Regulatory Small RNAs for a Sustained Eco-Agriculture
Abstract
:1. Introduction
2. sRNAs in Plants
2.1. Abiotic and Biotic Stress Tolerance by sRNAs
Name of sRNA | Host | Effector | Target | Role | References |
---|---|---|---|---|---|
Arabidopsis 22 nucleotide siRNA | Arabidopsis | Abiotic (nitrogen stress) | 22 nucleotide siRNA | 22 nucleotide siRNA inhibits the translation of specific genes and reduces the efficacy of protein change to deal with the stress of nitrogen deficiency. | [26] |
miR12477 | Oryza coarctata | Abiotic (Salinity) | LAO | LAO and oxidative stress regulates by Osa-miRNA12477 in plant salt tolerance | [27] |
miR396 | Oryza | Abiotic | GRF8 | The target factors of referred genes resulted in inflamed grain size and raised brown planthopper resistance. | [28] |
Muesultlberry 24 nucleotide SiRNA | Botrytis cinerea | Virus | MET1 | 24 nucleotide siRNA decreases the opposition gene methylation stages and expands the plant’s protection | [29] |
miR165/166 | Arabidopsis | Auxin | PHV and PHB | For the methylation of the PHV and PHB genes, complementarity between PHV and PHB mRNA and miR165/166 is anticipated. | [30] |
miR393 | N. benthamiana and Arabidopsis | Bacteria | MEMB12 | The bacterial infection encourages the emission and accumulation of PR1 protein and pays to resistance. | [31] |
miR477 | Cotton plants | Fungus | CBP60a | CBP60a of mRNA divides by Ghr-miR477, facilitates the plant defense, and controls the biosynthesis of salicylic acid. | [32] |
nta-miR6019 | Nicotiana tabacum | Virus | Receptor N | Cleavage of transcripts of the Interleukin-1 and Toll receptor-NB-LRR protected receptor N from tobacco presents protection from tobacco mosaic infection. | [23] |
miR2118 | Nicotiana benthamiana | Bacteria and Virus | R gene | Mediated the novel layer of resistance against pathogen attack. | [33] |
miR812w | Oryza | Fungus | LRR, ACO3, CIPK10 | Overexpression of miR812w expanded protection from disease thru the rice impact Magnaporthe oryzae | [34] |
TE-siR815 | Oryza | Bacteria | WRKY45 | Te-sir815 promotes the RdDM pathway’s transcriptional suppression of the key WRKY45 signaling pathway component, reducing rice tolerance to bacterial infection. | [35] |
AtlsiRNA-1 | Arabidopsis | Bacteria | AtRAP | A RAP domain protein implicated in disease resistance is changed by atlsiRNA-1. | [36] |
miR398 | Arabidopsis | Bacteria | COX5, CSD1, CSD2 | miR398 negatively regulates disease resistance to bacteria and PAMP-induced callose deposition, which is also difficult for the miRNA directive in plant essential resistance. | [37] |
dsRNA | Nicotiana attenuata | Hemiptera | HIGS | Relative to plant-processed sRNA, lengthy, unprocessed dsRNA has a higher efficiency. | [38] |
hpRNA | Maize | Western corn rootworm | V-ATPase | V-ATPase subunit C showed less root damage through western corn rootworm | [39] |
hpRNA | Tobacco | whitefly | V-ATPaseA | Improved whitefly resistance in transgenic tobacco by higher whitefly mortality and plant colonization | [40] |
2.2. sRNAs in Plant Defense Against Microbial Pathogens
2.3. sRNA Plant Defense in Pests
3. sRNA-Based Xenobiotic Biosensors
4. Molecular Approaches to Combat Xenobiotics of Agri-Ecosystem
4.1. Monitoring the Microbial Communities and Bioremediation Processes In Situ
4.2. RNA-Based Analysis
4.3. Method of Microbial Community Fingerprinting
4.4. Fluorescence In Situ Hybridization (FISH)
5. sRNAs as a Tool for Future Green Environment
6. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Watkins, D.; Arya, D.P. Regulatory roles of small RNAs in prokaryotes: Parallels and contrast with eukaryotic miRNA. Non-coding RNA Investig. 2019, 3, 28. [Google Scholar] [CrossRef]
- Soltani-Fard, E.; Taghvimi, S.; Abedi Kichi, Z.; Weber, C.; Shabaninejad, Z.; Taheri-Anganeh, M.; Hossein Khatami, S.; Mousavi, P.; Movahedpour, A.; Natarelli, L. Insights into the function of regulatory RNAs in bacteria and Archaea. J. Transl. Med. 2021, 1, 403–423. [Google Scholar] [CrossRef]
- Erfanparast, L.; Taghizadieh, M.; Shekarchi, A.A. Non-coding RNAs, and oral cancer: Small molecules with big functions. Front Oncol. 2022, 12, 914593. [Google Scholar] [CrossRef]
- Zikankuba, V.L.; Mwanyika, G.; Ntwenya, J.E.; James, A. Pesticide regulations and their malpractice implications on food and environment safety. Cogent Food Agric. 2019, 5, 1601544. [Google Scholar] [CrossRef]
- Tudi, M.; Daniel Ruan, H.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef] [PubMed]
- Chandran, H.; Meena, M.; Sharma, K. Microbial biodiversity and bioremediation assessment through Omics approaches. Front. Environ. Chem. 2020, 1, 570326. [Google Scholar] [CrossRef]
- Abdel-Shafy, H.I.; Mansour, M.S.M. A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egypt. J. Pet. 2016, 25, 107–123. [Google Scholar] [CrossRef] [Green Version]
- Ilyas, M.; Ahmad, W.; Khan, H. Utilization of activated carbon derived from waste plastic for decontamination of polycyclic aromatic hydrocarbons laden wastewater. Water Sci. Technol. 2021, 84, 609–631. [Google Scholar] [CrossRef]
- Debnath, M.; Khan, M.S. Health Concerns of Pesticides. In Pesticide Residue in Foods: Sources, Management, and Control; Khan, M.S., Rahman, M.S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 103–118. [Google Scholar]
- Boedeker, W.; Watts, M.; Clausing, P.; Marquez, E. The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health 2020, 20, 1875. [Google Scholar] [CrossRef]
- Kour, D.; Rana, K.L.; Yadav, N.; Yadav, A.N.; Kumar, A.; Meena, V.S.; Singh, B.; Chauhan, V.S.; Dhaliwal, H.S.; Saxena, A.K. Rhizospheric Microbiomes: Biodiversity, mechanisms of plant growth promotion, and biotechnological applications for sustainable agriculture. In Plant Growth Promoting Rhizobacteria for Agricultural Sustainability: From Theory to Practices; Kumar, A., Meena, V.S., Eds.; Springer Singapore: Singapore, 2019; pp. 19–65. [Google Scholar]
- Kour, D.; Rana, K.L.; Kaur, T.; Singh, B.; Chauhan, V.S.; Kumar, A.; Rastegari, A.A.; Yadav, N.; Yadav, A.N.; Gupta, V.K. Extremophiles for Hydrolytic Enzymes Productions: Biodiversity and Potential Biotechnological Applications. Bioprocess. Biomol. Prod. 2019, 321–372. [Google Scholar]
- Ouyang, T.; Liu, Z.; Han, Z.; Ge, Q. MicroRNA Detection Specificity: Recent Advances and Future Perspective. Anal. Chem. 2019, 91, 3179–3186. [Google Scholar] [CrossRef]
- Ali, M.S.; Baek, K.H. Jasmonic acid signaling pathway in response to abiotic stresses in plants. Int.J. Mol. Sci. 2020, 21, 621. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahmoudieh, M.; Noor, M.R.M.; Harikrishna, J.A.; Othman, R.Y. Tomato Solanum lycopersicum expressing the overlapping regions of three begomovirus genes exhibit resistance to Ageratum yellow vein Malaysia virus. Physiol. Mol. Plant Pathol. 2019, 108, 101425. [Google Scholar] [CrossRef]
- Denver, J.B.; Ullah, H. miR393s regulate salt stress response pathway in Arabidopsis thaliana through scaffold protein RACK1A mediated ABA signaling pathways. Plant Signal Behav. 2019, 14, 1600394. [Google Scholar] [CrossRef]
- Wang, Y.; Beaith, M.; Chalifoux, M.; Ying, J.; Uchacz, T.; Sarvas, C.; Griffiths, R.; Kuzma, M.; Wan, J.; Huang, Y. Shoot-Specific Down-Regulation of Protein Farnesyltransferase (α-Subunit) for Yield Protection against Drought in Canola. Mol. Plant 2009, 2, 191–200. [Google Scholar] [CrossRef] [Green Version]
- Park, G.G.; Park, J.J.; Yoon, J.; Yu, S.N.; An, G. A Ring finger E3 ligase gene, Oryza sativa Delayed Seed Germination 1 (OsDSG1), controls seed germination and stress responses in rice. Plant Mol. Biol. 2010, 74, 467–478. [Google Scholar] [CrossRef]
- Wang, W.-S.; Pan, Y.-J.; Zhao, X.-Q.; Dwivedi, D.; Zhu, L.-H.; Ali, J.; Fu, B.-Y.; Li, Z.-K. Drought-induced site-specific DNA methylation and its association with drought tolerance in rice (Oryza sativa L.). J. Exp. Bot. 2010, 62, 1951–1960. [Google Scholar] [CrossRef]
- Sunkar, R.; Zhu, J.-K. Novel and Stress-Regulated MicroRNAs and Other Small RNAs from Arabidopsis. Plant Cell Rep. 2004, 16, 2001–2019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yuan, H.M.; Liu, W.C.; Lu, Y.T. CATALASE2 Coordinates SA-mediated repression of both auxin accumulation and JA biosynthesis in plant defenses. Cell Host Microbe 2017, 21, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Patel, A.; Tiwari, S.; Singh, M.; Prasad, S.M. Chapter 17—Role of sRNAs in abiotic stress tolerance. In Plant Life under Changing Environment; Tripathi, D.K., Pratap Singh, V., Chauhan, D.K., Sharma, S., Prasad, S.M., Dubey, N.K., Ramawat, N., Eds.; Academic Press: Cambridge, MA, USA, 2020; pp. 467–480. [Google Scholar]
- Li, F.; Pignatta, D.; Bendix, C.; Brunkard, J.O.; Cohn, M.M.; Tung, J.; Sun, H.; Kumar, P.; Baker, B. MicroRNA regulation of plant innate immune receptors. Proc. Natl. Acad. Sci. USA 2012, 109, 1790–1795. [Google Scholar] [CrossRef] [Green Version]
- Saikia, R.; Paswan, R.R.; Farwaha, N.; Borah, B.K. Plant Viruses: Factors Involved in Emergence and Recent Advances in Their Management. In Plant Stress: Challenges and Management in the New Decade; Roy, S., Mathur, P., Chakraborty, A.P., Saha, S.P., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 29–55. [Google Scholar]
- Yang, L.; Mu, X.; Liu, C.; Cai, J.; Shi, K.; Zhu, W.; Yang, Q. Overexpression of potato miR482e enhanced plant sensitivity to Verticillium dahliae infection. J. Integr. Plant Biol. 2015, 57, 1078–1088. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Li, B.; Iwakawa, H.O.; Pan, Y.; Tang, X.; Ling-Hu, Q.; Liu, Y.; Sheng, S.; Feng, L.; Zhang, H.; et al. Plant 22-nt siRNAs mediate translational repression and stress adaptation. Nature 2020, 581, 89–93. [Google Scholar] [CrossRef]
- Parmar, S.; Gharat, S.A.; Tagirasa, R.; Chandra, T.; Behera, L.; Dash, S.K.; Shaw, B.P. Identification and expression analysis of miRNAs and elucidation of their role in salt tolerance in rice varieties susceptible and tolerant to salinity. PLoS ONE 2020, 15, 0230958. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Zhu, Y.; Cui, Y.; Chen, R.; Chen, Z.; Li, G.; Fan, M.; Chen, J.; Li, Y.; Guo, X.; et al. Derepression of specific miRNA-target genes in rice using CRISPR/Cas9. J. Exp. Bot. 2021, 72, 7067–7077. [Google Scholar] [CrossRef] [PubMed]
- Xin, Y.; Ma, B.; Zeng, Q.; He, W.; Qin, M.; He, N. Dynamic changes in transposable element and gene methylation in mulberry (Morus notabilis) in response to Botrytis cinerea. Hortic. Res. 2021, 8, 154. [Google Scholar] [CrossRef] [PubMed]
- Grzybkowska, D.; Nowak, K.; Gaj, M.D. Hypermethylation of auxin-responsive motifs in the promoters of the transcription factor genes accompanies the somatic embryogenesis induction in Arabidopsis. Int. J. Mol. Sci. 2020, 21, 6849. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, H.; Gao, S.; Wang, W.C.; Katiyar-Agarwal, S.; Huang, H.D.; Raikhel, N.; Jin, H. Arabidopsis Argonaute 2 regulates innate immunity via miRNA393(∗)-mediated silencing of a Golgi-localized SNARE gene, MEMB12. Mol. Cell. 2011, 42, 356–366. [Google Scholar] [CrossRef] [Green Version]
- Hu, G.; Hao, M.; Wang, L.; Liu, J.; Zhang, Z.; Tang, Y.; Peng, Q.; Yang, Z.; Wu, J. The Cotton miR477-CBP60A module participates in plant defense against Verticillium dahlia. Mol. Plant Microbe Interact. 2020, 33, 624–636. [Google Scholar] [CrossRef] [PubMed]
- Shivaprasad, P.V.; Chen, H.-M.; Patel, K.; Bond, D.M.; Santos, B.A.C.M.; Baulcombe, D.C. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 2012, 24, 859–874. [Google Scholar] [CrossRef] [Green Version]
- Campo, S.; Sánchez-Sanuy, F.; Camargo-Ramírez, R.; Gómez-Ariza, J.; Baldrich, P.; Campos-Soriano, L.; Soto-Suárez, M.; San Segundo, B. A novel Transposable element-derived microRNA participates in plant immunity to rice blast disease. Plant Biotechnol. J. 2021, 19, 1798–1811. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Tao, Z.; Hong, H.; Chen, Z.; Wu, C.; Li, X.; Xiao, J.; Wang, S. Transposon-derived small RNA is responsible for modified function of WRKY45 locus. Nat. Plants 2016, 2, 16016. [Google Scholar] [CrossRef] [PubMed]
- Katiyar-Agarwal, S.; Gao, S.; Vivian-Smith, A.; Jin, H. A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev. 2007, 21, 3123–3134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Zhang, Q.; Zhang, J.; Wu, L.; Qi, Y.; Zhou, J.M. Identification of microRNAs involved in pathogen-associated molecular pattern-triggered plant innate immunity. Plant Physiol. 2010, 152, 2222–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Höfle, L.; Biedenkopf, D.; Werner, B.T.; Shrestha, A.; Jelonek, L.; Koch, A. Study on the efficiency of dsRNAs with increasing length in RNA-based silencing of the Fusarium CYP51 genes. RNA Biol. 2020, 17, 463–473. [Google Scholar] [CrossRef] [PubMed]
- Darlington, M.; Reinders, J.D.; Sethi, A.; Lu, A.L.; Ramaseshadri, P.; Fischer, J.R.; Boeckman, C.J.; Petrick, J.S.; Roper, J.M.; Narva, K.E.; et al. RNAi for western corn rootworm management: Lessons learned, challenges, and future directions. Insects 2022, 13, 57. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, Y.; Wang, Z.; Wu, M.; Fu, J.; Guo, J.; Chang, L.; Zhang, J. Inaccessibility to double-stranded RNAs in plastids restricts RNA interference in Bemisia tabaci (whitefly). Pest Manag. Sci. 2020, 76, 3168–3176. [Google Scholar] [CrossRef]
- Fei, Q.; Zhang, Y.; Xia, R.; Meyers, B.C. Small RNAs Add Zing to the Zig-Zag-Zig Model of Plant Defenses. Mol. Plant Microbe Interact. 2016, 29, 165–169. [Google Scholar] [CrossRef] [Green Version]
- Niu, D.; Lii, Y.E.; Chellappan, P.; Lei, L.; Peralta, K.; Jiang, C.; Guo, J.; Coaker, G.; Jin, H. miRNA863-3p sequentially targets negative immune regulator ARLPKs and positive regulator SERRATE upon bacterial infection. Nat. Commun. 2016, 7, 11324. [Google Scholar] [CrossRef] [Green Version]
- Zhang, T.; Zhao, Y.L.; Zhao, J.H.; Wang, S.; Jin, Y.; Chen, Z.Q.; Fang, Y.Y.; Hua, C.L.; Ding, S.W.; Guo, H.S. Cotton plants export microRNAs to inhibit virulence gene expression in a fungal pathogen. Nat. Plants. 2016, 2, 16153. [Google Scholar] [CrossRef]
- Zotti, M.; dos Santos, E.A.; Cagliari, D.; Christiaens, O.; Taning, C.N.T.; Smagghe, G. RNA interference technology in crop protection against arthropod pests, pathogens and nematodes. Pest Manag. Sci. 2018, 74, 1239–1250. [Google Scholar] [CrossRef]
- Rosa, C.; Kuo, Y.-W.; Wuriyanghan, H.; Falk, B.W. RNA interference mechanisms and applications in plant pathology. Annu. Rev. Phytopathol. 2018, 56, 581–610. [Google Scholar] [CrossRef] [PubMed]
- Dalakouras, A.; Wassenegger, M.; Dadami, E.; Ganopoulos, I.; Pappas, M.L.; Papadopoulou, K. Genetically modified organism-free RNA interference: Exogenous application of RNA molecules in plants. Plant Physiol. 2020, 182, 38–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hyunkyu, S. Advanced strategies to control plant pathogenic fungi by host-induced gene silencing (HIGS) and spray-induced gene silencing (SIGS). Plant Biotechnol. Rep. 2020, 14, 1–8. [Google Scholar]
- Yan, S.; Qian, J.; Cai, C.; Ma, Z.; Li, J.; Yin, M.; Ren, B.; Shen, J. Spray method application of transdermal dsRNA delivery system for efficient gene silencing and pest control on soybean aphid Aphis glycines. J. Pest Sci. 2020, 93, 449–459. [Google Scholar] [CrossRef]
- Rutter, B.D.; Innes, R.W. Extracellular vesicles as key mediators of interactions. Curr. Opin. Plant Biol. 2018, 44, 16–22. [Google Scholar] [CrossRef]
- Cooper, A.M.W.; Silver, K.; Zhang, J.; Park, Y.; Zhu, K.Y. Molecular mechanisms influencing efficiencylant–microbe of RNA interference in insects. Pest Manag. Sci. 2019, 75, 18–28. [Google Scholar] [CrossRef] [Green Version]
- Regente, M.; Pinedo, M.; San Clemente, H.; Balliau, T.; Jamet, E.; de la Canal, L. Plant extracellular vesicles are incorporated by a fungal pathogen and inhibit its growth. J. Exp. Bot. 2017, 68, 5485–5495. [Google Scholar] [CrossRef] [Green Version]
- Albright, V.C., 3rd; Wong, C.R.; Hellmich, R.L.; Coats, J.R. Dissipation of double-stranded RNA in aquatic microcosms. Environ. Toxicol. Chem. 2017, 36, 1249–1253. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fischer, J.R.; Zapata, F.; Dubelman, S.; Mueller, G.M.; Uffman, J.P.; Jiang, C.; Jensen, P.D.; Levine, S.L. Aquatic fate of a double-stranded RNA in a sediment—Water system following an over-water application. Environ. Toxicol. Chem. 2017, 36, 727–734. [Google Scholar] [CrossRef]
- Barros, M.V.; Salvador, R.; de Francisco, A.C.; Piekarski, C.M. Mapping of research lines on circular economy practices in agriculture: From waste to energy. Renew. Sust. Energ. Rev. 2020, 131, 109958. [Google Scholar] [CrossRef]
- Shahbaz, A.; Hussain, N.; Intisar, A.; Bilal, M.; Iqbal, H.M.N. Immobilized enzymes-based biosensing cues for strengthening biocatalysis and biorecognition. Catal. Lett. 2022, 152, 2637–2649. [Google Scholar] [CrossRef]
- Hara, T.O.; Singh, B. Electrochemical biosensors for detection of pesticides and heavy metal toxicants in water: Recent Trends and Progress. ACS ES&T Water 2021, 1, 462–478. [Google Scholar]
- Gavrilaș, S.; Ursachi, C.; Perța-Crișan, S.; Munteanu, F.D. Recent trends in biosensors for environmental quality monitoring. Sensors 2022, 22, 1513. [Google Scholar] [CrossRef]
- Hashemi Goradel, N.; Mirzaei, H.; Sahebkar, A.; Poursadeghiyan, M.; Masoudifar, A.; Malekshahi, Z.; Negahdari, B. Biosensors for the detection of environmental and urban pollutions. J. Cell. Biochem. 2017, 119, 207–212. [Google Scholar] [CrossRef]
- Zaghloul, A.; Saber, M.; Abd-El-Hady, M. Physical indicators for pollution detection in terrestrial and aquatic ecosystems. Bull. Natl. Res. Cent. 2019, 43, 120. [Google Scholar] [CrossRef]
- Barathi, S.; Karthik, C.; Nadanasabapathi, S.; Padikasan, I.A. Biodegradation of textile dye Reactive Blue 160 by Bacillus firmus (Bacillaceae: Bacillales) and non-target toxicity screening of their degraded products. Toxicol. Rep. 2020, 7, 16–22. [Google Scholar] [CrossRef]
- Kumunda, C.; Adekunle, A.; Mamba, B.; Hlongwa, N.; Nkambule, T. Electrochemical detection of environmental pollutants based on Graphene Derivatives: A Review. Front. Mater. Sci. 2021, 7, 616787. [Google Scholar] [CrossRef]
- Rasheed, T.; Nabeel, F.; Adeel, M.; Rizwan, K.; Bilal, M.; Iqbal, H.M.N. Carbon nanotubes-based cues: A pathway to future sensing and detection of hazardous pollutants. J. Mol. Liq. 2019, 292, 111425. [Google Scholar] [CrossRef]
- Aguilar-Pérez, K.M.; Heya, M.S.; Parra-Saldívar, R.; Iqbal, H.M.N. Nano-biomaterials in-focus as sensing/detection cues for environmental pollutants. Case Stud. Therm. Eng. 2020, 2, 100055. [Google Scholar] [CrossRef]
- Jarque, S.; Bittner, M.; Blaha, L.; Hilscherova, K. Yeast biosensors for detection of environmental pollutants: Current state and limitations. Trends Biotechnol. 2016, 34, 408–419. [Google Scholar] [CrossRef]
- Buckova, M.; Licbinsky, R.; Jandova, V.; Krejci, J.; Pospichalova, J.; Huzlik, J. Fast ecotoxicity detection using biosensors. Water Air Soil Pollut. 2017, 228, 166. [Google Scholar] [CrossRef] [Green Version]
- Dhar, D.; Roy, S.; Nigam, V.K. Chapter 10—Advances in protein/enzyme-based biosensors for the detection of pharmaceutical contaminants in the environment. In Tools, Techniques and Protocols for Monitoring Environmental Contaminants; Kaur Brar, S., Hegde, K., Pachapur, V.L., Eds.; Elsevier: Amsterdam, The Netherlands, 2019; pp. 207–229. [Google Scholar]
- Cetrangolo, G.P.; Gori, C.; Rusko, J.; Terreri, S.; Manco, G.; Cimmino, A.; Febbraio, F. Determination of picomolar concentrations of paraoxon in human Urine by fluorescence-based enzymatic assay. Sensors 2019, 19, 4852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Luo, Z.; Lu, X. Construction of novel enzyme–graphene oxide catalytic interface with improved enzymatic performance and its assembly mechanism. ACS Appl. Mater. Interfaces 2019, 11, 11349–11359. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, W.; Ghica, M.E.; Brett, C.M.A. Choline oxidase inhibition biosensor based on poly (brilliant cresyl blue)—Deep eutectic solvent/carbon nanotube modified electrode for dichlorvos organophosphorus pesticide. Sens. Actuators B Chem. 2019, 298, 126862. [Google Scholar] [CrossRef]
- Gao, G.; Qian, J.; Fang, D.; Yu, Y.; Zhi, J. Development of a mediated whole cell-based electrochemical biosensor for joint toxicity assessment of multi-pollutants using a mixed microbial consortium. Anal. Chim. Acta 2016, 924, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Borah, H.; Dutta, R.R.; Gogoi, S.; Medhi, T.; Puzari, P. Glutathione-S-transferase-catalyzed reaction of glutathione for electrochemical biosensing of temephos, fenobucarb and dimethoate. Anal. Methods 2017, 9, 4044–4051. [Google Scholar] [CrossRef]
- Dalkıran, B. Amperometric determination of heavy metal using an HRP inhibition biosensor based on ITO nanoparticles-ruthenium (III) hexamine trichloride composite: Central composite design optimization. Bioelectrochemistry 2020, 135, 107569. [Google Scholar] [CrossRef]
- Karbelkar, A.A.; Reynolds, E.E.; Ahlmark, R.; Furst, A.L. A Microbial electrochemical technology to detect and degrade organophosphate pesticides. ACS Cent. Sci. 2021, 7, 1718–1727. [Google Scholar] [CrossRef]
- Liu, L.; Chen, C.; Chen, C.; Kang, X.; Zhang, H.; Tao, Y.; Xie, Q.; Yao, S. Poly (noradrenalin) based bi-enzyme biosensor for ultrasensitive multi-analyte determination. Talanta 2019, 194, 343–349. [Google Scholar] [CrossRef]
- Gao, G.; Fang, D.; Yu, Y.; Wu, L.; Wang, Y.; Zhi, J. A double-mediator based whole cell electrochemical biosensor for acute biotoxicity assessment of wastewater. Talanta 2017, 167, 208–216. [Google Scholar] [CrossRef]
- Yang, Y.; Fang, D.; Liu, Y.; Liu, R.; Wang, X.; Yu, Y.; Zhi, J. Problems analysis and new fabrication strategies of mediated electrochemical biosensors for wastewater toxicity assessment. Biosens. Bioelectron. 2018, 108, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wang, J.; Jin, H.; Wei, M.; Ren, W.; Zhang, Y.; Wu, L.; He, B. Electrochemical biosensor for sensitive detection of Hg2+ baesd on clustered peonylike copper-based metal-organic frameworks and DNAzyme-driven DNA Walker dual amplification signal strategy. Sens. Actuators B Chem. 2021, 329, 129215. [Google Scholar] [CrossRef]
- Steffens, C.; Ballen, S.C.; Scapin, E.; da Silva, D.M.; Steffens, J.; Jacques, R.A. Advances of nanobiosensors and its application in atrazine detection in water: A review. Sens. Actuator Rep. 2022, 4, 100096. [Google Scholar] [CrossRef]
- Trachman, R.J.; Autour, A.; Jeng, S.C.Y.; Abdolahzadeh, A.; Andreoni, A.; Cojocaru, R.; Garipov, R.; Dolgosheina, E.V.; Knutson, J.R.; Ryckelynck, M. Structure and functional reselection of the Mango-III fluorogenic RNA aptamer. Nat. Chem. Biol. 2019, 15, 472–479. [Google Scholar] [CrossRef]
- Barathi, S.; Aruljothi, K.N.; Karthik, C.; Padikasan, I.A.; Ashokkumar, V. Biofilm mediated decolorization and degradation of reactive red 170 dye by the bacterial consortium isolated from the dyeing industry wastewater sediments. Chemosphere 2022, 286, 131914. [Google Scholar] [CrossRef]
- Huang, Y.; Zhang, W.; Pang, S.; Chen, J.; Bhatt, P.; Mishra, S.; Chen, S. Insights into the microbial degradation and catalytic mechanisms of chlorpyrifos. Environ. Res. 2021, 194, 110660. [Google Scholar] [CrossRef]
- Kumar Awasthi, M.; Ravindran, B.; Sarsaiya, S.; Chen, H.; Wainaina, S.; Singh, E.; Liu, T.; Kumar, S.; Pandey, A.; Singh, L.; et al. Metagenomics for taxonomy profiling: Tools and approaches. Bioengineered 2020, 11, 356–374. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Bano, A.; Singh, S.P.; Dubey, N.K.; Chandra, R.; Iqbal, H.M.N. Microbial fingerprinting techniques and their role in the remediation of environmental pollution. Clean. Chem. Eng. 2022, 2, 100026. [Google Scholar] [CrossRef]
- Bhadury, P.; Ghosh, A. Chapter 3—The use of molecular tools to characterize functional microbial communities in contaminated areas. In Microbial Biodegradation and Bioremediation, 2nd ed.; Das, S., Dash, H.R., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 55–68. [Google Scholar]
- Pang, X.; Jiang, Y.; Xiao, Q.; Leung, A.W.; Hua, H.; Xu, C. pH-responsive polymer–drug conjugates: Design and progress. J. Control Release 2016, 222, 116–129. [Google Scholar] [CrossRef]
- Froussios, K.; Schurch, N.J.; Mackinnon, K.; Gierliński, M.; Duc, C.; Simpson, G.G.; Barton, G.J. How well do RNA-Seq differential gene expression tools perform in a complex eukaryote? A case study in Arabidopsis thaliana. J. Bioinform. 2019, 35, 3372–3377. [Google Scholar] [CrossRef] [Green Version]
- Roume, H.; Heintz-Buschart, A.; Muller, E.E.L.; May, P.; Satagopam, V.P.; Laczny, C.C.; Narayanasamy, S.; Lebrun, L.A.; Hoopmann, M.R.; Schupp, J.M. Comparative integrated omics: Identification of key functionalities in microbial community-wide metabolic networks. npj Biofilms Microbiomes 2015, 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Pires, J.F.; Schwan, R.F.; Silva, C.F. Assessing the efficiency in assisted depuration of coffee processing wastewater from mixed wild microbial selected inoculum. Environ. Monit. Assess. 2019, 191, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Han, D.; Gao, P.; Li, R.; Tan, P.; Xie, J.; Zhang, R.; Li, J. Multicenter assessment of microbial community profiling using 16S rRNA gene sequencing and shotgun metagenomic sequencing. J. Adv. Res. 2020, 26, 111–121. [Google Scholar] [CrossRef] [PubMed]
- Junier, P.; Junier, T.; Witzel, K.-P. TRiFLe, a program for in silico terminal restriction fragment length polymorphism analysis with user-defined sequence sets. Appl. Environ. Microbiol. 2008, 74, 6452–6456. [Google Scholar] [CrossRef] [Green Version]
- Godheja, J.; Shekhar, S.K.; Modi, D.R. Advances in molecular biology approaches to guage microbial communities and bioremediation at contaminated sites. Int. J. Environ. Bioremediat. Biodegrad. 2014, 2, 167–177. [Google Scholar]
- Vázquez, S.; Nogales, B.; Ruberto, L.; Hernández, E.; Christie-Oleza, J.; Lo Balbo, A.; Bosch, R.; Lalucat, J.; Mac Cormack, W. Bacterial community dynamics during bioremediation of diesel oil-contaminated Antarctic soil. Microb. Ecol. 2009, 57, 598–610. [Google Scholar] [CrossRef]
- Jesus, H.E.; Peixoto, R.S.; Rosado, A.S. Bioremediation in antarctic soils. J. Pet. Environ. Biotechnol. 2015, 6, 2. [Google Scholar] [CrossRef] [Green Version]
- Tyagi, B.; Kumar, N. Chapter 1—Bioremediation: Principles and applications in environmental management. In Bioremediation for Environmental Sustainability; Saxena, G., Kumar, V., Shah, M.P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 3–28. [Google Scholar]
- Pereira, A.C.; Tenreiro, A.; Cunha, M.V. When FLOW-FISH met FACS: Combining multiparametric, dynamic approaches for microbial single-cell research in the total environment. Sci. Total Environ. 2022, 806, 150682. [Google Scholar] [CrossRef]
- Haslbeck, M.; Vierling, E. A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. J. Mol. Biol. 2015, 427, 1537–1548. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Chekanova, J.A. Small RNAs: Essential regulators of gene expression and defenses against environmental stresses in plants. Wiley Interdiscip. Rev. RNA 2016, 7, 356–381. [Google Scholar] [CrossRef]
- Cai, Q.; He, B.; Jin, H. A safe ride in extracellular vesicles—Small RNA trafficking between plant hosts and pathogens. Curr. Opin. Plant Biol. 2019, 52, 140–148. [Google Scholar] [CrossRef]
- Nitzan, M.; Rehani, R.; Margalit, H. Integration of bacterial small RNAs in regulatory networks. Annu. Rev. Biophys. 2017, 46, 131–148. [Google Scholar] [CrossRef] [PubMed]
- Lalaouna, D.; Simoneau-Roy, M.; Lafontaine, D.; Massé, E. Regulatory RNAs and target mRNA decay in prokaryotes. Biochim. Biophys. Acta Gene Regul. Mech. 2013, 1829, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Diallo, I.; Provost, P. RNA-sequencing analyses of small bacterial RNAs and their emergence as virulence factors in Host-Pathogen interactions. Int. J. Mol. Sci. 2020, 21, 1627. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seo, S.-O.; Park, S.-K.; Jung, S.-C.; Ryu, C.-M.; Kim, J.-S. Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020, 8, 274. [Google Scholar] [CrossRef] [PubMed]
Detection Methods | Advantages | Disadvantages |
---|---|---|
Physical | Erosion, aeration, runoff, infiltration rate, and water holding capacity are always associated with certain hydrological processes [57]—no ethical clearance is needed. | Not giving standard results when applied in higher surface runoff and small water infiltration. Physical properties—a toxic agent Slow and cost-effective [58] |
Chemical | Easy assessment with quick results. Both are financially profitable and efficiently capable of running in high-level pollutant conditions [59]. There are no ethical issues. | Involves an oxidation stage assuming the metals are complex High mud construction, dealing with and removal issues (the board, treatment, price). Low restrictions of detection and produced secondary hazardous intermediates [60]. Samples need cleaning before starting the process usually. |
Electrochemical detection | Anthropogenic contaminants such as pesticides and Heavy metal ions contribute significantly to versatility. They are attributed to their greater sensitivity and inequitable ability. Fast analytical response and predictability in the process [61]. | Low cost with acceptable reproducibility remains to be challenging. |
Nano-biomaterials | One of the leading biosensors using green synthesis and nanofabrication technology. Precise and efficient detection and also a small size [62]. Helps to maintain the environmental sustainability Decrease waste production and eco-friendly techniques. | Possible to reduce the stability under highly toxic chemical conditions. Low efficiency in severe contamination conditions [63]. |
Bacteria | Inexpensive. Accessible to high-throughput formats and flexible to moveable devices. Cost-effective and straightforward to handle. Results are possible within hours. | Probable ethical questions about consuming genetic modifications [64]. Needs distinct apparatus for sterilized work. Maintenance is hard. |
Algae | Not affected by toxic substances in the immobilized form. Robust and more reproducible. Simple and budget-friendly. Very quick (hours or days). Accessible to high-throughput formats [65]. It regulates the total toxicity of the sample. | Algae senses can detect only a particular set of toxic substances. Supplements in complex samples might mask the impacts of toxins. |
Yeast | Mainly genes are possible. Quick results may be possible (Hours or days). Transfection with fully functioning vertebrate. User-friendly devices [64]. | Maintaining sterile equipment for work. Unicellular organism. |
Enzyme | A few of the enzymes, such as tyrosinase, peroxidases, and laccase, assist the growth of biosensors for degradation of a specific compound, such as phenolics, and utilizing different microorganisms also in free-state or immobilized structures. | Long time duration for recovery and little significance for the whole organism [66]. |
Tissue explants | Opportunity to use excess tissues as butchers. | Weakening of tissues after a comparatively short time. Do not reproduce general factors. |
Animals in vivo | The most exact detecting structure for conversion of results to human. | Cost-effective and ethical issues. |
Pollutant Analysis | Biosensing Elements | Detectors | Sources |
---|---|---|---|
Pesticides | |||
Paraoxon | Phosphotriesterase [67] | Optical | Medical samples |
Methyl parathion | Organophosphorus hydrolase [68] | Electrochemical | Wastewater and soil |
Atrazine | Tyrosinase [69] | Amperometric | Wastewater and soil |
Dichlorvos | Choline oxidase [70] | Amperometric | Soil |
Ametryn and acephate | E. coli, Bacillus subtilis, and S. cerevisiae [71] | Electrochemical | Soil |
Fenobucarb | Glutathione S- transferase [72] | Bioluminescence | Soil |
Heavy Metals | |||
Cadmium, lead, and copper | Glucose oxidase [73] | Electrochemical | Soil |
Urea, organophosphates, and ethanol | Shewanella oneidensis [74] | Electrochemical | Medical samples |
Nickel, copper, cadmium, and zinc | Horseradish peroxidase [73] | Luminometer | Tap water |
Chromium | Glucose oxidase [75] | Optical | Water |
(VI) and (III) | S. cerevisiae [76] | Electrochemical | Wastewater |
Nickel, cadmium, copper, and zinc Cr(III), nickel, copper, cadmium and zinc | E. coli [77] | Electrochemical | Activated sludge |
Mercury (Hg+2) | DNA [78] | Electrochemical | Soil |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barathi, S.; Sabapathi, N.; Aruljothi, K.N.; Lee, J.-H.; Shim, J.-J.; Lee, J. Regulatory Small RNAs for a Sustained Eco-Agriculture. Int. J. Mol. Sci. 2023, 24, 1041. https://doi.org/10.3390/ijms24021041
Barathi S, Sabapathi N, Aruljothi KN, Lee J-H, Shim J-J, Lee J. Regulatory Small RNAs for a Sustained Eco-Agriculture. International Journal of Molecular Sciences. 2023; 24(2):1041. https://doi.org/10.3390/ijms24021041
Chicago/Turabian StyleBarathi, Selvaraj, Nadana Sabapathi, Kandasamy Nagarajan Aruljothi, Jin-Hyung Lee, Jae-Jin Shim, and Jintae Lee. 2023. "Regulatory Small RNAs for a Sustained Eco-Agriculture" International Journal of Molecular Sciences 24, no. 2: 1041. https://doi.org/10.3390/ijms24021041
APA StyleBarathi, S., Sabapathi, N., Aruljothi, K. N., Lee, J. -H., Shim, J. -J., & Lee, J. (2023). Regulatory Small RNAs for a Sustained Eco-Agriculture. International Journal of Molecular Sciences, 24(2), 1041. https://doi.org/10.3390/ijms24021041