Incorporating Ceragenins into Coatings Protects Peripherally Inserted Central Catheter Lines against Pathogen Colonization for Multiple Weeks
Abstract
:1. Introduction
2. Results
2.1. CSA-131NDSA Can Be Stably Integrated into Polyurethane Coatings
2.2. Multi-Layer Coatings Can Control Total CSA-131 and Elution
2.3. Polyurethane Coating Has Consistent, Distinct Layers Fully Covering the PICC Line Surface
2.4. Coated PICC Lines Reduce Planktonic Growth of Bacterial and Fungal Pathogens
2.5. Coated PICC Lines Prevent Biofilm Formation
2.6. Coated PICC Lines Retain Partial Efficacy against Pathogens in High-Protein Environments
3. Discussion
4. Materials and Methods
4.1. Preparation of PICC Line Segments
4.2. Microbial Cultures
4.3. Total Extraction and Elution of CSA-131
4.4. Pathogenic Challenge with Quantification of Planktonic Growth
4.5. Coatings Cross-Section Preparation
4.6. Sample Preparation for Surface Study via Scanning Electron Microscopy
4.7. Quantification of Biofilm Growth
5. Conclusions, Limitations, and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- WHO Launches FIRST Ever Global Report on Infection Prevention and Control. Available online: https://www.who.int/news/item/06-05-2022-who-launches-first-ever-global-report-on-infection-prevention-and-control (accessed on 10 July 2023).
- Lastinger, L.M.; Alvarez, C.R.; Kofman, A.; Konnor, R.Y.; Kuhar, D.T.; Nkwata, A.; Patel, P.R.; Pattabiraman, V.; Xu, S.Y.; Dudeck, M.A. Continued Increases in the Incidence of Healthcare-Associated Infection (HAI) during the Second Year of the Coronavirus Disease 2019 (COVID-19) Pandemic. Infect. Control Hosp. Epidemiol. 2023, 44, 997–1001. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Wang, W.; Arshad, M.I.; Khurshid, M.; Muzammil, S.; Rasool, M.H.; Nisar, M.A.; Alvi, R.F.; Aslam, M.A.; Qamar, M.U.; et al. Antibiotic Resistance: A rundown of a global crisis. Infect. Drug. Resist. 2018, 11, 1645–1658. [Google Scholar] [CrossRef] [PubMed]
- Denissen, J.; Reyneke, B.; Waso-Reyneke, M.; Havenga, B.; Barnard, T.; Khan, S.; Khan, W. Prevalence of ESKAPE Pathogens in the Environment: Antibiotic Resistance Status, Community-Acquired Infection and Risk to Human Health. Int. J. Hyg. Environ. Health 2022, 244, 114006. [Google Scholar] [CrossRef] [PubMed]
- Pitiriga, V.; Bakalis, J.; Theodoridou, K.; Kanellopoulos, P.; Saroglou, G.; Tsakris, A. Lower Risk of Bloodstream Infections for Peripherally Inserted Central Catheters Compared to Central Venous Catheters in Critically Ill Patients. Antimicrob. Resist. Infect. Control 2022, 11, 137. [Google Scholar] [CrossRef]
- Yan, P.R.; Chi, H.; Chiu, N.C.; Huang, C.Y.; Huang, D.T.N.; Chang, L.; Kung, Y.H.; Huang, F.Y.; Hsu, C.H.; Chang, J.H.; et al. Reducing Catheter Related Bloodstream Infection Risk of Infant with a Prophylactic Antibiotic Therapy before Removing Peripherally Inserted Central Catheter: A Retrospective Study. J. Microbiol. Immunol. 2022, 55, 1318–1325. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Fan, L.; Pan, H.; Li, Y.; Zhao, X.; Qiu, Y.; Lu, Y. Identification and Characterization of a Novel Cathelicidin from Hydrophis Cyanocinctus with Antimicrobial and Anti-Inflammatory Activity. Molecules 2023, 28, 2082. [Google Scholar] [CrossRef]
- Lazzaro, B.P.; Zasloff, M.; Rolff, J. Antimicrobial peptides: Application informed by evolution. Science 2020, 368, eaau5480. [Google Scholar] [CrossRef]
- Fosgerau, K.; Hoffmann, T. Peptide therapeutics: Current status and future directions. Drug. Discov. Today 2015, 20, 122–128. [Google Scholar] [CrossRef]
- Ozbek-Celik, B.; Damar-Celik, D.; Mataraci-Kara, E.; Bozkurt-Guzel, C.; Savage, P.B. Comparative in Vitro Activities of First and Second-Generation Ceragenins Alone and in Combination with Antibiotics against Multidrug-Resistant Klebsiella pneumoniae Strains. Antibiotics 2019, 8, 130. [Google Scholar] [CrossRef]
- Bozkurt, G.Ç.; Avci, N.M.; Savage, P. In Vitro Activities of the Cationic Steroid Antibiotics CSA-13, CSA-131, CSA-138, CSA-142, and CSA-192 against Carbapenem-Resistant Pseudomonas aeruginosa. Turk. J. Pharm. Sci. 2020, 17, 63–67. [Google Scholar] [CrossRef]
- Hashemi, M.M.; Holden, B.S.; Coburn, J.; Taylor, M.F.; Weber, S.; Hilton, B.; Zaugg, A.L.; McEwan, C.; Carson, R.; Andersen, J.L.; et al. Proteomic Analysis of Resistance of Gram-Negative Bacteria to Chlorhexidine and Impacts on Susceptibility to Colistin, Antimicrobial Peptides, and Ceragenins. Front. Microbiol. 2019, 10, 210. [Google Scholar] [CrossRef] [PubMed]
- Raad, I.; Mohamed, J.A.; Reitzel, R.A.; Jiang, Y.; Raad, S.; Shuaibi, M.A.; Chaftari, A.M.; Hachem, R.Y. Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob. Agents Chemother. 2012, 56, 935–941. [Google Scholar] [CrossRef]
- Jamal, M.A.; Rosenblatt, J.S.; Hachem, R.Y.; Ying, J.; Pravinkumar, E.; Nates, J.L.; Chaftari, A.M.P.; Raad, I.I. Prevention of biofilm colonization by gram-negative bacteria on minocycline-rifampin-impregnated catheters sequentially coated with chlorhexidine. Antimicrob. Agents Chemother. 2014, 58, 1179–1182. [Google Scholar] [CrossRef] [PubMed]
- Casey, A.L.; Mermel, L.A.; Nightengale, P.; Elliott, T.S.J. Antimicrobial central venous catheters in adults: A systematic review and meta-analysis. Lancet Infect. Dis. 2008, 8, 763–776. [Google Scholar] [CrossRef]
- Tobin, E.J. Recent Coating Developments for Combination Devices in Orthopedic and Dental Applications: A Literature Review. Adv. Drug Delivery Rev. 2017, 112, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Hashemi, M.M.; Rovig, J.; Bateman, J.; Holden, B.S.; Modzelewski, T.; Gueorguieva, I.; von Dyck, M.; Bracken, R.; Genberg, C.; Deng, S.; et al. Preclinical testing of a broad-spectrum antimicrobial endotracheal tube coated with an innate immune synthetic mimic. Antimicrob. Chemother. 2018, 73, 143–150. [Google Scholar] [CrossRef] [PubMed]
- Duwadi, S.; Zhao, Q.; Budal, B.S. Peripherally inserted central catheters in critically ill patients—Complications and its prevention: A review. Int. J. Nurs. Sci. 2018, 6, 99–105. [Google Scholar] [CrossRef]
- Singha, P.; Locklin, J.; Handa, H. A Review of the Recent Advances in Antimicrobial Coatings for Urinary Catheters. Acta Biomaterialia 2017, 50, 20–40. [Google Scholar] [CrossRef]
- Zhang, S.; Sun, X.; Lei, Y. The microbiological characteristics and risk factors for PICC-related bloodstream infections in intensive care unit. Sci. Rep. 2017, 7, 15074. [Google Scholar] [CrossRef]
- Chopra, V.; Ratz, D.; Kuhn, L.; Lopus, T.; Chenoweth, C.; Krein, S. PICC-associated bloodstream infections: Prevalence, patterns, and predictors. Am. J. Med. 2014, 127, 319–328. [Google Scholar] [CrossRef]
- WHO Publishes List of Bacteria for Which New Antibiotics Are Urgently Needed. Available online: https://www.who.int/news/item/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed (accessed on 5 May 2023).
- WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action. Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 5 May 2023).
- Hernández-Jiménez, E.; del Campo, R.; Toledano, V.; Vallejo-Cremades, M.T.; Muñoz, A.; Largo, C.; Arnalich, F.; García-Rio, F.; Cubillos-Zapata, C.; López-Collazo, E. Biofilm vs. planktonic bacterial mode of growth: Which do human macrophages prefer? Biochem. Biophys. Res. Commun. 2013, 441, 947–952. [Google Scholar] [CrossRef] [PubMed]
- Trubenová, B.; Roizman, D.; Moter, A.; Rolff, J.; Regoes, R.R. Population genetics, biofilm recalcitrance, and antibiotic resistance evolution. Trends Microbiol. 2022, 30, 841–852. [Google Scholar] [CrossRef] [PubMed]
- Bollen, C.; Dewachter, L.; Michiels, J. Protein Aggregation as a Bacterial Strategy to Survive Antibiotic Treatment. Front. Mol. Biosci. 2021, 8, 669664. [Google Scholar] [CrossRef] [PubMed]
- Bowler, P.; Murphy, C.; Wolcott, R. Biofilm exacerbates antibiotic resistance: Is this a current oversight in antimicrobial stewardship? Antimicrob. Resist. Infect. Control 2020, 9, 162. [Google Scholar] [CrossRef]
- Kojima, S.; Nikaido, H. Permeation rates of penicillins indicate Escherichia coli porins function principally as sonspecific channels. Proc. Natl. Acad. Sci. USA 2013, 110, E2629–E2634. [Google Scholar] [CrossRef]
- Soltes, G.R.; Martin, N.R.; Park, E.; Sutterlin, H.A.; Silhavy, T.J. Distinctive Roles for Periplasmic Proteases in the Maintenance of Essential Outer Membrane Protein Assembly. J. Bacteriol. 2017, 199, e00418-17. [Google Scholar] [CrossRef]
- Hancock, R.E.W. On the Mechanism of Solute Uptake in Pseudomonas. Front. Biosci. 2003, 8, 472–483. [Google Scholar] [CrossRef]
- Vargiu, A.V.; Nikaido, H. Multidrug binding properties of the arcB efflux pump characterized by molecular dynamics simulations. Proc. Natl. Acad. Sci. USA 2012, 109, 20637–20642. [Google Scholar] [CrossRef]
- Paprocka, P.; Mańkowska, A.; Skłodowski, K.; Król, G.; Wollny, T.; Lesiak, A.; Głuszek, K.; Savage, P.B.; Durnaś, B.; Bucki, R. Bactericidal Activity of Ceragenin in Combination with Ceftazidime, Levofloxacin, Co-Trimoxazole, and Colistin against the Opportunistic Pathogen Stenotrophomonas maltophilia. Pathogens 2022, 11, 621. [Google Scholar] [CrossRef]
- Bozkurt-Guzel, C.; Inci, G.; Oyardi, O.; Savage, P.B. Synergistic Activity of Ceragenins Against Carbapenem-Resistant Acinetobacter baumannii Strains in Both Checkerboard and Dynamic Time-Kill Assays. Curr. Microbiol. 2020, 77, 1419–1428. [Google Scholar] [CrossRef]
- Baddour, L.M.; Wilson, W.R.; Bayer, A.S.; Fowler, V.G.; Tleyjeh, I.M.; Rybak, M.J.; Barsic, B.; Lockhart, P.B.; Gewitz, M.H.; Levison, M.E.; et al. Infective Endocarditis in Adults: Diagnosis, Antimicrobial Therapy, and Management of Complications. Circulation 2015, 132, 1435–1486. [Google Scholar] [CrossRef]
- Ghosh, S.; Mukherjee, R.; Patra, D.; Haldar, J. Engineering Photo-Crosslinked Antimicrobial Coating to Tackle Catheter-Associated Infections In Vivo. ACS Biomater. Sci. Eng. 2023, 9, 4404–4414. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Good, D.; Mosaiab, T.; Liu, W.; Ni, G.; Kaur, J.; Liu, X.; Jessop, C.; Yang, L.; Fadhil, R.; et al. Significance of LL-37 on Immunomodulation and Disease Outcome. Biomed. Res. Int. 2020, 2020, 8349712. [Google Scholar] [CrossRef]
- Pahar, B.; Madonna, S.; Das, A.; Albanesi, C.; Girolomoni, G. Immunomodulatory Role of the Antimicrobial LL-37 Peptide in Autoimmune Diseases and Viral Infections. Vaccines 2020, 8, 517. [Google Scholar] [CrossRef]
- Medical Device Material Performance Study Polyurethane Safety Profile. Available online: https://www.fda.gov/media/152352/download (accessed on 27 September 2023).
- Cerashield Endotracheal Tube. Medical Device License 106250; Health Canada: Ottawa, ON, Canada, 2021.
- Geyer, P.E.; Holdt, L.M.; Teupser, D.; Mann, M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017, 13, 942. [Google Scholar] [CrossRef] [PubMed]
- Leeman, M.; Choi, J.; Hansson, S.; Storm, M.U.; Nilsson, L. Proteins and antibodies in serum, plasma, and whole blood-size characterization using asymmetrical flow field-flow fractionation (AF4). Anal. Bioanal. Chem. 2018, 410, 4867–4873. [Google Scholar] [CrossRef] [PubMed]
- Postek, M.; Howard, K. Scanning Electron Microscopy, Student ed.; Ladd Research Industries: Williston, VT, USA, 1980; pp. 139–145. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zaugg, A.; Sherren, E.; Yi, R.; Larsen, T.; Dyck, B.; Stump, S.; Pauga, F.; Linder, A.; Takara, M.; Gardner, E.; et al. Incorporating Ceragenins into Coatings Protects Peripherally Inserted Central Catheter Lines against Pathogen Colonization for Multiple Weeks. Int. J. Mol. Sci. 2023, 24, 14923. https://doi.org/10.3390/ijms241914923
Zaugg A, Sherren E, Yi R, Larsen T, Dyck B, Stump S, Pauga F, Linder A, Takara M, Gardner E, et al. Incorporating Ceragenins into Coatings Protects Peripherally Inserted Central Catheter Lines against Pathogen Colonization for Multiple Weeks. International Journal of Molecular Sciences. 2023; 24(19):14923. https://doi.org/10.3390/ijms241914923
Chicago/Turabian StyleZaugg, Aaron, Elliot Sherren, Rebekah Yi, Tessa Larsen, Brayden Dyck, Sierra Stump, Fetutasi Pauga, Anna Linder, Meg Takara, Emily Gardner, and et al. 2023. "Incorporating Ceragenins into Coatings Protects Peripherally Inserted Central Catheter Lines against Pathogen Colonization for Multiple Weeks" International Journal of Molecular Sciences 24, no. 19: 14923. https://doi.org/10.3390/ijms241914923
APA StyleZaugg, A., Sherren, E., Yi, R., Larsen, T., Dyck, B., Stump, S., Pauga, F., Linder, A., Takara, M., Gardner, E., Shin, S., Pulsipher, J., & Savage, P. B. (2023). Incorporating Ceragenins into Coatings Protects Peripherally Inserted Central Catheter Lines against Pathogen Colonization for Multiple Weeks. International Journal of Molecular Sciences, 24(19), 14923. https://doi.org/10.3390/ijms241914923