345–356. [Google Scholar] [CrossRef]
- Leiter, U.; Meier, F.; Schittek, B.; Garbe, C. The natural course of cutaneous melanoma. J. Surg. Oncol. 2004, 86, 172–178. [Google Scholar] [CrossRef] [PubMed]
- Gershenwald, J.E.; Fidler, I.J. Cancer. Targeting lymphatic metastasis. Science 2002, 296, 1811–1812. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, W.H. Melanoma: Margins for error—Another view. ANZ J. Surg. 2002, 72, 304–306. [Google Scholar] [CrossRef] [PubMed]
- Wilmott, J.; Haydu, L.; Bagot, M.; Zhang, Y.; Jakrot, V.; McCarthy, S.; Lugassy, C.; Thompson, J.; Scolyer, R.; Barnhill, R. Angiotropism is an independent predictor of microscopic satellites in primary cutaneous melanoma. Histopathology 2012, 61, 889–898. [Google Scholar] [CrossRef] [PubMed]
- Heenan, P.J.; Ghaznawie, M. The pathogenesis of local recurrence of melanoma at the primary excision site. Br. J. Plast. Surg. 1999, 52, 209–213. [Google Scholar] [CrossRef]
- Read, R.L.; Haydu, L.; Saw, R.P.; Quinn, M.J.; Shannon, K.; Spillane, A.J.; Stretch, J.R.; Scolyer, R.A.; Thompson, J.F. In-transit melanoma metastases: Incidence, prognosis, and the role of lymphadenectomy. Ann. Surg. Oncol. 2015, 22, 475–481. [Google Scholar] [CrossRef]
- Markowitz, J.S.; Cosimi, L.A.; Carey, R.W.; Kang, S.; Padyk, C.; Sober, A.J.; Cosimi, A.B. Prognosis after initial recurrence of cutaneous melanoma. Arch. Surg. 1991, 126, 703–707; Discussion 707–708. [Google Scholar] [CrossRef]
- Mervic, L. Time course and pattern of metastasis of cutaneous melanoma differ between men and women. PLoS ONE 2012, 7, e32955. [Google Scholar] [CrossRef]
- Zaremba, A.; Philip, M.; Hassel, J.C.; Glutsch, V.; Fiocco, Z.; Loquai, C.; Rafei-Shamsabadi, D.; Gutzmer, R.; Utikal, J.; Haferkamp, S.; et al. Clinical characteristics and therapy response in unresectable melanoma patients stage IIIB-IIID with in-transit and satellite metastases. Eur. J. Cancer 2021, 152, 139–154. [Google Scholar] [CrossRef]
- Savoia, P.; Fava, P.; Nardo, T.; Osella-Abate, S.; Quaglino, P.; Bernengo, M.G. Skin metastases of malignant melanoma: A clinical and prognostic survey. Melanoma Res. 2009, 19, 321–326. [Google Scholar] [CrossRef]
- Marcoval, J.; Moreno, A.; Peyri, J. Cutaneous infiltration by cancer. J. Am. Acad. Dermatol. 2007, 57, 577–580. [Google Scholar] [CrossRef] [PubMed]
- Saeed, S.; Keehn, C.A.; Morgan, M.B. Cutaneous metastasis: A clinical, pathological, and immunohistochemical appraisal. J. Cutan. Pathol. 2004, 31, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Carlos-Ortega, B.; de Oca-Monroy, F.M.; Isyta-Morales, A. Dermoscopy findings in malignant skin melanoma with metastases. A case report. Rev. Med. Inst. Mex Seguro Soc. 2009, 47, 73–76. [Google Scholar] [PubMed]
- Marschall, S.; Welykyj, S.; Gradini, R.; Eng, A. Unusual presentation of cutaneous metastatic malignant melanoma. J. Am. Acad. Dermatol. 1991, 24, 648–650. [Google Scholar] [CrossRef]
- Marletta, D.A.; Benzecry, V.; Marzano, A.V.; Genovese, G. Erysipela-like primary cutaneous melanoma. Ital. J. Dermatol. Venerol. 2023, 158, 68–69. [Google Scholar] [CrossRef]
- Sahu, K.; Sirka, C.S.; Sethy, M.; Mishra, J. Unilateral nodular malignant melanoma with in-transit metastasis over lower limb masquerading as vascular tumours: A unique presentation. Indian J. Dermatol. Venereol. Leprol. 2023, 89, 446–449. [Google Scholar] [CrossRef]
- Erstine, E.M.; Elwood, H.R.; Westbrook, K.C.; McCalmont, T.H.; Shalin, S.C.; Gardner, J.M. Desmoplastic melanoma presenting as primary alopecia neoplastica: A report of two cases. J. Cutan. Pathol. 2016, 43, 872–879. [Google Scholar] [CrossRef]
- Costa, J.; Ortiz-Ibanez, K.; Salerni, G.; Borges, V.; Carrera, C.; Puig, S.; Malvehy, J. Dermoscopic patterns of melanoma metastases: Interobserver consistency and accuracy for metastasis recognition. Br. J. Dermatol. 2013, 169, 91–99. [Google Scholar] [CrossRef]
- Kostaki, M.; Plaka, M.; Moustaki, M.; Befon, A.; Champsas, G.; Kypreou, K.; Chardalia, V.; Chasapi, V.; Polydorou, D.; Stratigos, A. Cutaneous melanoma metastases: Clinical and dermoscopic findings. J. Eur. Acad. Dermatol. Venereol. 2023, 37, 941–944. [Google Scholar] [CrossRef]
- Vernemmen, A.I.P.; Li, X.; Roemen, G.; Speel, E.M.; Kubat, B.; Hausen, A.Z.; Winnepenninckx, V.J.L.; Samarska, I.V. Cutaneous metastases of internal malignancies: A single-institution experience. Histopathology 2022, 81, 329–341. [Google Scholar] [CrossRef]
- Garbe, C.; Amaral, T.; Peris, K.; Hauschild, A.; Arenberger, P.; Basset-Seguin, N.; Bastholt, L.; Bataille, V.; Del Marmol, V.; Dreno, B.; et al. European consensus-based interdisciplinary guideline for melanoma. Part 2: Treatment—Update 2022. Eur. J. Cancer 2022, 170, 256–284. [Google Scholar] [CrossRef] [PubMed]
- Sondak, V.K.; Wong, S.L.; Gershenwald, J.E.; Thompson, J.F. Evidence-based clinical practice guidelines on the use of sentinel lymph node biopsy in melanoma. Am. Soc. Clin. Oncol. Educ. Book 2013, 33, e320–e325. [Google Scholar] [CrossRef] [PubMed]
- Dummer, R.; Hauschild, A.; Guggenheim, M.; Keilholz, U.; Pentheroudakis, G.; Group, E.G.W. Cutaneous melanoma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2012, 23 (Suppl. S7), vii86–vii91. [Google Scholar] [CrossRef]
- Kandamany, N.; Mahaffey, P. Carbon dioxide laser ablation as first-line management of in-transit cutaneous malignant melanoma metastases. Lasers Med. Sci. 2009, 24, 411–414. [Google Scholar] [CrossRef]
- John, H.E.; Mahaffey, P.J. Laser ablation and cryotherapy of melanoma metastases. J. Surg. Oncol. 2014, 109, 296–300. [Google Scholar] [CrossRef] [PubMed]
- Barker, C.A. Radiation Therapy for Cutaneous Melanoma: Clonogenic Assays to Clinical Trials. Oncology 2015, 29, 752–754. [Google Scholar]
- Barranco, S.C.; Romsdahl, M.M.; Humphrey, R.M. The radiation response of human malignant melanoma cells grown in vitro. Cancer Res. 1971, 31, 830–833. [Google Scholar]
- Stevens, G.; McKay, M.J. Dispelling the myths surrounding radiotherapy for treatment of cutaneous melanoma. Lancet Oncol. 2006, 7, 575–583. [Google Scholar] [CrossRef]
- Harwood, A.R.; Cummings, B.J. Radiotherapy for malignant melanoma: A re-appraisal. Cancer Treat. Rev. 1981, 8, 271–282. [Google Scholar] [CrossRef]
- Habermalz, H.J.; Fischer, J.J. Radiation therapy of malignant melanoma: Experience with high individual treatment doses. Cancer 1976, 38, 2258–2262. [Google Scholar] [CrossRef]
- Overgaard, J.; von der Maase, H.; Overgaard, M. A randomized study comparing two high-dose per fraction radiation schedules in recurrent or metastatic malignant melanoma. Int. J. Radiat.Oncol.Biol. Phys. 1985, 11, 1837–1839. [Google Scholar] [CrossRef] [PubMed]
- Fenig, E.; Eidelevich, E.; Njuguna, E.; Katz, A.; Gutman, H.; Sulkes, A.; Schechter, J. Role of radiation therapy in the management of cutaneous malignant melanoma. Am. J. Clin. Oncol. 1999, 22, 184–186. [Google Scholar] [CrossRef] [PubMed]
- Olivier, K.R.; Schild, S.E.; Morris, C.G.; Brown, P.D.; Markovic, S.N. A higher radiotherapy dose is associated with more durable palliation and longer survival in patients with metastatic melanoma. Cancer 2007, 110, 1791–1795. [Google Scholar] [CrossRef] [PubMed]
- Creech, O., Jr.; Krementz, E.T.; Kokame, G.M. Chemotherapy for cancer by perfusion. Rev. Surg. 1962, 19, 149–158. [Google Scholar]
- Benckhuijsen, C.; Kroon, B.B.; van Geel, A.N.; Wieberdink, J. Regional perfusion treatment with melphalan for melanoma in a limb: An evaluation of drug kinetics. Eur. J. Surg. Oncol. 1988, 14, 157–163. [Google Scholar]
- Sevilla-Ortega, L.; Ferrandiz-Pulido, L.; Palazon-Carrion, N.; Alamo de la Gala, M.D.C.; de Toro-Salas, R.; Garnacho-Montero, J.; Marcos-Rodriguez, J.A.; Agudo Martinez, A.; Araji-Tiliani, O.; Calvo-Moron, M.C.; et al. Role of Isolated Limb Perfusion in the Era of Targeted Therapies and Immunotherapy in Melanoma. A Systematic Review of The Literature. Cancers 2021, 13, 5485. [Google Scholar] [CrossRef]
- Miura, J.T.; Kroon, H.M.; Beasley, G.M.; Mullen, D.; Farrow, N.E.; Mosca, P.J.; Lowe, M.C.; Farley, C.R.; Kim, Y.; Naqvi, S.M.H.; et al. Long-Term Oncologic Outcomes After Isolated Limb Infusion for Locoregionally Metastatic Melanoma: An International Multicenter Analysis. Ann. Surg. Oncol. 2019, 26, 2486–2494. [Google Scholar] [CrossRef]
- Johansson, J.; Kiffin, R.; Aydin, E.; Nilsson, M.S.; Hellstrand, K.; Lindner, P.; Naredi, P.; Olofsson Bagge, R.; Martner, A. Isolated limb perfusion with melphalan activates interferon-stimulated genes to induce tumor regression in patients with melanoma in-transit metastasis. Oncoimmunology 2020, 9, 1684126. [Google Scholar] [CrossRef]
- Eggermont, A.M. The success of TNF alpha in isolated limb perfusion for irresectable extremity soft tissue sarcomas, melanoma and carcinomas: Observations in patients and preclinical perfusion models. Gan Kagaku Ryoho Cancer Chemother. 1996, 23, 1357–1370. [Google Scholar]
- Vaglini, M.; Belli, F.; Ammatuna, M.; Inglese, M.G.; Manzi, R.; Prada, A.; Persiani, L.; Santinami, M.; Santoro, N.; Cascinelli, N. Treatment of primary or relapsing limb cancer by isolation perfusion with high-dose alpha-tumor necrosis factor, gamma-interferon, and melphalan. Cancer 1994, 73, 483–492. [Google Scholar] [CrossRef]
- Fraker, D.L.; Alexander, H.R.; Andrich, M.; Rosenberg, S.A. Treatment of patients with melanoma of the extremity using hyperthermic isolated limb perfusion with melphalan, tumor necrosis factor, and interferon gamma: Results of a tumor necrosis factor dose-escalation study. J. Clin. Oncol. 1996, 14, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Cherix, S.; Speiser, M.; Matter, M.; Raffoul, W.; Lienard, D.; Theumann, N.; Mouhsine, E.; Mirimanoff, R.O.; Leyvraz, S.; Lejeune, F.J.; et al. Isolated limb perfusion with tumor necrosis factor and melphalan for non-resectable soft tissue sarcomas: Long-term results on efficacy and limb salvage in a selected group of patients. J. Surg. Oncol. 2008, 98, 148–155. [Google Scholar] [CrossRef] [PubMed]
- Kam, P.C.; Thompson, J.F. Isolated limb infusion with melphalan and actinomycin D in melanoma patients: Factors predictive of acute regional toxicity. Expert Opin. Drug Metab. Toxicol. 2010, 6, 1039–1045. [Google Scholar] [CrossRef]
- Kroon, H.M.; Huismans, A.M.; Kam, P.C.; Thompson, J.F. Isolated limb infusion with melphalan and actinomycin D for melanoma: A systematic review. J. Surg. Oncol. 2014, 109, 348–351. [Google Scholar] [CrossRef] [PubMed]
- Edwards, M.J.; Boddie, A.W., Jr.; Ames, F.C.; McBride, C.M. Isolated limb perfusion for stage I melanoma of the extremity: A comparison of melphalan and dacarbazine (DTIC). South Med. J. 1989, 82, 985–987, 989. [Google Scholar] [CrossRef] [PubMed]
- Hoekstra, H.J.; Veerman, K.; van Ginkel, R.J. Isolated limb perfusion for in-transit melanoma metastases: Melphalan or TNF-melphalan perfusion? J. Surg. Oncol. 2014, 109, 338–347. [Google Scholar] [CrossRef]
- Olofsson, R.; Mattsson, J.; Lindner, P. Long-term follow-up of 163 consecutive patients treated with isolated limb perfusion for in-transit metastases of malignant melanoma. Int. J. Hyperth. 2013, 29, 551–557. [Google Scholar] [CrossRef]
- Rossi, C.R.; Pasquali, S.; Mocellin, S.; Vecchiato, A.; Campana, L.G.; Pilati, P.; Zanon, A.; Nitti, D. Long-term results of melphalan-based isolated limb perfusion with or without low-dose TNF for in-transit melanoma metastases. Ann. Surg. Oncol. 2010, 17, 3000–3007. [Google Scholar] [CrossRef]
- Wieberdink, J.; Benckhuysen, C.; Braat, R.P.; van Slooten, E.A.; Olthuis, G.A. Dosimetry in isolation perfusion of the limbs by assessment of perfused tissue volume and grading of toxic tissue reactions. Eur. J. Cancer Clin. Oncol. 1982, 18, 905–910. [Google Scholar] [CrossRef]
- Vrouenraets, B.C.; Klaase, J.M.; Kroon, B.B.; van Geel, B.N.; Eggermont, A.M.; Franklin, H.R. Long-term morbidity after regional isolated perfusion with melphalan for melanoma of the limbs. The influence of acute regional toxic reactions. Arch. Surg. 1995, 130, 43–47. [Google Scholar] [CrossRef]
- Carr, M.J.; Sun, J.; Kroon, H.M.; Miura, J.T.; Beasley, G.M.; Farrow, N.E.; Mosca, P.J.; Lowe, M.C.; Farley, C.R.; Kim, Y.; et al. Oncologic Outcomes After Isolated Limb Infusion for Advanced Melanoma: An International Comparison of the Procedure and Outcomes Between the United States and Australia. Ann. Surg. Oncol. 2020, 27, 5107–5118. [Google Scholar] [CrossRef]
- Kuczma, M.; Ding, Z.C.; Zhou, G. Immunostimulatory Effects of Melphalan and Usefulness in Adoptive Cell Therapy with Antitumor CD4+ T Cells. Crit. Rev. Immunol. 2016, 36, 179–191. [Google Scholar] [CrossRef] [PubMed]
- Lindner, P.; Doubrovsky, A.; Kam, P.C.; Thompson, J.F. Prognostic factors after isolated limb infusion with cytotoxic agents for melanoma. Ann. Surg. Oncol. 2002, 9, 127–136. [Google Scholar] [CrossRef] [PubMed]
- Thompson, J.F.; Hunt, J.A.; Shannon, K.F.; Kam, P.C. Frequency and duration of remission after isolated limb perfusion for melanoma. Arch. Surg. 1997, 132, 903–907. [Google Scholar] [CrossRef]
- Kroon, H.M.; Thompson, J.F. Isolated limb infusion: A review. J. Surg. Oncol. 2009, 100, 169–177. [Google Scholar] [CrossRef] [PubMed]
- Kroon, H.M.; Huismans, A.; Waugh, R.C.; Kam, P.C.; Thompson, J.F. Isolated limb infusion: Technical aspects. J. Surg. Oncol. 2014, 109, 352–356. [Google Scholar] [CrossRef]
- Zaffaroni, N.; Villa, R.; Orlandi, L.; Vaglini, M.; Silvestrini, R. Effect of hyperthermia on the formation and removal of DNA interstrand cross-links induced by melphalan in primary cultures of human malignant melanoma. Int. J. Hyperth. 1992, 8, 341–349. [Google Scholar] [CrossRef]
- O’Donoghue, C.; Perez, M.C.; Mullinax, J.E.; Hardman, D.; Sileno, S.; Naqvi, S.M.H.; Kim, Y.; Gonzalez, R.J.; Zager, J.S. Isolated Limb Infusion: A Single-Center Experience with over 200 Infusions. Ann. Surg. Oncol. 2017, 24, 3842–3849. [Google Scholar] [CrossRef]
- Teras, J.; Kroon, H.M.; Miura, J.T.; Kenyon-Smith, T.; Beasley, G.M.; Mullen, D.; Farrow, N.E.; Mosca, P.J.; Lowe, M.C.; Farley, C.R.; et al. International Multicenter Experience of Isolated Limb Infusion for In-Transit Melanoma Metastases in Octogenarian and Nonagenarian Patients. Ann. Surg. Oncol. 2020, 27, 1420–1429. [Google Scholar] [CrossRef]
- Muilenburg, D.J.; Beasley, G.M.; Thompson, Z.J.; Lee, J.H.; Tyler, D.S.; Zager, J.S. Burden of disease predicts response to isolated limb infusion with melphalan and actinomycin D in melanoma. Ann. Surg. Oncol. 2015, 22, 482–488. [Google Scholar] [CrossRef]
- Yarmush, M.L.; Golberg, A.; Sersa, G.; Kotnik, T.; Miklavcic, D. Electroporation-based technologies for medicine: Principles, applications, and challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef] [PubMed]
- Escoffre, J.M.; Rols, M.P. Electrochemotherapy: Progress and prospects. Curr. Pharm. Des. 2012, 18, 3406–3415. [Google Scholar] [CrossRef] [PubMed]
- Poddevin, B.; Orlowski, S.; Belehradek, J., Jr.; Mir, L.M. Very high cytotoxicity of bleomycin introduced into the cytosol of cells in culture. Biochem. Pharmacol. 1991, 42 (Suppl. S1), S67–S75. [Google Scholar] [CrossRef]
- Campana, L.G.; Farronato, S.; Hodgetts, J.; Odili, J.; Vecchiato, A.; Bracken, A.; Baier, S.; Bechara, F.G.; Borgognoni, L.; Caraco, C.; et al. European e-Delphi process to define expert consensus on electrochemotherapy treatment indications, procedural aspects, and quality indicators in melanoma. Br. J. Surg. 2023, 110, 818–830. [Google Scholar] [CrossRef] [PubMed]
- Ferioli, M.; Galuppi, A.; Buwenge, M.; Cammelli, S.; Perrone, A.M.; Macchia, G.; Deodato, F.; Cilla, S.; Zamagni, A.; De Terlizzi, F.; et al. Electrochemotherapy in Kaposi sarcoma: A systematic review. Mol. Clin. Oncol. 2021, 14, 64. [Google Scholar] [CrossRef] [PubMed]
- Kunte, C.; Letule, V.; Gehl, J.; Dahlstroem, K.; Curatolo, P.; Rotunno, R.; Muir, T.; Occhini, A.; Bertino, G.; Powell, B.; et al. Electrochemotherapy in the treatment of metastatic malignant melanoma: A prospective cohort study by InspECT. Br. J. Dermatol. 2017, 176, 1475–1485. [Google Scholar] [CrossRef]
- Galluzzi, L.; Vitale, I.; Aaronson, S.A.; Abrams, J.M.; Adam, D.; Agostinis, P.; Alnemri, E.S.; Altucci, L.; Amelio, I.; Andrews, D.W.; et al. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ. 2018, 25, 486–541. [Google Scholar] [CrossRef]
- Dudek, A.M.; Garg, A.D.; Krysko, D.V.; De Ruysscher, D.; Agostinis, P. Inducers of immunogenic cancer cell death. Cytokine Growth Factor Rev. 2013, 24, 319–333. [Google Scholar] [CrossRef]
- Calvet, C.Y.; Famin, D.; Andre, F.M.; Mir, L.M. Electrochemotherapy with bleomycin induces hallmarks of immunogenic cell death in murine colon cancer cells. Oncoimmunology 2014, 3, e28131. [Google Scholar] [CrossRef]
- Roux, S.; Bernat, C.; Al-Sakere, B.; Ghiringhelli, F.; Opolon, P.; Carpentier, A.F.; Zitvogel, L.; Mir, L.M.; Robert, C. Tumor destruction using electrochemotherapy followed by CpG oligodeoxynucleotide injection induces distant tumor responses. Cancer Immunol. Immunother. 2008, 57, 1291–1300. [Google Scholar] [CrossRef]
- Tremble, L.F.; O’Brien, M.A.; Forde, P.F.; Soden, D.M. ICOS activation in combination with electrochemotherapy generates effective anti-cancer immunological responses in murine models of primary, secondary and metastatic disease. Cancer Lett. 2018, 420, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Gerlini, G.; Sestini, S.; Di Gennaro, P.; Urso, C.; Pimpinelli, N.; Borgognoni, L. Dendritic cells recruitment in melanoma metastasis treated by electrochemotherapy. Clin. Exp. Metastasis 2013, 30, 37–45. [Google Scholar] [CrossRef] [PubMed]
- Di Gennaro, P.; Gerlini, G.; Urso, C.; Sestini, S.; Brandani, P.; Pimpinelli, N.; Borgognoni, L. CD4+FOXP3+ T regulatory cells decrease and CD3+CD8+ T cells recruitment in TILs from melanoma metastases after electrochemotherapy. Clin. Exp. Metastasis 2016, 33, 787–798. [Google Scholar] [CrossRef]
- Mozzillo, N.; Simeone, E.; Benedetto, L.; Curvietto, M.; Giannarelli, D.; Gentilcore, G.; Camerlingo, R.; Capone, M.; Madonna, G.; Festino, L.; et al. Assessing a novel immuno-oncology-based combination therapy: Ipilimumab plus electrochemotherapy. Oncoimmunology 2015, 4, e1008842. [Google Scholar] [CrossRef] [PubMed]
- Heppt, M.V.; Eigentler, T.K.; Kahler, K.C.; Herbst, R.A.; Goppner, D.; Gambichler, T.; Ulrich, J.; Dippel, E.; Loquai, C.; Schell, B.; et al. Immune checkpoint blockade with concurrent electrochemotherapy in advanced melanoma: A retrospective multicenter analysis. Cancer Immunol. Immunother. 2016, 65, 951–959. [Google Scholar] [CrossRef]
- Caraco, C.; Marone, U.; Simeone, E.; Grimaldi, A.M.; Botti, G.; Del Giudice, M.; Ascierto, P.A.; Mozzillo, N. Electrochemotherapy in melanoma patients: A single institution experience. Melanoma Manag. 2015, 2, 127–132. [Google Scholar] [CrossRef]
- Gaudy, C.; Richard, M.A.; Folchetti, G.; Bonerandi, J.J.; Grob, J.J. Randomized controlled study of electrochemotherapy in the local treatment of skin metastases of melanoma. J. Cutan Med. Surg. 2006, 10, 115–121. [Google Scholar] [CrossRef]
- Patinote, C.; Karroum, N.B.; Moarbess, G.; Cirnat, N.; Kassab, I.; Bonnet, P.A.; Deleuze-Masquefa, C. Agonist and antagonist ligands of toll-like receptors 7 and 8: Ingenious tools for therapeutic purposes. Eur. J. Med. Chem. 2020, 193, 112238. [Google Scholar] [CrossRef]
- Johnson, D.B.; Puzanov, I.; Kelley, M.C. Talimogene laherparepvec (T-VEC) for the treatment of advanced melanoma. Immunotherapy 2015, 7, 611–619. [Google Scholar] [CrossRef]
- Ferrucci, P.F.; Pala, L.; Conforti, F.; Cocorocchio, E. Talimogene Laherparepvec (T-VEC): An Intralesional Cancer Immunotherapy for Advanced Melanoma. Cancers 2021, 13, 1383. [Google Scholar] [CrossRef]
- Radny, P.; Caroli, U.M.; Bauer, J.; Paul, T.; Schlegel, C.; Eigentler, T.K.; Weide, B.; Schwarz, M.; Garbe, C. Phase II trial of intralesional therapy with interleukin-2 in soft-tissue melanoma metastases. Br. J. Cancer 2003, 89, 1620–1626. [Google Scholar] [CrossRef] [PubMed]
- Takahara, Y.; Kan, T.; Teshima, Y.; Matsubara, D.; Takahagi, S.; Tanaka, A.; Hide, M. Malignant melanoma with in-transit metastases refractory to programmed cell death-1 inhibitor successfully treated with local interferon-beta injections: A case report. Mol. Clin. Oncol. 2021, 15, 212. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.S. Oncolytic Virus Immunotherapy: Showcasing Impressive Progress in Special Issue II. Biomedicines 2021, 9, 663. [Google Scholar] [CrossRef] [PubMed]
- Kohlhapp, F.J.; Kaufman, H.L. Molecular Pathways: Mechanism of Action for Talimogene Laherparepvec, a New Oncolytic Virus Immunotherapy. Clin. Cancer Res. 2016, 22, 1048–1054. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Hoffner, B.; Gasal, E.; Hong, J.; Carvajal, R.D. Oncolytic immunotherapy: Unlocking the potential of viruses to help target cancer. Cancer Immunol. Immunother. 2017, 66, 1249–1264. [Google Scholar] [CrossRef] [PubMed]
- Andtbacka, R.H.I.; Collichio, F.; Harrington, K.J.; Middleton, M.R.; Downey, G.; Ӧhrling, K.; Kaufman, H.L. Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III-IV melanoma. J. Immunother. Cancer 2019, 7, 145. [Google Scholar] [CrossRef]
- Louie, R.J.; Perez, M.C.; Jajja, M.R.; Sun, J.; Collichio, F.; Delman, K.A.; Lowe, M.; Sarnaik, A.A.; Zager, J.S.; Ollila, D.W. Real-World Outcomes of Talimogene Laherparepvec Therapy: A Multi-Institutional Experience. J. Am. Coll. Surg. 2019, 228, 644–649. [Google Scholar] [CrossRef]
- Franke, V.; Berger, D.M.S.; Klop, W.M.C.; van der Hiel, B.; van de Wiel, B.A.; Ter Meulen, S.; Wouters, M.; van Houdt, W.J.; van Akkooi, A.C.J. High response rates for T-VEC in early metastatic melanoma (stage IIIB/C-IVM1a). Int. J. Cancer 2019, 145, 974–978. [Google Scholar] [CrossRef]
- Perez, M.C.; Miura, J.T.; Naqvi, S.M.H.; Kim, Y.; Holstein, A.; Lee, D.; Sarnaik, A.A.; Zager, J.S. Talimogene Laherparepvec (TVEC) for the Treatment of Advanced Melanoma: A Single-Institution Experience. Ann. Surg. Oncol. 2018, 25, 3960–3965. [Google Scholar] [CrossRef]
- Andtbacka, R.H.; Ross, M.; Puzanov, I.; Milhem, M.; Collichio, F.; Delman, K.A.; Amatruda, T.; Zager, J.S.; Cranmer, L.; Hsueh, E.; et al. Patterns of Clinical Response with Talimogene Laherparepvec (T-VEC) in Patients with Melanoma Treated in the OPTiM Phase III Clinical Trial. Ann. Surg. Oncol. 2016, 23, 4169–4177. [Google Scholar] [CrossRef]
- Zhang, T.; Jou, T.H.; Hsin, J.; Wang, Z.; Huang, K.; Ye, J.; Yin, H.; Xing, Y. Talimogene Laherparepvec (T-VEC): A Review of the Recent Advances in Cancer Therapy. J. Clin. Med. 2023, 12, 1098. [Google Scholar] [CrossRef]
- Hackstein, H.; Hagel, N.; Knoche, A.; Kranz, S.; Lohmeyer, J.; von Wulffen, W.; Kershaw, O.; Gruber, A.D.; Bein, G.; Baal, N. Skin TLR7 triggering promotes accumulation of respiratory dendritic cells and natural killer cells. PLoS ONE 2012, 7, e43320. [Google Scholar] [CrossRef]
- Hanna, E.; Abadi, R.; Abbas, O. Imiquimod in dermatology: An overview. Int. J. Dermatol. 2016, 55, 831–844. [Google Scholar] [CrossRef]
- Sisti, A.; Sisti, G.; Oranges, C.M. Topical treatment of melanoma skin metastases with imiquimod: A review. Dermatol. Online J. 2015, 21. [Google Scholar] [CrossRef]
- Green, D.S.; Bodman-Smith, M.D.; Dalgleish, A.G.; Fischer, M.D. Phase I/II study of topical imiquimod and intralesional interleukin-2 in the treatment of accessible metastases in malignant melanoma. Br. J. Dermatol. 2007, 156, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Shi, V.Y.; Tran, K.; Patel, F.; Leventhal, J.; Konia, T.; Fung, M.A.; Wilken, R.; Garcia, M.S.; Fitzmaurice, S.D.; Joo, J.; et al. 100% Complete response rate in patients with cutaneous metastatic melanoma treated with intralesional interleukin (IL)-2, imiquimod, and topical retinoid combination therapy: Results of a case series. J. Am. Acad. Dermatol. 2015, 73, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Tolosa, N.; Ortiz-Brugues, A.; Toledo-Pastrana, T.; Baradad, M.; Traves, V.; Soriano, V.; Sanmartin, V.; Requena, C.; Marti, R.; Nagore, E. Local cryosurgery and imiquimod: A successful combination for the treatment of locoregional cutaneous metastasis of melanoma: A case series. J. Dermatol. 2016, 43, 553–556. [Google Scholar] [CrossRef]
- Teulings, H.E.; Tjin, E.P.M.; Willemsen, K.J.; van der Kleij, S.; Ter Meulen, S.; Kemp, E.H.; Krebbers, G.; van Noesel, C.J.M.; Franken, C.; Drijfhout, J.W.; et al. Anti-Melanoma immunity and local regression of cutaneous metastases in melanoma patients treated with monobenzone and imiquimod; a phase 2 a trial. Oncoimmunology 2018, 7, e1419113. [Google Scholar] [CrossRef]
- Scarfi, F.; Patrizi, A.; Veronesi, G.; Lambertini, M.; Tartari, F.; Mussi, M.; Melotti, B.; Dika, E. The role of topical imiquimod in melanoma cutaneous metastases: A critical review of the literature. Dermatol. Ther. 2020, 33, e14165. [Google Scholar] [CrossRef]
- Goette, D.K. Topical chemotherapy with 5-fluorouracil. A review. J. Am. Acad. Dermatol. 1981, 4, 633–649. [Google Scholar] [CrossRef]
- Florin, V.; Desmedt, E.; Vercambre-Darras, S.; Mortier, L. Topical treatment of cutaneous metastases of malignant melanoma using combined imiquimod and 5-fluorouracil. Investig. New Drugs 2012, 30, 1641–1645. [Google Scholar] [CrossRef]
- Friedmann, P.S.; Haddadeen, C.; Lai, C.; Healy, E. In vitro human T cell responses to diphencyprone. Contact Dermat. 2017, 76, 251–253. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, I.L.; Sonagli, M.; Bertolli, E.; Macedo, M.P.; Pinto, C.A.L.; Duprat Neto, J.P. Diphencyprone as a therapeutic option in cutaneous metastasis of melanoma. A single-institution experience. An. Bras. Dermatol. 2018, 93, 299–301. [Google Scholar] [CrossRef] [PubMed]
- Damian, D.L.; Saw, R.P.; Thompson, J.F. Topical immunotherapy with diphencyprone for in transit and cutaneously metastatic melanoma. J. Surg. Oncol. 2014, 109, 308–313. [Google Scholar] [CrossRef] [PubMed]
- Gulati, N.; Carvajal, R.D.; Postow, M.A.; Wolchok, J.D.; Krueger, J.G. Definite regression of cutaneous melanoma metastases upon addition of topical contact sensitizer diphencyprone to immune checkpoint inhibitor treatment. Exp. Dermatol. 2016, 25, 553–554. [Google Scholar] [CrossRef]
- Fujimura, T.; Furudate, S.; Kakizaki, A.; Kambayashi, Y.; Haga, T.; Hashimoto, A.; Aiba, S. Contact immunotherapy enhances the therapeutic effects of nivolumab in treating in-transit melanoma: Two cases reports. J. Dermatol. 2016, 43, 686–689. [Google Scholar] [CrossRef]
- Nan Tie, E.; Lai-Kwon, J.; Rtshiladze, M.A.; Na, L.; Bozzi, J.; Read, T.; Atkinson, V.; Au-Yeung, G.; Long, G.V.; McArthur, G.A.; et al. Efficacy of immune checkpoint inhibitors for in-transit melanoma. J. Immunother. Cancer 2020, 8, e000440. [Google Scholar] [CrossRef]
- Holmberg, C.J.; Ny, L.; Hieken, T.J.; Block, M.S.; Carr, M.J.; Sondak, V.K.; Ortenwall, C.; Katsarelias, D.; Dimitriou, F.; Menzies, A.M.; et al. The efficacy of immune checkpoint blockade for melanoma in-transit with or without nodal metastases—A multicenter cohort study. Eur. J. Cancer 2022, 169, 210–222. [Google Scholar] [CrossRef]
|
|
|
|
|
|
Homogeneous pattern | Diffuse pigmentation red, brown, gray, or grayish black |
Saccular pattern | Oval junctional nests containing atypical melanocytic cells |
Amelanotic pattern | Dermal localization and lack of pigment |
Vascular pattern | Punctate vessels in thin lesions and corkscrew vessels in thick ones |
Polymorphic pattern | Chaotic structures and vessels |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Raimondo, C.; Lozzi, F.; Di Domenico, P.P.; Campione, E.; Bianchi, L. The Diagnosis and Management of Cutaneous Metastases from Melanoma. Int. J. Mol. Sci. 2023, 24, 14535. https://doi.org/10.3390/ijms241914535
Di Raimondo C, Lozzi F, Di Domenico PP, Campione E, Bianchi L. The Diagnosis and Management of Cutaneous Metastases from Melanoma. International Journal of Molecular Sciences. 2023; 24(19):14535. https://doi.org/10.3390/ijms241914535
Chicago/Turabian StyleDi Raimondo, Cosimo, Flavia Lozzi, Pier Paolo Di Domenico, Elena Campione, and Luca Bianchi. 2023. "The Diagnosis and Management of Cutaneous Metastases from Melanoma" International Journal of Molecular Sciences 24, no. 19: 14535. https://doi.org/10.3390/ijms241914535
APA StyleDi Raimondo, C., Lozzi, F., Di Domenico, P. P., Campione, E., & Bianchi, L. (2023). The Diagnosis and Management of Cutaneous Metastases from Melanoma. International Journal of Molecular Sciences, 24(19), 14535. https://doi.org/10.3390/ijms241914535