Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly
Abstract
:1. Introduction
2. Results
2.1. Identification of CCP6 Proximal Interactors
2.2. CCP6 Interacts with PCM1 and PIBF1
2.3. CCP6 Interacts with NudC
3. Discussion
4. Materials and Methods
4.1. Cell Lines and Cell Culture
4.2. Interactomic Studies
4.2.1. Molecular Cloning and Generation of Stable Cell Lines
4.2.2. BioID
4.2.3. Mass Spectrometry
Sample Preparation
Data Acquisition and Analysis
4.2.4. Gene Ontology Analysis
4.2.5. Human Cell Map Analysis
4.3. Co-Immunoprecipitation
4.4. Western Blotting
4.5. Confocal Microscopy
4.5.1. Proximity Ligation Assay (PLA)
4.5.2. Immunocytochemistry and Image Acquisition
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- van Dijk, J.; Miro, J.; Strub, J.-M.M.; Lacroix, B.; van Dorsselaer, A.; Edde, B.; Janke, C. Polyglutamylation Is a Post-Translational Modification with a Broad Range of Substrates. J. Biol. Chem. 2008, 283, 3915–3922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janke, C.; Rogowski, K.; van Dijk, J. Polyglutamylation: A Fine-Regulator of Protein Function? “Protein Modifications: Beyond the Usual Suspects” Review Series. EMBO Rep. 2008, 9, 636–641. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruse, C.I.; Chin, H.G.; Pradhan, S. Polyglutamylation: Biology and Analysis. Amino Acids 2022, 54, 529–542. [Google Scholar] [CrossRef] [PubMed]
- Bodakuntla, S.; Janke, C.; Magiera, M.M. Tubulin Polyglutamylation, a Regulator of Microtubule Functions, Can Cause Neurodegeneration. Neurosci. Lett. 2021, 746, 135656. [Google Scholar] [CrossRef]
- Miller, K.E.; Heald, R. Glutamylation of Nap1 Modulates Histone H1 Dynamics and Chromosome Condensation in Xenopus. J. Cell Biol. 2015, 209, 211–220. [Google Scholar] [CrossRef] [Green Version]
- Onikubo, T.; Nicklay, J.J.; Xing, L.; Warren, C.; Anson, B.; Wang, W.L.; Burgos, E.S.; Ruff, S.E.; Shabanowitz, J.; Cheng, R.H.; et al. Developmentally Regulated Post-Translational Modification of Nucleoplasmin Controls Histone Sequestration and Deposition. Cell Rep. 2015, 10, 1735–1748. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wang, J.; Hao, J.; Dong, B.; Li, Y.; Zhu, X.; Ding, J.; Ren, S.; Zhao, H.; Wu, S.; et al. Reduced Cytosolic Carboxypeptidase 6 (CCP6) Level Leads to Accumulation of Serum Polyglutamylated DNAJC7 Protein: A Potential Biomarker for Renal Cell Carcinoma Early Detection. Oncotarget 2016, 7, 22385–22396. [Google Scholar] [CrossRef] [Green Version]
- Ye, B.; Li, C.; Yang, Z.; Wang, Y.; Hao, J.; Wang, L.; Li, Y.; Du, Y.; Hao, L.; Liu, B.; et al. Cytosolic Carboxypeptidase CCP6 Is Required for Megakaryopoiesis by Modulating Mad2 Polyglutamylation. J. Exp. Med. 2014, 211, 2439–2454. [Google Scholar] [CrossRef] [Green Version]
- Audebert, S.; Desbruyeres, E.; Gruszczynski, C.; Koulakoff, A.; Gros, F.; Denoulet, P.; Edde, B. Reversible Polyglutamylation of α- and β-Tubulin and Microtubule Dynamics in Mouse Brain Neurons. Mol. Biol. Cell 1993, 4, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Ikegami, K.; Mukai, M.; Tsuchida, J.I.; Heier, R.L.; MacGregor, G.R.; Setou, M. TTLL7 Is a Mammalian Beta-Tubulin Polyglutamylase Required for Growth of MAP2-Positive Neurites. J. Biol. Chem. 2006, 281, 30707–30716. [Google Scholar] [CrossRef]
- Gagnon, C.; White, D.; Cosson, J.; Huitorel, P.; Eddé, B.; Desbruyères, E.; Paturle-Lafanechère, L.; Multigner, L.; Job, D.; Cibert, C. The Polyglutamylated Lateral Chain of Alpha-Tubulin Plays a Key Role in Flagellar Motility. J. Cell Sci. 1996, 109, 1545–1553. [Google Scholar] [CrossRef] [PubMed]
- Million, K.; Larcher, J.C.; Laoukili, J.; Bourguignon, D.; Marano, F.; Tournier, F. Polyglutamylation and Polyglycylation of Alpha- and Beta-Tubulins during in Vitro Ciliated Cell Differentiation of Human Respiratory Epithelial Cells. J. Cell Sci. 1999, 112 Pt 23, 4357–4366. [Google Scholar] [CrossRef] [PubMed]
- Bodakuntla, S.; Yuan, X.; Genova, M.; Gadadhar, S.; Leboucher, S.; Birling, M.; Klein, D.; Martini, R.; Janke, C.; Magiera, M.M. Distinct Roles of α- and β-Tubulin Polyglutamylation in Controlling Axonal Transport and in Neurodegeneration. EMBO J. 2021, 40, e108498. [Google Scholar] [CrossRef] [PubMed]
- Radwitz, J.; Hausrat, T.J.; Heisler, F.F.; Janiesch, P.C.; Pechmann, Y.; Rübhausen, M.; Kneussel, M. Tubb3 Expression Levels Are Sensitive to Neuronal Activity Changes and Determine Microtubule Growth and Kinesin-Mediated Transport. Cell. Mol. Life Sci. 2022, 79, 575. [Google Scholar] [CrossRef] [PubMed]
- Kashiwaya, K.; Nakagawa, H.; Hosokawa, M.; Mochizuki, Y.; Ueda, K.; Piao, L.; Chung, S.; Hamamoto, R.; Eguchi, H.; Ohigashi, H.; et al. Involvement of the Tubulin Tyrosine Ligase-like Family Member 4 Polyglutamylase in PELP1 Polyglutamylation and Chromatin Remodeling in Pancreatic Cancer Cells. Cancer Res. 2010, 70, 4024–4033. [Google Scholar] [CrossRef] [Green Version]
- Fernandez-Gonzalez, A.; la Spada, A.R.; Treadaway, J.; Higdon, J.C.; Harris, B.S.; Sidman, R.L.; Morgan, J.I.; Zuo, J. Purkinje Cell Degeneration (Pcd) Phenotypes Caused by Mutations in the Axotomy-Induced Gene, Nna1. Science 2002, 295, 1904–1906. [Google Scholar] [CrossRef]
- Zhou, L.; Hossain, M.I.; Yamazaki, M.; Abe, M.; Natsume, R.; Konno, K.; Kageyama, S.; Komatsu, M.; Watanabe, M.; Sakimura, K.; et al. Deletion of Exons Encoding Carboxypeptidase Domain of Nna1 Results in Purkinje Cell Degeneration (Pcd) Phenotype. J. Neurochem. 2018, 147, 557–572. [Google Scholar] [CrossRef] [Green Version]
- Shashi, V.; Magiera, M.M.; Klein, D.; Zaki, M.; Schoch, K.; Rudnik-Schöneborn, S.; Norman, A.; Lopes Abath Neto, O.; Dusl, M.; Yuan, X.; et al. Loss of Tubulin Deglutamylase CCP 1 Causes Infantile-onset Neurodegeneration. EMBO J. 2018, 37, e100540. [Google Scholar] [CrossRef]
- Wang, L.L.; Jin, X.H.; Cai, M.Y.; Li, H.G.; Chen, J.W.; Wang, F.W.; Wang, C.Y.; Hu, W.W.; Liu, F.; Xie, D. AGBL2 Promotes Cancer Cell Growth through IRGM-Regulated Autophagy and Enhanced Aurora A Activity in Hepatocellular Carcinoma. Cancer Lett. 2018, 414, 71–80. [Google Scholar] [CrossRef]
- Zhu, H.; Zheng, Z.; Zhang, J.; Liu, X.; Liu, Y.; Yang, W.; Liu, Y.; Zhang, T.; Zhao, Y.; Liu, Y.; et al. Effects of AGBL2 on Cell Proliferation and Chemotherapy Resistance of Gastric Cancer. Hepatogastroenterology 2015, 62, 497–502. [Google Scholar] [CrossRef]
- Rodriguez de la Vega, M.; Sevilla, R.G.; Hermoso, A.; Lorenzo, J.; Tanco, S.; Diez, A.; Fricker, L.D.; Bautista, J.M.; Avilés, F.X. Nna1-like Proteins Are Active Metallocarboxypeptidases of a New and Diverse M14 Subfamily. FASEB J. 2007, 21, 851–865. [Google Scholar] [CrossRef] [PubMed]
- Kalinina, E.; Biswas, R.; Berezniuk, I.; Hermoso, A.; Avilés, F.X.; Fricker, L.D. A Novel Subfamily of Mouse Cytosolic Carboxypeptidases. FASEB J. 2007, 21, 836–850. [Google Scholar] [CrossRef]
- Janke, C.; Rogowski, K.; Wloga, D.; Regnard, C.; Kajava, A.V.; Strub, J.M.; Temurak, N.; van Dijk, J.; Boucher, D.; van Dorsselaer, A.; et al. Tubulin Polyglutamylase Enzymes Are Members of the TTL Domain Protein Family. Science 2005, 308, 1758–1762. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS Database of Proteolytic Enzymes, Their Substrates and Inhibitors in 2017 and a Comparison with Peptidases in the PANTHER Database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [Green Version]
- Otero, A.; Rodríguez de la Vega, M.; Tanco, S.; Lorenzo, J.; Avilés, F.X.; Reverter, D. The Novel Structure of a Cytosolic M14 Metallocarboxypeptidase (CCP) from Pseudomonas Aeruginosa: A Model for Mammalian CCPs. FASEB J. 2012, 26, 3754–3764. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez de la Vega, M.; Lorenzo, J.; Tort, O.; Avilés, F.X.; Bautista, J.M. Functional Segregation and Emerging Role of Cilia-Related Cytosolic Carboxypeptidases (CCPs). FASEB J. 2013, 27, 424–431. [Google Scholar] [CrossRef]
- Joukov, V.; de Nicolo, A. The Centrosome and the Primary Cilium: The Yin and Yang of a Hybrid Organelle. Cells 2019, 8, 701. [Google Scholar] [CrossRef] [Green Version]
- Duong Phu, M.; Bross, S.; Burkhalter, M.D.; Philipp, M. Limitations and Opportunities in the Pharmacotherapy of Ciliopathies. Pharmacol. Ther. 2021, 225, 107841. [Google Scholar] [CrossRef]
- Xia, P.; Ye, B.; Wang, S.; Zhu, X.; Du, Y.; Xiong, Z.; Tian, Y.; Fan, Z. Glutamylation of the DNA Sensor CGAS Regulates Its Binding and Synthase Activity in Antiviral Immunity. Nat. Immunol. 2016, 17, 369–378. [Google Scholar] [CrossRef]
- Ye, B.; Liu, B.; Hao, L.; Zhu, X.; Yang, L.; Wang, S.; Xia, P.; Du, Y.; Meng, S.; Huang, G.; et al. Klf4 Glutamylation Is Required for Cell Reprogramming and Early Embryonic Development in Mice. Nat. Commun. 2018, 9, 1261. [Google Scholar] [CrossRef]
- Roux, K.J.; Kim, D.I.; Raida, M.; Burke, B. A Promiscuous Biotin Ligase Fusion Protein Identifies Proximal and Interacting Proteins in Mammalian Cells. J. Cell Biol. 2012, 196, 801–810. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambert, J.P.; Tucholska, M.; Go, C.; Knight, J.D.R.; Gingras, A.C. Proximity Biotinylation and Affinity Purification Are Complementary Approaches for the Interactome Mapping of Chromatin-Associated Protein Complexes. J. Proteomics 2015, 118, 81–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, D.I.; Jensen, S.C.; Roux, K.J. Identifying Protein-Protein Associations at the Nuclear Envelope with Bioid. Methods Mol. Biol. 2016, 1411, 133–146. [Google Scholar]
- Chan, C.J.; Le, R.; Burns, K.; Ahmed, K.; Coyaud, E.; Laurent, E.M.N.; Raught, B.; Melançon, P. BioID Performed on Golgi Enriched Fractions Identify C10orf76 as a GBF1 Binding Protein Essential for Golgi Maintenance and Secretion. Mol. Cell. Proteom. 2019, 18, 2285–2297. [Google Scholar] [CrossRef] [PubMed]
- He, K.; Ma, X.; Xu, T.; Li, Y.; Hodge, A.; Zhang, Q.; Torline, J.; Huang, Y.; Zhao, J.; Ling, K.; et al. Axoneme Polyglutamylation Regulated by Joubert Syndrome Protein ARL13B Controls Ciliary Targeting of Signaling Molecules. Nat. Commun. 2018, 9, 3310. [Google Scholar] [CrossRef] [Green Version]
- Latour, B.L.; van de Weghe, J.C.; Rusterholz, T.D.S.; Letteboer, S.J.F.; Gomez, A.; Shaheen, R.; Gesemann, M.; Karamzade, A.; Asadollahi, M.; Barroso-Gil, M.; et al. Dysfunction of the Ciliary ARMC9/TOGARAM1 Protein Module Causes Joubert Syndrome. J. Clin. Investig. 2020, 140, 4423–4439. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.E.; Silhavy, J.L.; Zaki, M.S.; Schroth, J.; Bielas, S.L.; Marsh, S.E.; Olvera, J.; Brancati, F.; Iannicelli, M.; Ikegami, K.; et al. CEP41 Is Mutated in Joubert Syndrome and Is Required for Tubulin Glutamylation at the Cilium. Nat. Genet. 2012, 44, 193–199. [Google Scholar] [CrossRef] [Green Version]
- Jonckheere, V.; van Damme, P. N-Terminal Acetyltransferase Naa40p Whereabouts Put into N-Terminal Proteoform Perspective. Int. J. Mol. Sci. 2021, 22, 3690. [Google Scholar] [CrossRef]
- Huttlin, E.L.; Bruckner, R.J.; Navarrete-Perea, J.; Cannon, J.R.; Baltier, K.; Gebreab, F.; Gygi, M.P.; Thornock, A.; Zarraga, G.; Tam, S.; et al. Dual Proteome-Scale Networks Reveal Cell-Specific Remodeling of the Human Interactome. Cell 2021, 184, 3022–3040.e28. [Google Scholar] [CrossRef]
- Go, C.D.; Knight, J.D.R.; Rajasekharan, A.; Rathod, B.; Hesketh, G.G.; Abe, K.T.; Youn, J.Y.; Samavarchi-Tehrani, P.; Zhang, H.; Zhu, L.Y.; et al. A Proximity-Dependent Biotinylation Map of a Human Cell. Nature 2021, 595, 120–124. [Google Scholar] [CrossRef]
- Youn, J.Y.; Dunham, W.H.; Hong, S.J.; Knight, J.D.R.; Bashkurov, M.; Chen, G.I.; Bagci, H.; Rathod, B.; MacLeod, G.; Eng, S.W.M.; et al. High-Density Proximity Mapping Reveals the Subcellular Organization of MRNA-Associated Granules and Bodies. Mol. Cell 2018, 69, 517–532.e11. [Google Scholar] [CrossRef] [PubMed]
- Gupta, G.D.; Coyaud, É.; Gonçalves, J.; Mojarad, B.A.; Liu, Y.; Wu, Q.; Gheiratmand, L.; Comartin, D.; Tkach, J.M.; Cheung, S.W.T.T.; et al. A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell 2015, 163, 1484–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dafinger, C.; Liebau, M.C.; Elsayed, S.M.; Hellenbroich, Y.; Boltshauser, E.; Korenke, G.C.; Fabretti, F.; Janecke, A.R.; Ebermann, I.; Nürnberg, G.; et al. Mutations in KIF7 Link Joubert Syndrome with Sonic Hedgehog Signaling and Microtubule Dynamics. J. Clin. Investig. 2011, 121, 2662–2667. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.-w.; Qu, H.-b.; Long, N.; Leng, X.-y.; Liu, Y.-q.; Yang, Y. A Rare Mutant of OFD1 Gene Responsible for Joubert Syndrome with Significant Phenotype Variation. Mol. Genet. Genomics 2021, 296, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Tuz, K.; Bachmann-Gagescu, R.; O’Day, D.R.; Hua, K.; Isabella, C.R.; Phelps, I.G.; Stolarski, A.E.; O’Roak, B.J.; Dempsey, J.C.; Lourenco, C.; et al. Mutations in CSPP1 Cause Primary Cilia Abnormalities and Joubert Syndrome with or without Jeune Asphyxiating Thoracic Dystrophy. Am. J. Hum. Genet. 2014, 94, 62–72. [Google Scholar] [CrossRef] [Green Version]
- Shen, Y.; Wang, H.; Liu, Z.; Luo, M.; Ma, S.; Lu, C.; Cao, Z.; Yu, Y.; Cai, R.; Chen, C.; et al. Identification of Two Novel Pathogenic Variants of PIBF1 by Whole Exome Sequencing in a 2-Year-Old Boy with Joubert Syndrome. BMC Med. Genet. 2020, 21, 192. [Google Scholar] [CrossRef]
- Gheiratmand, L.; Coyaud, E.; Gupta, G.D.; Laurent, E.M.; Hasegan, M.; Prosser, S.L.; Gonçalves, J.; Raught, B.; Pelletier, L. Spatial and Proteomic Profiling Reveals Centrosome-Independent Features of Centriolar Satellites. EMBO J. 2019, 38, e101109. [Google Scholar] [CrossRef]
- Thul, P.J.; Akesson, L.; Wiking, M.; Mahdessian, D.; Geladaki, A.; Ait Blal, H.; Alm, T.; Asplund, A.; Björk, L.; Breckels, L.M.; et al. A Subcellular Map of the Human Proteome. Science. 2017, 356. [Google Scholar] [CrossRef]
- Yang, W.T.; Hong, S.R.; He, K.; Ling, K.; Shaiv, K.; Hu, J.H.; Lin, Y.C. The Emerging Roles of Axonemal Glutamylation in Regulation of Cilia Architecture and Functions. Front. Cell Dev. Biol. 2021, 9, 429. [Google Scholar] [CrossRef]
- Dammermann, A.; Merdes, A. Assembly of Centrosomal Proteins and Microtubule Organization Depends on PCM-1. J. Cell Biol. 2002, 159, 255–266. [Google Scholar] [CrossRef] [Green Version]
- Hames, R.S.; Crookes, R.E.; Straatman, K.R.; Merdes, A.; Hayes, M.J.; Faragher, A.J.; Fry, A.M. Dynamic Recruitment of Nek2 Kinase to the Centrosome Involves Microtubules, PCM-1, and Localized Proteasomal Degradation. Mol. Biol. Cell 2005, 16, 1711–1724. [Google Scholar] [CrossRef] [PubMed]
- Srsen, V.; Gnadt, N.; Dammermann, A.; Merdes, A. Inhibition of Centrosome Protein Assembly Leads to P53-Dependent Exit from the Cell Cycle. J. Cell Biol. 2006, 174, 625–630. [Google Scholar] [CrossRef]
- Kim, K.; Lee, K.; Rhee, K. CEP90 Is Required for the Assembly and Centrosomal Accumulation of Centriolar Satellites, Which Is Essential for Primary Cilia Formation. PLoS ONE 2012, 7, e48196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, K.; Rhee, K. The Pericentriolar Satellite Protein CEP90 Is Crucial for Integrity of the Mitotic Spindle Pole. J. Cell Sci. 2011, 124, 338–347. [Google Scholar] [CrossRef] [Green Version]
- Schweingruber, C.; Soffientini, P.; Ruepp, M.D.; Bachi, A.; Mühlemann, O. Identification of Interactions in the NMD Complex Using Proximity-Dependent Biotinylation (BioID). PLoS ONE 2016, 11, e0150239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abbasi, S.; Schild-Poulter, C. Identification of Ku70 Domain-Specific Interactors Using BioID2. Cells 2021, 10, 646. [Google Scholar] [CrossRef] [PubMed]
- Dingar, D.; Kalkat, M.; Chan, P.K.; Srikumar, T.; Bailey, S.D.; Tu, W.B.; Coyaud, E.; Ponzielli, R.; Kolyar, M.; Jurisica, I.; et al. BioID Identifies Novel C-MYC Interacting Partners in Cultured Cells and Xenograft Tumors. J. Proteomics 2015, 118, 95–111. [Google Scholar] [CrossRef]
- Alam, M.S. Proximity Ligation Assay (PLA). Curr. Protoc. Immunol. 2018, 123, e58. [Google Scholar] [CrossRef]
- Kubo, A.; Sasaki, H.; Yuba-Kubo, A.; Tsukita, S.; Shiina, N. Centriolar Satellites: Molecular Characterization, ATP-Dependent Movement toward Centrioles and Possible Involvement in Ciliogenesis. J. Cell Biol. 1999, 147, 969–979. [Google Scholar] [CrossRef] [PubMed]
- Cappello, S.; Monzo, P.; Vallee, R.B. NudC Is Required for Interkinetic Nuclear Migration and Neuronal Migration during Neocortical Development. Dev. Biol. 2011, 357, 326–335. [Google Scholar] [CrossRef] [Green Version]
- Weiderhold, K.N.; Fadri-Moskwik, M.; Pan, J.; Nishino, M.; Chuang, C.; Deeraksa, A.; Lin, S.H.; Yu-Lee, L.Y. Dynamic Phosphorylation of NudC by Aurora B in Cytokinesis. PLoS ONE 2016, 11, e0153455. [Google Scholar] [CrossRef] [PubMed]
- Chuang, C.; Pan, J.; Hawke, D.H.; Lin, S.-H.; Yu-Lee, L.-Y. NudC Deacetylation Regulates Mitotic Progression. PLoS ONE 2013, 8, e73841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawano, D.; Pinter, K.; Chlebowski, M.; Petralia, R.S.; Wang, Y.X.; Nechiporuk, A.V.; Drerup, C.M. NudC Regulated Lis1 Stability Is Essential for the Maintenance of Dynamic Microtubule Ends in Axon Terminals. iScience 2022, 25, 105072. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Krishnaswami, S.R.; Gleeson, J.G. CEP290 Interacts with the Centriolar Satellite Component PCM-1 and Is Required for Rab8 Localization to the Primary Cilium. Hum. Mol. Genet. 2008, 17, 3796–3805. [Google Scholar] [CrossRef] [Green Version]
- O’Hagan, R.; Piasecki, B.P.; Silva, M.; Phirke, P.; Nguyen, K.C.Q.; Hall, D.H.; Swoboda, P.; Barr, M.M. The Tubulin Deglutamylase CCPP-1 Regulates the Function and Stability of Sensory Cilia in C. Elegans. Curr. Biol. 2011, 21, 1685–1694. [Google Scholar] [CrossRef] [Green Version]
- van Dijk, J.; Rogowski, K.; Miro, J.; Lacroix, B.; Eddé, B.; Janke, C. A Targeted Multienzyme Mechanism for Selective Microtubule Polyglutamylation. Mol. Cell 2007, 26, 437–448. [Google Scholar] [CrossRef] [Green Version]
- Tort, O.; Tanco, S.; Rocha, C.; Bièche, I.; Seixas, C.; Bosc, C.; Andrieux, A.; Moutin, M.J.; Avilés, F.X.; Lorenzo, J.; et al. The Cytosolic Carboxypeptidases CCP2 and CCP3 Catalyze Posttranslational Removal of Acidic Amino Acids. Mol. Biol. Cell 2014, 25, 3017–3027. [Google Scholar] [CrossRef]
- Fouquet, J.-P.; Kann, M.-L.; Edde, B.; Wolff, A.; Desbruyeres, E.; Denoulet, P. Differential Distribution of Glutamylated Tubulin during Spermatogenesis in Mammalian Testis. Cell Motil. Cytoskeleton 1994, 27, 49–58. [Google Scholar] [CrossRef]
- Bobinnec, Y.; Moudjou, M.; Fouquet, J.P.; Desbruyères, E.; Eddé, B.; Bornens, M. Glutamylation of Centriole and Cytoplasmic Tubulin in Proliferating Non- Neuronal Cells. Cell Motil. Cytoskeleton 1998, 39, 223–232. [Google Scholar] [CrossRef]
- Kubo, T.; Yanagisawa, H.-a.; Yagi, T.; Hirono, M.; Kamiya, R. Tubulin Polyglutamylation Regulates Axonemal Motility by Modulating Activities of Inner-Arm Dyneins. Curr. Biol. 2010, 20, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Suryavanshi, S.; Eddé, B.; Fox, L.A.; Guerrero, S.; Hard, R.; Hennessey, T.; Kabi, A.; Malison, D.; Pennock, D.; Sale, W.S.; et al. Tubulin Glutamylation Regulates Ciliary Motility by Altering Inner Dynein Arm Activity. Curr. Biol. 2010, 20, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Grau, M.B.; Curto, G.G.; Rocha, C.; Magiera, M.M.; Sousa, P.M.; Giordano, T.; Spassky, N.; Janke, C. Tubulin Glycylases and Glutamylases Have Distinct Functions in Stabilization and Motility of Ependymal Cilia. J. Cell Biol. 2013, 202, 441–451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rogowski, K.; van Dijk, J.; Magiera, M.M.; Bosc, C.; Deloulme, J.C.; Bosson, A.; Peris, L.; Gold, N.D.; Lacroix, B.; Bosch Grau, M.; et al. A Family of Protein-Deglutamylating Enzymes Associated with Neurodegeneration. Cell 2010, 143, 564–578. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mullen, R.J.; Eicher, E.M.; Sidman, R.L. Purkinje Cell Degeneration, a New Neurological Mutation in the Mouse. Proc. Natl. Acad. Sci. USA 1976, 73, 208–212. [Google Scholar] [CrossRef] [Green Version]
- Song, N.; Kim, N.; Xiao, R.; Choi, H.; Chun, H.I.; Kang, M.H.; Kim, J.H.; Seo, K.; Soundrarajan, N.; Do, J.T.; et al. Lack of Cytosolic Carboxypeptidase 1 Leads to Subfertility Due to the Reduced Number of Antral Follicles in Pcd3J-/-Females. PLoS ONE 2015, 10, e0139557. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.Y.; Rong, Y.; Bansal, P.K.; Wei, P.; Guo, H.; Morgan, J.I. TTLL1 and TTLL4 Polyglutamylases Are Required for the Neurodegenerative Phenotypes in Pcd Mice. PLoS Genet. 2022, 18, e1010144. [Google Scholar] [CrossRef]
- Karakaya, M.; Paketci, C.; Altmueller, J.; Thiele, H.; Hoelker, I.; Yis, U.; Wirth, B. Biallelic Variant in AGTPBP1 Causes Infantile Lower Motor Neuron Degeneration and Cerebellar Atrophy. Am. J. Med. Genet. A 2019, 179, 1580–1584. [Google Scholar] [CrossRef]
- Pathak, N.; Austin-Tse, C.A.; Liu, Y.; Vasilyev, A.; Drummond, I.A. Cytoplasmic Carboxypeptidase 5 Regulates Tubulin Glutamylation and Zebrafish Cilia Formation and Function. Mol. Biol. Cell 2014, 25, 1836–1844. [Google Scholar] [CrossRef]
- Lyons, P.J.; Sapio, M.R.; Fricker, L.D. Zebrafish Cytosolic Carboxypeptidases 1 and 5 Are Essential for Embryonic Development. J. Biol. Chem. 2013, 288, 30454–30462. [Google Scholar] [CrossRef] [Green Version]
- Parisi, M.A. Clinical and Molecular Features of Joubert Syndrome and Related Disorders. Am. J. Med. Genet. C Semin. Med. Genet. 2009, 151, 326–340. [Google Scholar] [CrossRef] [Green Version]
- Frikstad, K.A.M.; Molinari, E.; Thoresen, M.; Ramsbottom, S.A.; Hughes, F.; Letteboer, S.J.F.; Gilani, S.; Schink, K.O.; Stokke, T.; Geimer, S.; et al. A CEP104-CSPP1 Complex Is Required for Formation of Primary Cilia Competent in Hedgehog Signaling. Cell Rep. 2019, 28, 1907–1922.e6. [Google Scholar] [CrossRef] [PubMed]
- Lachmann, M.; Gelbmann, D.; Kálmán, E.; Polgár, B.; Buschle, M.; von Gabain, A.; Szekeres-Barthó, J.; Nagy, E. PIBF (Progesterone Induced Blocking Factor) Is Overexpressed in Highly Proliferating Cells and Associated with the Centrosome. Int. J. Cancer 2004, 112, 51–60. [Google Scholar] [CrossRef] [PubMed]
- Giorgio, G.; Alfieri, M.; Prattichizzo, C.; Zullo, A.; Cairo, S.; Franco, B. Functional Characterization of the OFD1 Protein Reveals a Nuclear Localization and Physical Interaction with Subunits of a Chromatin Remodeling Complex. Mol. Biol. Cell 2007, 18, 4397–4404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Endoh-Yamagami, S.; Evangelista, M.; Wilson, D.; Wen, X.; Theunissen, J.W.; Phamluong, K.; Davis, M.; Scales, S.J.; Solloway, M.J.; de Sauvage, F.J.; et al. The Mammalian Cos2 Homolog Kif7 Plays an Essential Role in Modulating Hh Signal Transduction during Development. Curr. Biol. 2009, 19, 1320–1326. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huttlin, E.L.; Bruckner, R.J.; Paulo, J.A.; Cannon, J.R.; Ting, L.; Baltier, K.; Colby, G.; Gebreab, F.; Gygi, M.P.; Parzen, H.; et al. Architecture of the Human Interactome Defines Protein Communities and Disease Networks. Nature 2017, 545, 505–509. [Google Scholar] [CrossRef] [Green Version]
- Comartin, D.; Gupta, G.D.; Fussner, E.; Coyaud, É.; Hasegan, M.; Archinti, M.; Cheung, S.W.T.; Pinchev, D.; Lawo, S.; Raught, B.; et al. CEP120 and SPICE1 Cooperate with CPAP in Centriole Elongation. Curr. Biol. 2013, 23, 1360–1366. [Google Scholar] [CrossRef] [Green Version]
- Guerrero, G.; del Carmen, M. Caracterización Estructural y Funcional de Dos Metalo-Carboxipeptidasas de La Familia M14 Con Especificidad de Sustrato Tipo Acídico: Carboxipeptidasa Citosólica 6 y Carboxipeptidasa O Humanas; Universitat Autonoma de Barcelona: Cerdanyola del Vallès, Barcelona, Spain, 2017. [Google Scholar]
- Couzens, A.L.; Knight, J.D.R.; Kean, M.J.; Teo, G.; Weiss, A.; Dunham, W.H.; Lin, Z.Y.; Bagshaw, R.D.; Sicheri, F.; Pawson, T.; et al. Protein Interaction Network of the Mammalian Hippo Pathway Reveals Mechanisms of Kinase-Phosphatase Interactions. Sci. Signal. 2013, 6, rs15. [Google Scholar] [CrossRef] [Green Version]
- Fija-Lkowska, D.; Verbruggen, S.; Ndah, E.; Jonckheere, V.; Menschaert, G.; van Damme, P. EIF1 Modulates the Recognition of Suboptimal Translation Initiation Sites and Steers Gene Expression via UORFs. Nucleic Acids Res. 2017, 45, 7997–8013. [Google Scholar] [CrossRef] [Green Version]
- Silva, C.G.; Peyre, E.; Adhikari, M.H.; Tielens, S.; Tanco, S.; van Damme, P.; Magno, L.; Krusy, N.; Agirman, G.; Magiera, M.M.; et al. Cell-Intrinsic Control of Interneuron Migration Drives Cortical Morphogenesis. Cell 2018, 172, 1063–1078.e19. [Google Scholar] [CrossRef] [Green Version]
- Cox, J.; Mann, M. MaxQuant Enables High Peptide Identification Rates, Individualized p.p.b.-Range Mass Accuracies and Proteome-Wide Protein Quantification. Nature Biotechnology 2008 26:12 2008, 26, 1367–1372. [Google Scholar] [CrossRef]
- Cox, J.; Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome Res. 2011, 10, 1794–1805. [Google Scholar] [CrossRef] [PubMed]
- Cox, J.; Hein, M.Y.; Luber, C.A.; Paron, I.; Nagaraj, N.; Mann, M. Accurate Proteome-Wide Label-Free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol. Cell Proteomics 2014, 13, 2513–2526. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus Computational Platform for Comprehensive Analysis of (Prote)Omics Data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Chion, M.; Carapito, C.; Bertrand, F. Accounting for Multiple Imputation-Induced Variability for Differential Analysis in Mass Spectrometry-Based Label-Free Quantitative Proteomics. PLoS Comput. Biol. 2022, 18, e1010420. [Google Scholar] [CrossRef]
- Mi, H.; Ebert, D.; Muruganujan, A.; Mills, C.; Albou, L.P.; Mushayamaha, T.; Thomas, P.D. PANTHER Version 16: A Revised Family Classification, Tree-Based Classification Tool, Enhancer Regions and Extensive API. Nucleic Acids Res. 2021, 49, D394–D403. [Google Scholar] [CrossRef]
- Thomas, P.D.; Campbell, M.J.; Kejariwal, A.; Mi, H.; Karlak, B.; Daverman, R.; Diemer, K.; Muruganujan, A.; Narechania, A. PANTHER: A Library of Protein Families and Subfamilies Indexed by Function. Genome Res. 2003, 13, 2129–2141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Szklarczyk, D.; Gable, A.L.; Nastou, K.C.; Lyon, D.; Kirsch, R.; Pyysalo, S.; Doncheva, N.T.; Legeay, M.; Fang, T.; Bork, P.; et al. The STRING Database in 2021: Customizable Protein-Protein Networks, and Functional Characterization of User-Uploaded Gene/Measurement Sets. Nucleic Acids Res. 2021, 49, D605–D612. [Google Scholar] [CrossRef]
- Koutrouli, M.; Karatzas, E.; Papanikolopoulou, K.; Pavlopoulos, G.A. NORMA: The Network Makeup Artist—A Web Tool for Network Annotation Visualization. Genom. Proteom. Bioinform. 2021, 20, 578–586. [Google Scholar] [CrossRef]
- Pomaznoy, M.; Ha, B.; Peters, B. GOnet: A Tool for Interactive Gene Ontology Analysis. BMC Bioinform. 2018, 19, 470. [Google Scholar] [CrossRef]
- Teo, G.; Liu, G.; Zhang, J.; Nesvizhskii, A.I.; Gingras, A.C.; Choi, H. SAINTexpress: Improvements and Additional Features in Significance Analysis of INTeractome Software. J. Proteomics 2014, 100, 37–43. [Google Scholar] [CrossRef] [Green Version]
- Mellacheruvu, D.; Wright, Z.; Couzens, A.L.; Lambert, J.P.; St-Denis, N.A.; Li, T.; Miteva, Y.V.; Hauri, S.; Sardiu, M.E.; Low, T.Y.; et al. The CRAPome: A Contaminant Repository for Affinity Purification–Mass Spectrometry Data. Nat. Methods 2013, 10, 730–736. [Google Scholar] [CrossRef] [PubMed]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2009. [Google Scholar]
Gene Ontology Biological Processes | Count | p-Value | Identified Proteins |
---|---|---|---|
Cilium assembly (GO: 0060271) | 10 | 3.23 × 10−10 | NUDCD3, PIBF1, CEP131, PCM1, C2CD3, KIAA0753, CEP350, CCDC66, SSX2IP, and OFD1 |
Protein localization to the centrosome (GO:0071539) | 9 | 2.39 × 10−18 | PIBF1, CEP131, KIAA0753, NUDCD3, CEP350, CEP192, C2CD3, PCM1, and CCDC14 |
Centriole replication (GO:0007099) | 5 | 1.54 × 10−9 | CCP110, CEP192, CEP152, KIAA0753 and C2CD3 |
Non-motile cilium assembly (GO:1905515) | 5 | 9.68 × 10−8 | PCM1, C2CD3, PIBF1, CEP131 and CEP350 |
snoRNA localization (GO:0048254) | 2 | 6.90 × 10−5 | PIH1D1 and ZNHIT6 |
Cellular Localization 1 | Count | Identified Baits 2 |
---|---|---|
Centrosome | 7 | SASS6 (0.832), STIL (0.843), PCNT (0.846), CCDC14 (0.851), LATS1 (0.856), CEP135 (0.862), CDK5RAP2 (0.875) |
Cell junction | 2 | LATS1 (0.856), AMOT (0.860) |
Golgi membrane | 1 | GOLGA1 (0.874) |
Intermediate filament | 1 | KRT19 (0.868) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodriguez-Calado, S.; Van Damme, P.; Avilés, F.X.; Candiota, A.P.; Tanco, S.; Lorenzo, J. Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly. Int. J. Mol. Sci. 2023, 24, 1273. https://doi.org/10.3390/ijms24021273
Rodriguez-Calado S, Van Damme P, Avilés FX, Candiota AP, Tanco S, Lorenzo J. Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly. International Journal of Molecular Sciences. 2023; 24(2):1273. https://doi.org/10.3390/ijms24021273
Chicago/Turabian StyleRodriguez-Calado, Sergi, Petra Van Damme, Francesc Xavier Avilés, Ana Paula Candiota, Sebastian Tanco, and Julia Lorenzo. 2023. "Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly" International Journal of Molecular Sciences 24, no. 2: 1273. https://doi.org/10.3390/ijms24021273
APA StyleRodriguez-Calado, S., Van Damme, P., Avilés, F. X., Candiota, A. P., Tanco, S., & Lorenzo, J. (2023). Proximity Mapping of CCP6 Reveals Its Association with Centrosome Organization and Cilium Assembly. International Journal of Molecular Sciences, 24(2), 1273. https://doi.org/10.3390/ijms24021273