Remodeling of Cardiomyocytes: Study of Morphological Cellular Changes Preceding Symptomatic Ischemic Heart Failure
Abstract
:1. Introduction
2. Results
2.1. Histomorphometric Analysis of Cardiomyocytes
2.2. Immunohistochemical Analysis of Desmin Expression in Cardiomyocytes
3. Discussion
4. Materials and Methods
4.1. Study Design and Groups
- Stage A of HF (At risk for HF group)—patients who died suddenly within 1 h after the first clinical symptoms of myocardial infarction (MI) in the witnessed cases or within 24 h of last being seen alive in the unwitnessed cases [44,45]; no previous symptoms of HF were reported, no scars after MI were detected during the morphological tissue inspection, the acute ischemic injuries were up to 6 h [46], HF was diagnosed as being A stage according to the American College of Cardiology (ACC)/American Heart Association (AHA) classification [43], and an extensive morphological examination of the heart was performed during this postmortem procedure (n = 26);
- Stage B of HF (Pre-HF group)—patients who died suddenly due to the cardiovascular complications associated with the ischemic heart injury within 1 h after the first clinical symptoms in the witnessed cases or within 24 h of last being seen alive in the unwitnessed cases [44,45]; no previous symptoms of HF were reported, but a scar after MI was detected in the postmortem morphological inspection of the heart, HF was classified as B stage according to the ACC/AHA classification [43], and the extensive morphological examination of the heart was performed during this postmortem procedure (n = 25);
- Stages C/D of HF (Symptomatic/Advanced HF group)—patients who were diagnosed with symptomatic ischemic HF classified as C or D stage according to ACC/AHA classification [43], a heart transplantation procedure was performed for them, and an extensive morphological examination of surgical material after the failing heart procedure was carried out (n = 33).
4.2. Histomorphometric Analysis of Cardiomyocytes
4.3. Semi-Quantitative Immunohistochemical Analysis of Desmin Expression in Cardiomyocytes
4.4. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tromp, J.; Ferreira, J.P.; Janwanishstaporn, S.; Shah, M.; Greenberg, B.; Zannad, F.; Lam, C.S. Heart failure around the world. Eur. J. Heart Fail. 2019, 21, 1187–1196. [Google Scholar] [CrossRef] [PubMed]
- Stretti, L.; Zippo, D.; Coats, A.J.; Anker, M.S.; von Haehling, S.; Metra, M.; Tomasoni, D. A year in heart failure: An update of recent findings. ESC Heart Fail. 2021, 8, 4370–4393. [Google Scholar] [CrossRef] [PubMed]
- Ide, T.; Kaku, H.; Matsushima, S.; Tohyama, T.; Enzan, N.; Funakoshi, K.; Sumita, Y.; Nakai, M.; Nishimura, K.; Miyamoto, Y.; et al. Clinical characteristics and outcomes of hospitalized patients with heart failure from the large-scale Japanese registry of acute decompensated heart failure (JROADHF). Circ. J. 2021, 85, 1438–1450. [Google Scholar] [CrossRef]
- Seferović, P.M.; Jankowska, E.; Coats, A.J.; Maggioni, A.P.; Lopatin, Y.; Milinković, I.; Polovina, M.; Lainščak, M.; Timmis, A.; Huculeci, R.; et al. The heart failure association atlas: Rationale, objectives, and methods. Eur. J. Heart Fail. 2020, 22, 638–645. [Google Scholar] [CrossRef] [PubMed]
- Frantz, S.; Hundertmark, M.J.; Schulz-Menger, J.; Bengel, F.M.; Bauersachs, J. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies. Eur. Heart J. 2022, 43, 2549–2561. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Bolli, R.; Garry, D.J.; Marbán, E.; Menasché, P.; Zimmermann, W.-H.; Kamp, T.J.; Wu, J.C.; Dzau, V.J. Basic and translational research in cardiac repair and regeneration. JACC 2021, 78, 2092–2105. [Google Scholar] [CrossRef]
- De Ponti, F.F.; Scott, C.L. In matters of the heart, (cellular) communication is key. Immunity 2021, 54, 1906–1908. [Google Scholar] [CrossRef]
- Nomura, S.; Satoh, M.; Fujita, T.; Higo, T.; Sumida, T.; Ko, T.; Yamaguchi, Y.; Tobita, T.; Naito, A.T.; Ito, M.; et al. Cardiomyocyte gene programs encoding morphological and functional signatures in cardiac hypertrophy and failure. Nat. Commun. 2018, 9, 4435. [Google Scholar] [CrossRef]
- Kologrivova, I.; Shtatolkina, M.; Suslova, T.; Ryabov, V. Cells of the immune system in cardiac remodeling: Main players in resolution of inflammation and repair after myocardial infarction. Front. Immunol. 2021, 12, 664457. [Google Scholar] [CrossRef]
- Brasoveanu, A.-M.; Mogoanta, L.; Malaescu, G.D.; Predescu, O.I.; Cotoi, B.-V.; Chen, F.I. Hypertensive cardiomyopathy—Histopathological and immunohistochemical aspects. Rom. J. Morphol. Embryol. 2019, 60, 487–494. [Google Scholar]
- Guichard, J.L.; Rogowski, M.; Agnetti, G.; Fu, L.; Powell, P.; Wei, C.-C.; Collawn, J.; Dell’Italia, L.J. Desmin loss and mitochondrial damage precede left ventricular systolic failure in volume overload heart failure. Am. J. Physiol. 2017, 313, H32–H45. [Google Scholar] [CrossRef] [PubMed]
- Hein, S.; Kostin, S.; Heling, A.; Maeno, Y.; Schaper, J. The role of the cytoskeleton in heart failure. Cardiovasc. Res. 2000, 45, 273–278. [Google Scholar] [CrossRef] [PubMed]
- Tsikitis, M.; Galata, M.; Mavroidis, M.; Psarras, S.; Capetanaki, Y. Intermediate filaments in cardiomyopathy. Biophys. Rev. 2018, 10, 1007–1031. [Google Scholar] [CrossRef]
- Mewton, N.; Croisille, P.; Revel, D.; Weber, O.; Higgins, C.; Saeed, M. Left ventricular postmyocardial infarction remodeling studied by combining MR-Tagging with delayed MR Contrast Enhancement. Investig. Radiol. 2008, 43, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, A.M. How to improve the overall quality of cardiac morphometric data. Am. J. Physiol. Heart Circ. Physiol. 2015, 309, H9–H14. [Google Scholar] [CrossRef]
- Chen, C.Y.; Caporizzo, M.A.; Bedi, K.; Vite, A.; Bogush, A.I.; Robison, P.; Heffler, J.G.; Salomon, A.K.; Kelly, N.A.; Babu, A.; et al. Supression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat. Med. 2018, 24, 1225–1233. [Google Scholar] [CrossRef]
- Tracy, E.; Rowe, G.; LeBlanc, A.J. Cardiac tissue remodeling in healthy aging: The road to pathology. Am. J. Physiol. Cell Physiol. 2020, 319, C166–C182. [Google Scholar] [CrossRef]
- Kehat, I.; Molkentin, J.D. Molecular pathways underlying cardiac remodeling during pathophysiological stimulation. Circulation 2010, 122, 2727–2735. [Google Scholar] [CrossRef]
- Nicol, R.L.; Frey, N.; Pearson, G.; Cobb, M.; Richardson, J.; Olson, E.N. Activated MEK5 induces serial assembly of sarcomeres and eccentric cardiac hypertrophy. EMBO J. 2001, 11, 2757–2767. [Google Scholar] [CrossRef]
- Mühlfeld, C.; Rajces, A.; Manninger, M.; Alogna, A.; Wierich, M.C.; Scherr, D.; Post, H.; Schipke, J. A transmural gradient of myocardial remodeling in early-stage heart failure with preserved ejection fraction in the pig. J. Anat. 2020, 236, 531–539. [Google Scholar] [CrossRef]
- Vigliano, C.A.; Cabeza Meckert, P.M.; Diez, M.; Favaloro, L.E.; Cortés, C.; Fazzi, L.; Favaloro, R.R.; Laguens, R.P. Cardiomyocyte hypertrophy, oncosis, and autophagic vacuolization predict mortality in idiopathic dilated cardiomyopathy with advanced heart failure. J. Am. Coll. Cardiol. 2011, 57, 1523–1531. [Google Scholar] [CrossRef] [PubMed]
- Bogaert, J.; Bosmans, H.; Maes, A.; Suetens, P.; Marchal, G.; Rademakers, F.E. Remote myocardial dysfunction after acute anterior myocardial infarction: Impact of left ventricular shape on regional function. J. Am. Coll. Cardiol. 2000, 35, 1525–1534. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Onodera, T.; Said, S.; Gerdes, A.M. Correlation of myocyte lengthening to chamber dilation in the spontaneously hypertensive heart failure (SHHF) rat. JMCC 1998, 30, 2175–2181. [Google Scholar] [CrossRef] [PubMed]
- Janczewski, A.M.; Kadokami, T.; Lemster, B.; Frye, C.S.; McTiernan, C.F.; Feldman, A. Morphological and functional changes in cardiac myocytes from mice overexpressing TNFα. Am. J. Physiol. Heart Circ. Physiol. 2002, 284, H960–H969. [Google Scholar] [CrossRef]
- Zhang, Y.; Chan, A.K.; Yu, C.-M.; Lam, W.W.; Yip, G.W.; Fung, W.-H.; So, N.M.; Wang, M.; Sanderson, J.E. Left ventricular systolic asynchrony after acute myocardial infarction in patients with narrow QRS complexes. Am. Heart J. 2005, 149, 497–503. [Google Scholar] [CrossRef]
- Tsuda, T. Clinical assessment of ventricular wall stress in understanding compensatory hypertrophic response and maladaptive ventricular remodeling. J. Cardiovasc Dev. Dis. 2021, 8, 122. [Google Scholar] [CrossRef]
- Canty, J.M., Jr. Myocardial injury, troponin release, and cardiomyocyte death in brief ischemia, failure, and ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 2022, 323, H1–H5. [Google Scholar] [CrossRef]
- Del Buono, M.G.; Moroni, F.; Montone, R.A.; Azzalini, L.; Sanna, T.; Abbate, A. Ischemic cardiomyopathy and heart failure after acute myocardial infarction. Curr. Cardiol. Rep. 2022, 24, 1505–1515. [Google Scholar] [CrossRef]
- Schwinger, R.H.G. Pathophysiology of heart failure. Cardiovasc. Diagn. Ther. 2021, 11, 263–276. [Google Scholar] [CrossRef]
- Tsutsui, H.; Ishihara, K.; Cooper, G., IV. Cytoskeletal role in the contractile dysfunction of hypertrophied myocardium. Science 1993, 260, 682–687. [Google Scholar] [CrossRef]
- Tagawa, H.; Koide, M.; Sato, H.; Zile, M.R.; Carabello, B.A.; Cooper, G., IV. Cytoskeletal role in the transition from compensated to decompensated hypertrophy during adult canine left ventricular pressure overloading. Circ. Res. 1998, 82, 751–761. [Google Scholar] [CrossRef] [PubMed]
- Ishibashi, Y.; Tsutsui, H.; Yamamoto, S.; Takahashi, M.; Imanaka-Yoshida, K.; Yoshida, T.; Urabe, Y.; Sugimachi, M.; Takeshita, A. Role of microtubules in myocyte contractile dysfunction during cardiac hypertrophy in rat. Am. J. Physiol. 1996, 271 Pt 2, H1978–H1987. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.R.; Kadioglu, H.; Patel, K.; Carrier, L.; Agnetti, G. Is desmin propensity to aggregate part of its protective function? Cells 2020, 9, 491. [Google Scholar] [CrossRef] [PubMed]
- Milner, D.J.; Taffet, G.E.; Wang, X.; Pham, T.; Tamura, T.; Hartley, C.; Gerdes, M.A.; Capetanaki, Y. The absence of desmin leads to cardiomyocyte hypertrophy and cardiac dilation with compromised systolic function. J. Mol. Cell. Cardiol. 1999, 31, 2063–2076. [Google Scholar] [CrossRef]
- Heffler, J.; Shah, P.P.; Robison, P.; Phyo, S.; Veliz, K.; Uchida, K.; Bogush, A.; Rhoades, J.; Jain, R.; Prosser, B.L. A balance between intermediate filaments and microtubules maintains nuclear architecture in the cardiomyocyte. Circ. Res. 2020, 126, e10–e26. [Google Scholar] [CrossRef]
- Corbett, J.M.; Why, H.J.; Wheeler, C.H.; Richardson, P.J.; Archard, L.C.; Yacoub, M.H.; Dunn, M.J. Cardiac protein abnormalities in dilated cardiomyopathy detected by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis 2005, 19, 2031–2042. [Google Scholar] [CrossRef]
- Pawlak, A.; Gil, R.J.; Kulawik, T.; Pronicki, M.; Karkucińska-Więckowska, A.; Szymańska-Dębińska, T.; Gil, K.; Lagwinski, N.; Czarnowska, E. Type of desmin expression in cardiomyocytes—A good marker of heart failure development in idiopathic dilated cardiomyopathy. J. Intern. Med. 2012, 272, 287–297. [Google Scholar] [CrossRef]
- Bouvet, M.; Dubois-Deruy, E.; Turkieh, A.; Mulder, P.; Peugnet, V.; Chwastyniak, M.; Beseme, O.; Dechaumes, A.; Amouyel, P.; Richard, V.; et al. Desmin aggrephagy in rat and human ischemic heart failure through PKCς and GSK3β as upstream signalling pathways. Cell Death Discov. 2021, 7, 153. [Google Scholar] [CrossRef]
- Brodehl, A.; Gaertner-Rommel, A.; Milting, H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys. Rev. 2018, 10, 983–1006. [Google Scholar] [CrossRef]
- Osborn, M.; Goebel, H.H. The cytoplasmic bodies in a congenital myopathy can be stained with antibodies to desmin, the muscle-specific intermediate filament protein. Acta Neuropath. 1983, 62, 149–152. [Google Scholar] [CrossRef]
- del Monte, F.; Agnetti, G. Protein post-translational modifications and misfolding: New concepts in heart failure. Proteomics 2014, 8, 534–542. [Google Scholar] [CrossRef] [PubMed]
- Leone, O.; Veinot, J.P.; Angelini, A.; Baandrup, U.T.; Basso, C.; Berry, G.; Bruneval, P.; Burke, M.; Butany, J.; Calabrese, F.; et al. 2011 Consensus statement on endomyocardial biopsy from the Association for European Cardiovascular Pathology and the Society for Cardiovascular Pathology. Cardiovasc. Pathol. 2012, 21, 245–274. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, P.A.; Bozkurt, B.; Aguilar, D.; Allen, L.A.; Byun, J.J.; Colvin, M.M.; Deswal, A.; Drazner, M.H.; Dunlay, S.M.; Evers, L.R.; et al. 2022 AHA/ACC/HFSA Guideline for the management of heart failure: A report of the American College of Cardiology/American Heart Association Joint Committee on clinical practice guidelines. Circulation 2022, 145, e895–e1032. [Google Scholar] [CrossRef] [PubMed]
- WHO Scientific Group on Sudden Cardiac Death & World Health Organization. Sudden Cardiac Death: Report of a WHO Scientific Group [Meeting Held in Geneva from 24 to 27 October 1984]; World Health Organization: Geneva, Switzerland, 1985; Available online: https://apps.who.int/iris/handle/10665/39554 (accessed on 8 August 2023).
- Zeppenfeld, K.; Tfelt-Hansen, J.; de Riva, M.; Winkel, B.G.; Behr, E.R.; Blom, N.A.; Charron, P.; Corrado, D.; Dagres, N.; de Chillou, C.; et al. 2022 ESC Guidelines for the management of patients with ventricular arrythmias and the prevention of sudden cardiac death. Eur. Heart J. 2022, 43, 3997–4126. [Google Scholar] [CrossRef]
- Michaud, K.; Basso, C.; D’amati, G.; Giordano, C.; Kholová, I.; Preston, S.D.; Rizzo, S.; Sabatasso, S.; Sheppard, M.N.; Vink, A.; et al. Diagnosis of myocardial infarction at autopsy: AECVP reappraisal in the light of the current clinical classification. Virchows Arch. 2019, 476, 179–194. [Google Scholar] [CrossRef]
Parameter | Control Group | Stage A of the HF Group | Stage B of the HF Group | Stages C/D of the HF Group |
---|---|---|---|---|
Number of the representative cardiomyocytes | 1929 | 2080 | 1992 | 2637 |
Mean length (SE), µm | 61.82 (0.34) | 72.23 * (0.32) | 78.86 *,** (0.33) | 103.28 *,**,*** (0.29) |
95% CI of length, µm | 61.16–62.47 | 71.59–72.86 | 78.21–79.50 | 102.71–103.83 |
Mean diameter (SE), µm | 11.73 (0.06) | 14.34 * (0.05) | 15.19 *,** (0.05) | 18.92 *,**,*** (0.05) |
95% CI of diameter, µm | 11.62–11.84 | 14.23–14.45 | 15.08–15.30 | 18.83–19.02 |
Mean volume (SE), µm3 | 7271 (201) | 12,320 * (193) | 15,170 *,** (197) | 31,433 *,**,*** (172) |
95% CI of volume, µm3 | 6877–7666 | 11,941–12,699 | 14,783–15,557 | 31,096–31,769 |
Mean cellular length–diameter ratio (SE) | 5.392 (0.025) | 5.137 * (0.024) | 5.301 #,** (0.025) | 5.583 *,**,*** (0.022) |
95% CI of cellular length–diameter ratio | 5.343–5.442 | 5.090–5.185 | 5.252–5.349 | 5.541–5.625 |
Control Group | Stage A of the HF Group | Stage B of the HF Group | Stages C/D of the HF Group | |
---|---|---|---|---|
Number of cases | 25 | 26 | 25 | 33 |
Mean age (SD), years | 50.5 (8.7) | 54.4 (8.6) | 54.4 (7.4) | 56.8 (7.5) |
Sex | Male | Male | Male | Male |
Cardiovascular disease of ischemic origin | No | Yes | Yes | Yes |
Previous clinical symptoms of HF | No | No | No | Yes |
Stage of HF according to ACC/AHA * | Not applied | At-Risk for HF | Pre-HF | Symptomatic HF |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuprytė, M.; Lesauskaitė, V.; Keturakis, V.; Bunevičienė, V.; Utkienė, L.; Jusienė, L.; Pangonytė, D. Remodeling of Cardiomyocytes: Study of Morphological Cellular Changes Preceding Symptomatic Ischemic Heart Failure. Int. J. Mol. Sci. 2023, 24, 14557. https://doi.org/10.3390/ijms241914557
Kuprytė M, Lesauskaitė V, Keturakis V, Bunevičienė V, Utkienė L, Jusienė L, Pangonytė D. Remodeling of Cardiomyocytes: Study of Morphological Cellular Changes Preceding Symptomatic Ischemic Heart Failure. International Journal of Molecular Sciences. 2023; 24(19):14557. https://doi.org/10.3390/ijms241914557
Chicago/Turabian StyleKuprytė, Milda, Vaiva Lesauskaitė, Vytenis Keturakis, Vitalija Bunevičienė, Lina Utkienė, Lina Jusienė, and Dalia Pangonytė. 2023. "Remodeling of Cardiomyocytes: Study of Morphological Cellular Changes Preceding Symptomatic Ischemic Heart Failure" International Journal of Molecular Sciences 24, no. 19: 14557. https://doi.org/10.3390/ijms241914557
APA StyleKuprytė, M., Lesauskaitė, V., Keturakis, V., Bunevičienė, V., Utkienė, L., Jusienė, L., & Pangonytė, D. (2023). Remodeling of Cardiomyocytes: Study of Morphological Cellular Changes Preceding Symptomatic Ischemic Heart Failure. International Journal of Molecular Sciences, 24(19), 14557. https://doi.org/10.3390/ijms241914557