Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms
Abstract
:1. Introduction
2. Results
2.1. Novel In Vivo Electrophysiological Evaluation System for Analyzing the Spinal Cord–Penile Neurotransmission Mechanism
2.2. In Vivo Extracellular Recordings in the Deep Spinal Dorsal Horn (Lamina III and IV) of Innocuous Stimuli-Evoked Neuronal Firing in the Genital Area
2.3. In Vivo Extracellular Recordings in the Superficial Spinal Dorsal Horn (Lamina I and II) of Noxious Stimuli-Evoked Neuronal Firing in the Genital Area
2.4. Effect of Lidocaine on Mechanical Stimulation-Induced Neuronal Firing by vFF to the Penis in Electrophysiological Studies in the Spinal Dorsal Horn
2.5. In Vivo Whole-Cell Patch-Clamp Recordings in the Dorsal Horn of Neuronal Firing in the Genital Area Evoked Using Various Stimuli
2.6. In Vivo Electrophysiological Recordings in the Pelvic Nerve of Mechanical Stimuli-Evoked Nerve Firing in the Genital Area
3. Discussion
4. Materials and Methods
4.1. Animals
4.2. In Vivo Extracellular Recording from the Adult Rat Spinal Dorsal Horn Neurons
4.3. In Vivo Patch-Clamp Recording from the Adult Rat Spinal Dorsal Horn Neurons
4.4. In Vivo Electrophysiological Recording from the Pelvic Nerve
4.5. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Podnar, S.; Vodušek, D.B. Sexual dysfunction in patients with peripheral nervous system lesions. Handb. Clin. Neurol. 2015, 130, 179–202. [Google Scholar] [CrossRef]
- Vignoli, G.C. Premature ejaculation: New electrophysiologic approach. Urology 1978, 11, 81–82. [Google Scholar] [CrossRef]
- Xin, Z.C.; Chung, W.S.; Choi, Y.D.; Seong, D.H.; Choi, Y.J.; Choi, H.K. Penile sensitivity in patients with primary premature ejaculation. J. Urol. 1996, 156, 979–981. [Google Scholar] [CrossRef]
- Hicks, C.W.; Wang, D.; Windham, B.G.; Selvin, E. Association of peripheral neuropathy with erectile dysfunction in US men. Am. J. Med. 2021, 134, 282–284. [Google Scholar] [CrossRef]
- Azadzoi, K.M.; Siroky, M.B. Neurologic factors in female sexual function and dysfunction. Korean J. Urol. 2010, 51, 443–449. [Google Scholar] [CrossRef] [Green Version]
- Goldstein, I.; Komisaruk, B.R.; Pukall, C.F.; Kim, N.N.; Goldstein, A.T.; Goldstein, S.W.; Hartzell-Cushanick, R.; Kellogg-Spadt, S.; Kim, C.W.; Jackowich, R.A.; et al. International Society for the Study of Women’s Sexual Health (ISSWSH) review of epidemiology and pathophysiology, and a consensus nomenclature and process of care for the management of persistent genital arousal disorder/genito-pelvic dysesthesia (PGAD/GPD). J. Sex. Med. 2021, 18, 665–697. [Google Scholar] [CrossRef]
- Schistosomiasis. Available online: https://www.who.int/news-room/fact-sheets/detail/schistosomiasis (accessed on 1 November 2022).
- Engels, D.; Hotez, P.J.; Ducker, C.; Gyapong, M.; Bustinduy, A.L.; Secor, W.E.; Harrison, W.; Theobald, S.; Thomson, R.; Gamba, V.; et al. Integration of prevention and control measures for female genital schistosomiasis, HIV and cervical cancer. Bull. World Health Organ. 2020, 98, 615–624. [Google Scholar] [CrossRef]
- Althof, S.E.; McMahon, C.G.; Waldinger, M.D.; Serefoglu, E.C.; Shindel, A.W.; Adaikan, P.G.; Becher, E.; Dean, J.; Giuliano, F.; Hellstrom, W.J.; et al. An update of the International Society of Sexual Medicine’s guidelines for the diagnosis and treatment of premature ejaculation (PE). J. Sex. Med. 2014, 11, 1392–1422. [Google Scholar] [CrossRef] [Green Version]
- Taylor, D.C.; Korf, H.W.; Pierau, F.K. Distribution of sensory neurons of the pudendal nerve in the dorsal root ganglia and their projection to the spinal cord. Horseradish-peroxidase studies in the rat. Cell Tissue Res. 1982, 226, 555–564. [Google Scholar] [CrossRef]
- Hubscher, C.H. Ascending spinal pathways from sexual organs: Effects of chronic spinal lesions. Prog. Brain Res. 2006, 152, 401–414. [Google Scholar] [CrossRef]
- Carro-Juárez, M.; Rodríguez-Manzo, G. The spinal pattern generator for ejaculation. Brain Res. Rev. 2008, 58, 106–120. [Google Scholar] [CrossRef]
- Tanahashi, M.; Karicheti, V.; Thor, K.B.; Marson, L. Characterization of bulbospongiosus muscle reflexes activated by urethral distension in male rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R737–R747. [Google Scholar] [CrossRef] [Green Version]
- Kiyohara, K.; Uta, D.; Nagaoka, Y.; Kino, Y.; Nonaka, H.; Ninomiya-Baba, M.; Fujita, T. Involvement of histamine H3 receptor agonism in premature ejaculation found by studies in rats. Int. J. Mol. Sci. 2022, 23, 2291. [Google Scholar] [CrossRef]
- Ohashi, N.; Uta, D.; Sasaki, M.; Ohashi, M.; Kamiya, Y.; Kohno, T. Acetaminophen metabolite N-acylphenolamine induces analgesia via transient receptor potential vanilloid 1 receptors expressed on the primary afferent terminals of C-fibers in the spinal dorsal horn. Anesthesiology 2017, 127, 355–371. [Google Scholar] [CrossRef]
- Uta, D.; Hattori, T.; Yoshimura, M. Effect of alpha 1-adrnoceptor antagonists on postsynaptic sensitivity in substantia gelatinosa neurons from lumbosacral spinal cord in rats using slice patch-clamp technique for mEPSC. Int. Neurourol. J. 2020, 24, 135–143. [Google Scholar] [CrossRef]
- Uta, D.; Koga, K.; Furue, H.; Imoto, K.; Yoshimura, M. L-bupivacaine inhibition of nociceptive transmission in rat peripheral and dorsal horn neurons. Anesthesiology 2021, 134, 88–102. [Google Scholar] [CrossRef]
- Furue, H.; Narikawa, K.; Kumamoto, E.; Yoshimura, M. Responsiveness of rat substantia gelatinosa neurones to mechanical but not thermal stimuli revealed by in vivo patch-clamp recording. J. Physiol. 1999, 521 Pt 2, 529–535. [Google Scholar] [CrossRef]
- Uta, D.; Kato, G.; Doi, A.; Andoh, T.; Kume, T.; Yoshimura, M.; Koga, K. Animal models of chronic pain increase spontaneous glutamatergic transmission in adult rat spinal dorsal horn in vitro and in vivo. Biochem. Biophys. Res. Commun. 2019, 512, 352–359. [Google Scholar] [CrossRef]
- Kiguchi, N.; Uta, D.; Ding, H.; Uchida, H.; Saika, F.; Matsuzaki, S.; Fukazawa, Y.; Abe, M.; Sakimura, K.; Ko, M.C.; et al. GRP receptor and AMPA receptor cooperatively regulate itch-responsive neurons in the spinal dorsal horn. Neuropharmacology 2020, 170, 108025. [Google Scholar] [CrossRef]
- Uta, D.; Tsuboshima, K.; Nishijo, H.; Mizumura, K.; Taguchi, T. Neuronal sensitization and synaptic facilitation in the superficial dorsal horn of a rat reserpine-induced pain model. Neuroscience 2021, 479, 125–139. [Google Scholar] [CrossRef]
- Uta, D.; Oti, T.; Sakamoto, T.; Sakamoto, H. In vivo electrophysiology of peptidergic neurons in deep layers of the lumbar spinal cord after optogenetic stimulation of hypothalamic paraventricular oxytocin neurons in rats. Int. J. Mol. Sci. 2021, 22, 3400. [Google Scholar] [CrossRef] [PubMed]
- Todd, A.J. Neuronal circuitry for pain processing in the dorsal horn. Nat. Rev. Neurosci. 2010, 11, 823–836. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Caterina, M.J.; Schumacher, M.A.; Tominaga, M.; Rosen, T.A.; Levine, J.D.; Julius, D. The capsaicin receptor: A heat-activated ion channel in the pain pathway. Nature 1997, 389, 816–824. [Google Scholar] [CrossRef] [PubMed]
- Uta, D.; Furue, H.; Pickering, A.E.; Rashid, M.H.; Mizuguchi-Takase, H.; Katafuchi, T.; Imoto, K.; Yoshimura, M. TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord. Eur. J. Neurosci. 2010, 31, 1960–1973. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uta, D.; Yoshimura, M.; Koga, K. Chronic pain models amplify transient receptor potential vanilloid 1 (TRPV1) receptor responses in adult rat spinal dorsal horn. Neuropharmacology 2019, 160, 107753. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Uta, D.; Kiyohara, K.; Nagaoka, Y.; Kino, Y.; Fujita, T. Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms. Int. J. Mol. Sci. 2023, 24, 1434. https://doi.org/10.3390/ijms24021434
Uta D, Kiyohara K, Nagaoka Y, Kino Y, Fujita T. Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms. International Journal of Molecular Sciences. 2023; 24(2):1434. https://doi.org/10.3390/ijms24021434
Chicago/Turabian StyleUta, Daisuke, Kazuhiro Kiyohara, Yuuya Nagaoka, Yurika Kino, and Takuya Fujita. 2023. "Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms" International Journal of Molecular Sciences 24, no. 2: 1434. https://doi.org/10.3390/ijms24021434
APA StyleUta, D., Kiyohara, K., Nagaoka, Y., Kino, Y., & Fujita, T. (2023). Developing a Novel Method for the Analysis of Spinal Cord–Penile Neurotransmission Mechanisms. International Journal of Molecular Sciences, 24(2), 1434. https://doi.org/10.3390/ijms24021434