Dry Eye Disease: What Is the Role of Vitamin D?
Abstract
:1. Introduction
2. Dry Eye Disease
3. Pathogenic Mechanisms of DED
4. Treatment of DED
5. Evidence Linking DED and Vitamin D
6. Vitamin D Supplementation to Manage DED
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bikle, D.D.; Vitamin, D. Metabolism, Mechanism of Action, and Clinical Applications. Chem. Biol. 2014, 21, 319–329. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ross, A.C.; Caballero, B.; Cousins, R.J.; Tucker, K.L.; Ziegler, T.R. Modern Nutrition in Health and Disease; Wolters Kluwer Health: Philadelphia, PA, USA, 2012; ISBN 978-1-4698-1659-3. [Google Scholar]
- Erdman, J.W.; MacDonald, I.; Zeisel, S.H. Present Knowledge in Nutrition, 10th ed.; International Life Sciences Institute Wiley-Blackwell: Washington, DC, USA; Ames, IA, USA, 2012; ISBN 978-1-119-94604-5. [Google Scholar]
- Autier, P.; Boniol, M.; Pizot, C.; Mullie, P. Vitamin D Status and Ill Health: A Systematic Review. Lancet Diabetes Endocrinol. 2014, 2, 76–89. [Google Scholar] [CrossRef] [PubMed]
- Institute of Medicine (US) Committee to Review Dietary Reference Intakes for Vitamin D and Calcium. Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; The National Academies Collection: Reports funded by National Institutes of Health; National Academies Press (US): Washington, DC, USA, 2011. [Google Scholar]
- Holick, M.F.; Binkley, N.C.; Bischoff-Ferrari, H.A.; Gordon, C.M.; Hanley, D.A.; Heaney, R.P.; Murad, M.H.; Weaver, C.M. Evaluation, Treatment, and Prevention of Vitamin D Deficiency: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2011, 96, 1911–1930. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kennel, K.A.; Drake, M.T.; Hurley, D.L. Vitamin D Deficiency in Adults: When to Test and How to Treat. Mayo Clin. Proc. 2010, 85, 752–758. [Google Scholar] [CrossRef] [Green Version]
- Gröber, U.; Spitz, J.; Reichrath, J.; Kisters, K.; Holick, M.F. Vitamin D: Update 2013: From Rickets Prophylaxis to General Preventive Healthcare. Derm.-Endocrinol. 2013, 5, 331–347. [Google Scholar] [CrossRef]
- Holick, M.F. Vitamin D Deficiency. N. Engl. J. Med. 2007, 357, 266–281. [Google Scholar] [CrossRef]
- Giustina, A.; Adler, R.A.; Binkley, N.; Bollerslev, J.; Bouillon, R.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Formenti, A.M.; Lazaretti-Castro, M.; et al. Consensus Statement from 2nd International Conference on Controversies in Vitamin D. Rev. Endocr. Metab. Disord. 2020, 21, 89–116. [Google Scholar] [CrossRef] [Green Version]
- Bilezikian, J.P.; Formenti, A.M.; Adler, R.A.; Binkley, N.; Bouillon, R.; Lazaretti-Castro, M.; Marcocci, C.; Napoli, N.; Rizzoli, R.; Giustina, A. Vitamin D: Dosing, Levels, Form, and Route of Administration: Does One Approach Fit All? Rev. Endocr. Metab. Disord. 2021, 22, 1201–1218. [Google Scholar] [CrossRef]
- Heaney, R.P. Guidelines for Optimizing Design and Analysis of Clinical Studies of Nutrient Effects. Nutr. Rev. 2014, 72, 48–54. [Google Scholar] [CrossRef]
- Giustina, A.; Bouillon, R.; Binkley, N.; Sempos, C.; Adler, R.A.; Bollerslev, J.; Dawson-Hughes, B.; Ebeling, P.R.; Feldman, D.; Heijboer, A.; et al. Controversies in Vitamin D: A Statement From the Third International Conference. JBMR Plus 2020, 4. [Google Scholar] [CrossRef]
- Knutsen, K.V.; Brekke, M.; Gjelstad, S.; Lagerløv, P. Vitamin D Status in Patients with Musculoskeletal Pain, Fatigue and Headache: A Cross-Sectional Descriptive Study in a Multi-Ethnic General Practice in Norway. Scand. J. Prim. Health Care 2010, 28, 166–171. [Google Scholar] [CrossRef] [Green Version]
- Pereira, F.; Larriba, M.J.; Muñoz, A. Vitamin D and Colon Cancer. Endocr. Relat. Cancer 2012, 19, R51–R71. [Google Scholar] [CrossRef] [Green Version]
- Klampfer, L. Vitamin D and Colon Cancer. World J. Gastrointest. Oncol. 2014, 6, 430. [Google Scholar] [CrossRef] [Green Version]
- Ordóñez Mena, J.M.; Brenner, H. Vitamin D and Cancer: An Overview on Epidemiological Studies. Adv. Exp. Med. Biol. 2014, 810, 17–32. [Google Scholar]
- Boucher, B.J.; John, W.G.; Noonan, K. Hypovitaminosis D Is Associated with Insulin Resistance and β Cell Dysfunction. Am. J. Clin. Nutr. 2004, 80, 1666. [Google Scholar] [CrossRef] [Green Version]
- Norman, P.E.; Powell, J.T. Vitamin D and Cardiovascular Disease. Circ. Res. 2014, 114, 379–393. [Google Scholar] [CrossRef]
- Pekkanen, M.P.; Ukkola, O.; Hedberg, P.; Piira, O.P.; Lepojärvi, S.; Lumme, J.; Tulppo, M.P.; Huikuri, H.V. Serum 25-Hydroxyvitamin D Is Associated with Major Cardiovascular Risk Factors and Cardiac Structure and Function in Patients with Coronary Artery Disease. Nutr. Metab. Cardiovasc. Dis. 2015, 25, 471–478. [Google Scholar] [CrossRef]
- Myint, A.; Sauk, J.S.; Limketkai, B.N. The Role of Vitamin D in Inflammatory Bowel Disease: A Guide for Clinical Practice. Expert Rev. Gastroenterol. Hepatol. 2020, 14, 539–552. [Google Scholar] [CrossRef]
- Yazar, S.; Hewitt, A.W.; Black, L.J.; McKnight, C.M.; Mountain, J.A.; Sherwin, J.C.; Oddy, W.H.; Coroneo, M.T.; Lucas, R.M.; Mackey, D.A. Myopia Is Associated With Lower Vitamin D Status in Young Adults. Investig. Opthalmology Vis. Sci. 2014, 55, 4552. [Google Scholar] [CrossRef] [Green Version]
- Etemadifar, M.; Abtahi, S.-H.; Razmjoo, H.; Abtahi, M.-A.; Dehghani, A.; Salari, M.; Maghzi, A.-H.; Akbari, M. 25-Hydroxyvitamin D Concentrations in Patients with Optic Neuritis as a Clinically Isolated Syndrome and Healthy Controls. Int. J. Prev. Med. 2012, 3, 313–317. [Google Scholar]
- Johnson, J.A.; Grande, J.P.; Roche, P.C.; Campbell, R.J.; Kumar, R. Immuno-Localization of the Calcitriol Receptor, Calbinclin-D 28k and the Plasma Membrane Calcium Pump in the Human Eye. Curr. Eye Res. 1995, 14, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.; Pintea, V.; Lin, Y.; Hammock, B.D.; Watsky, M.A. Vitamin D Enhances Corneal Epithelial Barrier Function. Investig. Opthalmology Vis. Sci. 2011, 52, 7359. [Google Scholar] [CrossRef] [PubMed]
- Alsalem, J.A.; Patel, D.; Susarla, R.; Coca-Prados, M.; Bland, R.; Walker, E.A.; Rauz, S.; Wallace, G.R. Characterization of Vitamin D Production by Human Ocular Barrier Cells. Investig. Opthalmology Vis. Sci. 2014, 55, 2140. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fogagnolo, P.; De Cilla’, S.; Alkabes, M.; Sabella, P.; Rossetti, L. A Review of Topical and Systemic Vitamin Supplementation in Ocular Surface Diseases. Nutrients 2021, 13, 1998. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Ubels, J.L.; Schotanus, M.P.; Yin, Z.; Pintea, V.; Hammock, B.D.; Watsky, M.A. Enhancement of Vitamin D Metabolites in the Eye Following Vitamin D3 Supplementation and UV-B Irradiation. Curr. Eye Res. 2012, 37, 871–878. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, M.E.; Pflugfelder, S.C. Inflammation in Dry Eye. Ocul. Surf. 2004, 2, 124–130. [Google Scholar] [CrossRef]
- Dartt, D.A. Neural Regulation of Lacrimal Gland Secretory Processes: Relevance in Dry Eye Diseases. Prog. Retin. Eye Res. 2009, 28, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Rolando, M.; Refojo, M.F.; Kenyon, K.R. Tear Water Evaporation and Eye Surface Diseases. Ophthalmologica 1985, 190, 147–149. [Google Scholar] [CrossRef]
- Khamar, P.; Nair, A.P.; Shetty, R.; Vaidya, T.; Subramani, M.; Ponnalagu, M.; Dhamodaran, K.; D’souza, S.; Ghosh, A.; Pahuja, N.; et al. Dysregulated Tear Fluid Nociception-Associated Factors, Corneal Dendritic Cell Density, and Vitamin D Levels in Evaporative Dry Eye. Investig. Opthalmology Vis. Sci. 2019, 60, 2532. [Google Scholar] [CrossRef] [Green Version]
- Shetty, R.; Sethu, S.; Chevour, P.; Deshpande, K.; Pahuja, N.; Nagaraja, H.; Pindipapanahalli, N.; Ghosh, A. Lower Vitamin D Level and Distinct Tear Cytokine Profile Were Observed in Patients with Mild Dry Eye Signs but Exaggerated Symptoms. Transl. Vis. Sci. Technol. 2016, 5, 16. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. The Epidemiology of Dry Eye Disease: Report of the Epidemiology Subcommittee of the International Dry Eye WorkShop (2007). Ocul. Surf. 2007, 5, 93–107. [Google Scholar] [CrossRef]
- Rhee, M.K.; Mah, F.S. Inflammation in Dry Eye Disease. Ophthalmology 2017, 124, S14–S19. [Google Scholar] [CrossRef]
- Savini, G. The Challenge of Dry Eye Diagnosis. Clin. Ophthalmol. 2008, 2, 31. [Google Scholar] [CrossRef] [Green Version]
- Marshall, L.L.; Roach, J.M. Treatment of Dry Eye Disease. Consult. Pharm. 2016, 31, 96–106. [Google Scholar] [CrossRef]
- Zhu, W.; Wu, Y.; Li, G.; Wang, J.; Li, X. Efficacy of Polyunsaturated Fatty Acids for Dry Eye Syndrome: A Meta-Analysis of Randomized Controlled Trials. Nutr. Rev. 2014, 72, 662–671. [Google Scholar] [CrossRef]
- Miljanović, B.; Dana, R.; Sullivan, D.A.; Schaumberg, D.A. Impact of Dry Eye Syndrome on Vision-Related Quality of Life. Am. J. Ophthalmol. 2007, 143, 409–415. [Google Scholar] [CrossRef] [Green Version]
- Anonymous. The Definition and Classification of Dry Eye Disease: Report of the Definition and Classification Subcommittee of the International Dry Eye Workshop (2007). Ocul. Surf. 2007, 5, 75–92. [Google Scholar] [CrossRef]
- Abetz, L.; Rajagopalan, K.; Mertzanis, P.; Begley, C.; Barnes, R.; Chalmers, R. The impact of dry eye on everyday life (IDEEL) Study Group Development and Validation of the Impact of Dry Eye on Everyday Life (IDEEL) Questionnaire, a Patient-Reported Outcomes (PRO) Measure for the Assessment of the Burden of Dry Eye on Patients. Health Qual. Life Outcomes 2011, 9, 111. [Google Scholar] [CrossRef] [Green Version]
- Yu, J.; Asche, C.V.; Fairchild, C.J. The Economic Burden of Dry Eye Disease in the United States: A Decision Tree Analysis. Cornea 2011, 30, 379–387. [Google Scholar] [CrossRef]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II Epidemiology Report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef]
- Aljeaidi, M.; Keen, C.; Bell, J.S.; Cooper, T.; Robson, L.; Tan, E.C.K. Dry Eyes, Ocular Lubricants, and Use of Systemic Medications Known or Suspected to Cause Dry Eyes in Residents of Aged Care Services. Int. J. Environ. Res. Public. Health 2020, 17, 5349. [Google Scholar] [CrossRef] [PubMed]
- Galor, A.; Kumar, N.; Feuer, W.; Lee, D.J. Environmental Factors Affect the Risk of Dry Eye Syndrome in a United States Veteran Population. Ophthalmology 2014, 121, 972–973. [Google Scholar] [CrossRef] [PubMed]
- Han, S.B. Prevalence of Dry Eye Disease in an Elderly Korean Population. Arch. Ophthalmol. 2011, 129, 633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.J. Prevalence and Risk Factors Associated with Dry Eye Symptoms: A Population Based Study in Indonesia. Br. J. Ophthalmol. 2002, 86, 1347–1351. [Google Scholar] [CrossRef]
- Vehof, J.; Kozareva, D.; Hysi, P.G.; Hammond, C.J. Prevalence and Risk Factors of Dry Eye Disease in a British Female Cohort. Br. J. Ophthalmol. 2014, 98, 1712–1717. [Google Scholar] [CrossRef]
- Chhadva, P.; Goldhardt, R.; Galor, A. Meibomian Gland Disease: The Role of Gland Dysfunction in Dry Eye Disease. Ophthalmology 2017, 124, S20–S26. [Google Scholar] [CrossRef]
- Suzuki, T.; Teramukai, S.; Kinoshita, S. Meibomian Glands and Ocular Surface Inflammation. Ocul. Surf. 2015, 13, 133–149. [Google Scholar] [CrossRef]
- Stumpf, W.E.; Hayakawa, N. Salivary Glands Epithelial and Myoepithelial Cells Are Major Vitamin D Targets. Eur. J. Drug Metab. Pharmacokinet. 2007, 32, 123–129. [Google Scholar] [CrossRef]
- Geldenhuys, S.; Hart, P.H.; Endersby, R.; Jacoby, P.; Feelisch, M.; Weller, R.B.; Matthews, V.; Gorman, S. Ultraviolet Radiation Suppresses Obesity and Symptoms of Metabolic Syndrome Independently of Vitamin D in Mice Fed a High-Fat Diet. Diabetes 2014, 63, 3759–3769. [Google Scholar] [CrossRef] [Green Version]
- Cheng, H.M.; Kim, S.; Park, G.-H.; Chang, S.E.; Bang, S.; Won, C.H.; Lee, M.W.; Choi, J.H.; Moon, K.C. Low Vitamin D Levels Are Associated with Atopic Dermatitis, but Not Allergic Rhinitis, Asthma, or IgE Sensitization, in the Adult Korean Population. J. Allergy Clin. Immunol. 2014, 133, 1048–1055. [Google Scholar] [CrossRef]
- Choi, H.S.; Oh, H.J.; Choi, H.; Choi, W.H.; Kim, J.G.; Kim, K.M.; Kim, K.J.; Rhee, Y.; Lim, S.-K. Vitamin D Insufficiency in Korea—A Greater Threat to Younger Generation: The Korea National Health and Nutrition Examination Survey (KNHANES) 2008. J. Clin. Endocrinol. Metab. 2011, 96, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rhee, S.Y.; Hwang, Y.-C.; Chung, H.Y.; Woo, J.-T. Vitamin D and Diabetes in Koreans: Analyses Based on the Fourth Korea National Health and Nutrition Examination Survey (KNHANES), 2008–2009. Diabet. Med. 2012, 29, 1003–1010. [Google Scholar] [CrossRef] [PubMed]
- Shoari, A.; Kanavi, M.R.; Rasaee, M.J. Inhibition of Matrix Metalloproteinase-9 for the Treatment of Dry Eye Syndrome; a Review Study. Exp. Eye Res. 2021, 205, 108523. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Asbell, P.A. The Core Mechanism of Dry Eye Disease Is Inflammation. Eye Contact Lens Sci. Clin. Pract. 2014, 40, 248–256. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stern, M.E.; Schaumburg, C.S.; Dana, R.; Calonge, M.; Niederkorn, J.Y.; Pflugfelder, S.C. Autoimmunity at the Ocular Surface: Pathogenesis and Regulation. Mucosal Immunol. 2010, 3, 425–442. [Google Scholar] [CrossRef] [Green Version]
- Pflugfelder, S.C.; de Paiva, C.S. The Pathophysiology of Dry Eye Disease. Ophthalmology 2017, 124, S4–S13. [Google Scholar] [CrossRef]
- Ganesalingam, K.; Ismail, S.; Sherwin, T.; Craig, J.P. Molecular Evidence for the Role of Inflammation in Dry Eye Disease. Clin. Exp. Optom. 2019, 102, 446–454. [Google Scholar] [CrossRef] [Green Version]
- Bron, A.J.; de Paiva, C.S.; Chauhan, S.K.; Bonini, S.; Gabison, E.E.; Jain, S.; Knop, E.; Markoulli, M.; Ogawa, Y.; Perez, V.; et al. TFOS DEWS II Pathophysiology Report. Ocul. Surf. 2017, 15, 438–510. [Google Scholar] [CrossRef]
- Barbosa, F.; Xiao, Y.; Bian, F.; Coursey, T.; Ko, B.; Clevers, H.; de Paiva, C.; Pflugfelder, S. Goblet Cells Contribute to Ocular Surface Immune Tolerance—Implications for Dry Eye Disease. Int. J. Mol. Sci. 2017, 18, 978. [Google Scholar] [CrossRef] [Green Version]
- Stern, M.E.; Schaumburg, C.S.; Siemasko, K.F.; Gao, J.; Wheeler, L.A.; Grupe, D.A.; De Paiva, C.S.; Calder, V.L.; Calonge, M.; Niederkorn, J.Y.; et al. Autoantibodies Contribute to the Immunopathogenesis of Experimental Dry Eye Disease. Investig. Opthalmology Vis. Sci. 2012, 53, 2062. [Google Scholar] [CrossRef]
- Zhang, X.; Volpe, E.A.; Gandhi, N.B.; Schaumburg, C.S.; Siemasko, K.F.; Pangelinan, S.B.; Kelly, S.D.; Hayday, A.C.; Li, D.-Q.; Stern, M.E.; et al. NK Cells Promote Th-17 Mediated Corneal Barrier Disruption in Dry Eye. PLoS ONE 2012, 7, e36822. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.Y.; Han, S.J.; Nam, S.M.; Yoon, S.C.; Ahn, J.M.; Kim, T.-I.; Kim, E.K.; Seo, K.Y. Analysis of Tear Cytokines and Clinical Correlations in Sjögren Syndrome Dry Eye Patients and Non–Sjögren Syndrome Dry Eye Patients. Am. J. Ophthalmol. 2013, 156, 247–253. [Google Scholar] [CrossRef]
- Aragona, P.; Aguennouz, M.; Rania, L.; Postorino, E.; Sommario, M.S.; Roszkowska, A.M.; De Pasquale, M.G.; Pisani, A.; Puzzolo, D. Matrix Metalloproteinase 9 and Transglutaminase 2 Expression at the Ocular Surface in Patients with Different Forms of Dry Eye Disease. Ophthalmology 2015, 122, 62–71. [Google Scholar] [CrossRef]
- Solomon, A.; Dursun, D.; Liu, Z.; Xie, Y.; Macri, A.; Pflugfelder, S.C. Pro- and Anti-Inflammatory Forms of Interleukin-1 in the Tear Fluid and Conjunctiva of Patients with Dry-Eye Disease. Investig. Ophthalmol. Vis. Sci. 2001, 42, 2283–2292. [Google Scholar]
- Thulasi, P.; Djalilian, A.R. Update in Current Diagnostics and Therapeutics of Dry Eye Disease. Ophthalmology 2017, 124, S27–S33. [Google Scholar] [CrossRef]
- Bron, A.J.; Tomlinson, A.; Foulks, G.N.; Pepose, J.S.; Baudouin, C.; Geerling, G.; Nichols, K.K.; Lemp, M.A. Rethinking Dry Eye Disease: A Perspective on Clinical Implications. Ocul. Surf. 2014, 12, S1–S31. [Google Scholar] [CrossRef]
- Versura, P.; Profazio, V.; Campos, E.C. Performance of Tear Osmolarity Compared to Previous Diagnostic Tests for Dry Eye Diseases. Curr. Eye Res. 2010, 35, 553–564. [Google Scholar] [CrossRef]
- Tomlinson, A.; Khanal, S.; Ramaesh, K.; Diaper, C.; McFadyen, A. Tear Film Osmolarity: Determination of a Referent for Dry Eye Diagnosis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4309. [Google Scholar] [CrossRef] [Green Version]
- Luo, L.; Li, D.-Q.; Doshi, A.; Farley, W.; Corrales, R.M.; Pflugfelder, S.C. Experimental Dry Eye Stimulates Production of Inflammatory Cytokines and MMP-9 and Activates MAPK Signaling Pathways on the Ocular Surface. Investig. Ophthalmol. Vis. Sci. 2004, 45, 4293. [Google Scholar] [CrossRef]
- Li, D.-Q.; Luo, L.; Chen, Z.; Kim, H.-S.; Song, X.J.; Pflugfelder, S.C. JNK and ERK MAP Kinases Mediate Induction of IL-1β, TNF-α and IL-8 Following Hyperosmolar Stress in Human Limbal Epithelial Cells. Exp. Eye Res. 2006, 82, 588–596. [Google Scholar] [CrossRef] [Green Version]
- Stevenson, W. Dry Eye Disease: An Immune-Mediated Ocular Surface Disorder. Arch. Ophthalmol. 2012, 130, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Paiva, C.S.; Villarreal, A.L.; Corrales, R.M.; Rahman, H.T.; Chang, V.Y.; Farley, W.J.; Stern, M.E.; Niederkorn, J.Y.; Li, D.-Q.; Pflugfelder, S.C. Dry Eye–Induced Conjunctival Epithelial Squamous Metaplasia Is Modulated by Interferon-γ. Investig. Ophthalmol. Vis. Sci. 2007, 48, 2553. [Google Scholar] [CrossRef]
- Stern, M.E.; Gao, J.; Schwalb, T.A.; Ngo, M.; Tieu, D.D.; Chan, C.-C.; Reis, B.L.; Whitcup, S.M.; Thompson, D.; Smith, J.A. Conjunctival T-Cell Subpopulations in Sjögren’s and Non-Sjögren’s Patients with Dry Eye. Investig. Ophthalmol. Vis. Sci. 2002, 43, 2609–2614. [Google Scholar]
- El Annan, J.; Chauhan, S.K.; Ecoiffier, T.; Zhang, Q.; Saban, D.R.; Dana, R. Characterization of Effector T Cells in Dry Eye Disease. Investig. Ophthalmol. Vis. Sci. 2009, 50, 3802. [Google Scholar] [CrossRef] [PubMed]
- Susarla, R.; Liu, L.; Walker, E.A.; Bujalska, I.J.; Alsalem, J.; Williams, G.P.; Sreekantam, S.; Taylor, A.E.; Tallouzi, M.; Southworth, H.S.; et al. Cortisol Biosynthesis in the Human Ocular Surface Innate Immune Response. PLoS ONE 2014, 9, e94913. [Google Scholar] [CrossRef] [Green Version]
- Barabino, S.; Chen, Y.; Chauhan, S.; Dana, R. Ocular Surface Immunity: Homeostatic Mechanisms and Their Disruption in Dry Eye Disease. Prog. Retin. Eye Res. 2012, 31, 271–285. [Google Scholar] [CrossRef] [Green Version]
- Baudouin, C. The Pathology of Dry Eye. Surv. Ophthalmol. 2001, 45, S211–S220. [Google Scholar] [CrossRef]
- Stern, M.E.; Schaumburg, C.S.; Pflugfelder, S.C. Dry Eye as a Mucosal Autoimmune Disease. Int. Rev. Immunol. 2013, 32, 19–41. [Google Scholar] [CrossRef]
- Yokoi, N.; Georgiev, G.A. Tear Film–Oriented Diagnosis and Tear Film–Oriented Therapy for Dry Eye Based on Tear Film Dynamics. Investig. Ophthalmol. Vis. Sci. 2018, 59, DES13. [Google Scholar] [CrossRef] [Green Version]
- Barabino, S.; Benitez-del-Castillo, J.M.; Fuchsluger, T.; Labetoulle, M.; Malachkova, N.; Meloni, M.; Paaske Utheim, T.; Rolando, M. Dry Eye Disease Treatment: The Role of Tear Substitutes, Their Future, and an Updated Classification. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8642–8652. [Google Scholar] [CrossRef]
- Aragona, P. Hyaluronan in the Treatment of Ocular Surface Disorders. In Chemistry and Biology of Hyaluronan; Elsevier: Amsterdam, The Netherlands, 2004; ISBN 978-0-08-044382-9. [Google Scholar]
- Dogru, M.; Tsubota, K. Pharmacotherapy of Dry Eye. Expert Opin. Pharmacother. 2011, 12, 325–334. [Google Scholar] [CrossRef]
- Guzmán, M.; Keitelman, I.; Sabbione, F.; Trevani, A.S.; Giordano, M.N.; Galletti, J.G. Desiccating Stress-Induced Disruption of Ocular Surface Immune Tolerance Drives Dry Eye Disease. Clin. Exp. Immunol. 2016, 184, 248–256. [Google Scholar] [CrossRef] [Green Version]
- Marsh, P. Topical Nonpreserved Methylprednisolone Therapy for Keratoconjunctivitis Sicca in Sjögren Syndrome. Ophthalmology 1999, 106, 811–816. [Google Scholar] [CrossRef]
- Araki-Sasaki, K.; Katsuta, O.; Mano, H.; Nagano, T.; Nakamura, M. The Effects of Oral and Topical Corticosteroid in Rabbit Corneas. BMC Ophthalmol. 2016, 16, 160. [Google Scholar] [CrossRef] [PubMed]
- Giannaccare, G.; Pellegrini, M.; Sebastiani, S.; Bernabei, F.; Roda, M.; Taroni, L.; Versura, P.; Campos, E.C. Efficacy of Omega-3 Fatty Acid Supplementation for Treatment of Dry Eye Disease: A Meta-Analysis of Randomized Clinical Trials. Cornea 2019, 38, 565–573. [Google Scholar] [CrossRef]
- Barabino, S.; Horwath-Winter, J.; Messmer, E.M.; Rolando, M.; Aragona, P.; Kinoshita, S. The Role of Systemic and Topical Fatty Acids for Dry Eye Treatment. Prog. Retin. Eye Res. 2017, 61, 23–34. [Google Scholar] [CrossRef]
- Sall, K.; Stevenson, O.D.; Mundorf, T.K.; Reis, B.L. Two Multicenter, Randomized Studies of the Efficacy and Safety of Cyclosporine Ophthalmic Emulsion in Moderate to Severe Dry Eye Disease11Reprint Requests to: Linda Lewis, 575 Anton Blvd, Suite 900, Costa Mesa, CA 92626. Ophthalmology 2000, 107, 631–639. [Google Scholar] [CrossRef] [PubMed]
- Perez, V.L.; Pflugfelder, S.C.; Zhang, S.; Shojaei, A.; Haque, R. Lifitegrast, a Novel Integrin Antagonist for Treatment of Dry Eye Disease. Ocul. Surf. 2016, 14, 207–215. [Google Scholar] [CrossRef] [Green Version]
- Aragona, P.; Tripodi, G.; Spinella, R.; Lagan, E.; Ferreri, G. The Effects of the Topical Administration of Non-Steroidal Anti-Inflammatory Drugs on Corneal Epithelium and Corneal Sensitivity in Normal Subjects. Eye 2000, 14, 206–210. [Google Scholar] [CrossRef] [Green Version]
- Aragona, P.; Stilo, A.; Ferreri, F.; Mobrici, M. Effects of the Topical Treatment with NSAIDs on Corneal Sensitivity and Ocular Surface of Sjögren’s Syndrome Patients. Eye 2005, 19, 535–539. [Google Scholar] [CrossRef] [Green Version]
- Bae, S.H.; Shin, Y.J.; Kim, H.K.; Hyon, J.Y.; Wee, W.R.; Park, S.G. Vitamin D Supplementation for Patients with Dry Eye Syndrome Refractory to Conventional Treatment. Sci. Rep. 2016, 6, 33083. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosenthal, P.; Borsook, D. Ocular neuropathic pain. Br. J. Ophthalmol. 2016, 100, 128–134. [Google Scholar] [CrossRef]
- Lin, H.; Yiu, S.C. Dry eye disease: A review of diagnostic approaches and treatments. Saudi J. Ophthalmol. 2014, 28, 173–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pflugfelder, S.C.; Maskin, S.L.; Anderson, B.; Chodosh, J.; Holland, E.J.; De Paiva, C.S.; Bartels, S.P.; Micuda, T.; Proskin, H.M.; Vogel, R. A randomized, double-masked, placebo-controlled, multicenter comparison of loteprednol etabonate ophthalmic suspension, 0.5%, and placebo for treatment of keratoconjunctivitis sicca in patients with delayed tear clearance. Am. J. Ophthalmol. 2004, 138, 444–457. [Google Scholar] [CrossRef] [PubMed]
- Reins, R.Y.; Hanlon, S.D.; Magadi, S.; McDermott, A.M. Effects of Topically Applied Vitamin D during Corneal Wound Healing. PLoS ONE 2016, 11, e0152889. [Google Scholar] [CrossRef] [Green Version]
- Holick, M.F. Vitamin D: Importance in the Prevention of Cancers, Type 1 Diabetes, Heart Disease, and Osteoporosis. Am. J. Clin. Nutr. 2004, 79, 362–371. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Zhang, J.; Ge, X.; Du, J.; Deb, D.K.; Li, Y.C. Vitamin D Receptor Inhibits Nuclear Factor ΚB Activation by Interacting with IκB Kinase β Protein. J. Biol. Chem. 2013, 288, 19450–19458. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Wang, J.; Li, J.; Li, T.; Chen, Y.; June, R.R.; Zheng, S.G. 1,25-Dihydroxyvitamin D3 Ameliorates Collagen-Induced Arthritis via Suppression of Th17 Cells Through MiR-124 Mediated Inhibition of IL-6 Signaling. Front. Immunol. 2019, 10, 178. [Google Scholar] [CrossRef]
- Muehleisen, B.; Gallo, R.L. Vitamin D in Allergic Disease: Shedding Light on a Complex Problem. J. Allergy Clin. Immunol. 2013, 131, 324–329. [Google Scholar] [CrossRef]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Skowron, K.; Pawlicka, I.; Gil, K. Folia Medica Cracoviensia. Med. Sci. 2018, 58, 103–118. [Google Scholar] [CrossRef]
- Sethu, S.; Shetty, R.; Deshpande, K.; Pahuja, N.; Chinnappaiah, N.; Agarwal, A.; Sharma, A.; Ghosh, A. Correlation between Tear Fluid and Serum Vitamin D Levels. Eye Vis. 2016, 3, 22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elizondo, R.A.; Yin, Z.; Lu, X.; Watsky, M.A. Effect of Vitamin D Receptor Knockout on Cornea Epithelium Wound Healing and Tight Junctions. Investig. Ophthalmol. Vis. Sci. 2014, 55, 5245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, X.; Chen, Z.; Mylarapu, N.; Watsky, M.A. Effects of 1,25 and 24,25 Vitamin D on Corneal Epithelial Proliferation, Migration and Vitamin D Metabolizing and Catabolizing Enzymes. Sci. Rep. 2017, 7, 16951. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, T.; Sano, Y.; Kinoshita, S. Effects of 1alpha,25-Dihydroxyvitamin D3 on Langerhans Cell Migration and Corneal Neovascularization in Mice. Investig. Ophthalmol. Vis. Sci. 2000, 41, 154–158. [Google Scholar]
- Reins, R.Y.; Baidouri, H.; McDermott, A.M. Vitamin D Activation and Function in Human Corneal Epithelial Cells During TLR-Induced Inflammation. Investig. Ophthalmol. Vis. Sci. 2015, 56, 7715. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, T.; Sano, Y.; Sotozono, C.; Kinoshita, S. Regulatory Effects of 1alpha,25-Dihydroxyvitamin D(3) on Cytokine Production by Human Corneal Epithelial Cells. Curr. Eye Res. 2000, 20, 127–130. [Google Scholar] [CrossRef]
- Zhang, J.; Dai, Y.; Wu, D.; Xu, J. Calcitriol, the Active Metabolite of Vitamin D 3, Inhibits Dry Eye Related Corneal Inflammation In Vivo and In Vitro. Ocul. Immunol. Inflamm. 2019, 27, 257–265. [Google Scholar] [CrossRef]
- Lee, V.; Rekhi, E.; Hoh Kam, J.; Jeffery, G. Vitamin D Rejuvenates Aging Eyes by Reducing Inflammation, Clearing Amyloid Beta and Improving Visual Function. Neurobiol. Aging 2012, 33, 2382–2389. [Google Scholar] [CrossRef]
- Kurtul, B.E.; Özer, P.A.; Aydinli, M.S. The Association of Vitamin D Deficiency with Tear Break-up Time and Schirmer Testing in Non-Sjögren Dry Eye. Eye 2015, 29, 1081–1084. [Google Scholar] [CrossRef] [Green Version]
- Demirci, G.; Karaman Erdur, S.; Ozsutcu, M.; Eliacik, M.; Olmuscelik, O.; Aydin, R.; Kocabora, M.S. Dry Eye Assessment in Patients with Vitamin D Deficiency. Eye Contact Lens. 2018, 44, S62–S65. [Google Scholar] [CrossRef]
- Yildirim, P.; Garip, Y.; Karci, A.A.; Guler, T. Dry Eye in Vitamin D Deficiency: More than an Incidental Association. Int. J. Rheum. Dis. 2016, 19, 49–54. [Google Scholar] [CrossRef]
- Jin, K.W.; Ro, J.W.; Shin, Y.J.; Hyon, J.Y.; Wee, W.R.; Park, S.G. Correlation of Vitamin D Levels with Tear Film Stability and Secretion in Patients with Dry Eye Syndrome. Acta Ophthalmol. 2017, 95, e230–e235. [Google Scholar] [CrossRef] [Green Version]
- Meng, Y.-F.; Lu, J.; Xing, Q.; Tao, J.-J.; Xiao, P. Lower Serum Vitamin D Level Was Associated with Risk of Dry Eye Syndrome. Med. Sci. Monit. 2017, 23, 2211–2216. [Google Scholar] [CrossRef] [Green Version]
- Yoon, S.Y.; Bae, S.H.; Shin, Y.J.; Park, S.G.; Hwang, S.-H.; Hyon, J.Y.; Wee, W.R. Low Serum 25-Hydroxyvitamin D Levels Are Associated with Dry Eye Syndrome. PLoS ONE 2016, 11, e0147847. [Google Scholar] [CrossRef]
- Kim, M.J.; Hwang, H.R.; Kim, Y.-J.; Lee, S.-Y.; Lee, J.-G.; Jeong, D.-W.; Kim, Y.H. Association Between Serum 25-Hydroxyvitamin D Levels and Dry Eye in Korean Adults: A Study Based on Korean National Health and Nutrition Examination Survey, 2010–2011. Korean J. Fam. Med. 2017, 38, 81. [Google Scholar] [CrossRef] [Green Version]
- Jeon, D.-H.; Yeom, H.; Yang, J.; Song, J.S.; Lee, H.K.; Kim, H.C. Are Serum Vitamin D Levels Associated With Dry Eye Disease? Results From the Study Group for Environmental Eye Disease. J. Prev. Med. Pub. Health 2017, 50, 369–376. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Dong, Y.; Wang, Y. Vitamin D Deficiency Is Associated with Dry Eye Syndrome: A Systematic Review and Meta-analysis. Acta Ophthalmol. (Copenh.) 2020, 98, 749–754. [Google Scholar] [CrossRef]
- Kizilgul, M.; Kan, S.; Ozcelik, O.; Beysel, S.; Apaydin, M.; Ucan, B.; Cakal, E. Vitamin D Replacement Improves Tear Osmolarity in Patients with Vitamin D Deficiency. Semin. Ophthalmol. 2018, 33, 589–594. [Google Scholar] [CrossRef]
- Karaca, E.E.; Kemer, Ö.E.; Özek, D.; Berker, D.; Imga, N.N. Clinical Outcomes of Ocular Surface in Patients Treated with Vitamin D Oral Replacement. Arq. Bras. De Oftalmol. 2022, 83, 312–317. [Google Scholar] [CrossRef]
- Hwang, J.S.; Lee, Y.P.; Shin, Y.J. Vitamin D Enhances the Efficacy of Topical Artificial Tears in Patients with Dry Eye Disease. Cornea 2019, 38, 304–310. [Google Scholar] [CrossRef] [PubMed]
- Watts, P.; Sahai, A.; Kumar, P.R.; Shamshad, M.A.; Trivedi, G.; Tyagi, L. A Prospective Study to Assess the Role of Vitamin D Individually and in Combination with Cyclosporine in the Treatment of Dry Eye in Patients with Deficient Serum 25(OH)D Levels. Indian J. Ophthalmol. 2020, 68, 1020. [Google Scholar] [CrossRef] [PubMed]
- Hallak, J.A.; Tibrewal, S.; Mohindra, N.; Gao, X.; Jain, S. Single Nucleotide Polymorphisms in the BDNF, VDR, and DNASE 1 Genes in Dry Eye Disease Patients: A Case-Control Study. Investig. Ophthalmol. Vis. Sci. 2015, 56, 5990. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silva, M.C.; Furlanetto, T.W. Intestinal Absorption of Vitamin D: A Systematic Review. Nutr. Rev. 2018, 76, 60–76. [Google Scholar] [CrossRef] [PubMed]
- Armas, L.A.G.; Hollis, B.W.; Heaney, R.P. Vitamin D2 Is Much Less Effective than Vitamin D3 in Humans. J. Clin. Endocrinol. Metab. 2004, 89, 5387–5391. [Google Scholar] [CrossRef] [PubMed]
- Reboul, E.; Goncalves, A.; Comera, C.; Bott, R.; Nowicki, M.; Landrier, J.-F.; Jourdheuil-Rahmani, D.; Dufour, C.; Collet, X.; Borel, P. Vitamin D Intestinal Absorption Is Not a Simple Passive Diffusion: Evidences for Involvement of Cholesterol Transporters. Mol. Nutr. Food Res. 2011, 55, 691–702. [Google Scholar] [CrossRef]
- Goncalves, A.; Gleize, B.; Roi, S.; Nowicki, M.; Dhaussy, A.; Huertas, A.; Amiot, M.-J.; Reboul, E. Fatty Acids Affect Micellar Properties and Modulate Vitamin D Uptake and Basolateral Efflux in Caco-2 Cells. J. Nutr. Biochem. 2013, 24, 1751–1757. [Google Scholar] [CrossRef]
- Goncalves, A.; Gleize, B.; Bott, R.; Nowicki, M.; Amiot, M.-J.; Lairon, D.; Borel, P.; Reboul, E. Phytosterols Can Impair Vitamin D Intestinal Absorption in Vitro and in Mice. Mol. Nutr. Food Res. 2011, 55, S303–S311. [Google Scholar] [CrossRef]
- Dawson-Hughes, B.; Harris, S.S.; Lichtenstein, A.H.; Dolnikowski, G.; Palermo, N.J.; Rasmussen, H. Dietary Fat Increases Vitamin D-3 Absorption. J. Acad. Nutr. Diet. 2015, 115, 225–230. [Google Scholar] [CrossRef]
- Raimundo, F.V.; Lang, M.A.B.; Scopel, L.; Marcondes, N.A.; Araújo, M.G.A.; Faulhaber, G.A.M.; Furlanetto, T.W. Effect of Fat on Serum 25-Hydroxyvitamin D Levels after a Single Oral Dose of Vitamin D in Young Healthy Adults: A Double-Blind Randomized Placebo-Controlled Study. Eur. J. Nutr. 2015, 54, 391–396. [Google Scholar] [CrossRef]
- Yang, C.-H.; Albietz, J.; Harkin, D.G.; Kimlin, M.G.; Schmid, K.L. Impact of Oral Vitamin D Supplementation on the Ocular Surface in People with Dry Eye and/or Low Serum Vitamin D. Contact Lens Anterior Eye 2018, 41, 69–76. [Google Scholar] [CrossRef] [PubMed]
Study | Study Design | Patients | Follow Up | Tools Used | Findings |
---|---|---|---|---|---|
Kurtul et al., 2015 [114] | Prospective clinical study | 34 patients with serum vitamin D deficiency and 21 control subjects | n/a 1 | The ocular surface disease index (OSDI) questionnaire was used for assessment of dry-eye symptoms. The tear break-up time test (TBUT) and Schirmer test were also evaluated | Vitamin D deficiency decreases the TBUT and Schirmer test values and may be associated with dry-eye symptoms |
Demirci et al., 2018 [115] | Prospective clinical study | 60 eyes of 30 patients with vitamin D deficiency and 60 eyes of 30 healthy individuals | n/a | Ocular Surface Disease Index (OSDI) questionnaire, Schirmer I test, tear break-up time (TBUT), scoring of ocular surface fluorescein staining using a modified Oxford scale, and tear osmolarity | This study demonstrates that vitamin D deficiency is associated with tear hyperosmolarity and tear film dysfunction and suggests that patients with vitamin D deficiency may be prone to dry eye |
Yildirim et al., 2016 [116] | Prospective clinical study | 50 premenopausal women with vitamin D deficiency and 48 controls | n/a | Schirmer test, TBUT, OSDI, Stanford Health Assessment Questionnaire (HAQ), fatigue severity scale (FSS), and visual analogue scale-pain (VAS-pain) | Dry eye and impaired tear function in patients with vitamin D deficiency may suggest a protective role of vitamin D in the development of dry eye, probably by enhancing tear film parameters and reducing ocular surface inflammation |
Jin et al., 2017 [117] | Retrospective cross-sectional study | A total of 79 patients were included, 22 male and 57 female. The subjects were divided into three groups based on serum 25(OH)D levels: 12 subjects were placed in the sufficient group, 36 subjects in the insufficient group and 31 subjects in the deficient group | n/a | Eye discomfort was measured by the ocular surface disease index (OSDI) and visual analogue pain score (VAS). Tear breakup time (TBUT), and Schirmer tear secretion test were measured to evaluate tear film | This study provides evidence that tear stability and secretion correlate with serum 25(OH)D levels |
Meng et al., 2017 [118] | Case–control study | 70 DED patients and 70 healthy controls | n/a | Serum 25(OH)D was chosen as the main parameter. DED parameters included ocular surface disease index (OSDI) scales, tear film breakup time (TBUT) and Schirmer test | This study found a significant association between 25(OH)D serum levels and DED incidence |
Yoon et al., 2016 [119] | Cross-sectional data analysis | Adults over 19 years of age (N = 17,542) who participated in Korean National Health and Nutrition Examination Survey (KNHANES) 2010–2012 | n/a | The components of the KNHANES survey are a health interview, health examination survey, and nutrition survey | Low serum levels of vitamin D and inadequate sunlight exposure are associated with DED in Korean adults |
Kim et al., 2017 [120] | Cross-sectional data analysis consolidated from the years 2010 and 2011 of the KNHANES | Adults aged >19 years who participated in KNHANES and underwent ophthalmologic interviews and examinations but didn’t have comorbid conditions associated with dry eye. A total of 9349 participants were included | n/a | The components of the KNHANES survey are a health interview, health examination survey, and nutrition survey | Severe vitamin D deficiency was associated with dry eye in an unadjusted model, but the association was not statistically significant after adjustment |
Jeon et al., 2017 [121] | Cross-sectional data analysis | Participants in the Study Group for Environmental Eye Disease (2014–2015). Data from 740 participants (253 men and 487 women) were analyzed | n/a | The association between serum vitamin D levels and DED was evaluated using the ocular surface disease index (OSDI) | The present study provides epidemiological data regarding the absence of an association of serum vitamin D levels and DED in the Korean general population |
Liu et al., 2020 [122] | Systematic review and meta-analysis | n/a | n/a | Serum vitamin D levels, OSDI scores, Schirmer’s test and TBUT | This meta-analysis shows that vitamin D deficiency is associated with DED in terms of quantity of tears and vision-related quality of life. Its findings indicate that vitamin D systemic supplementation is a potential therapeutic strategy |
Bae et al., 2016 [95] | Observational study | 105 patients, 21 men and 84 women, with DED refractory to conventional treatment | 2, 6, and 10 weeks after vitamin D supplementation | TBUT, FSS, eyelid margin hyperemia, Schirmer test, OSDI, VAS, and severity and duration of symptoms | Vitamin D supplementation promoted tear secretion, reduced tear instability, and reduced inflammation at the ocular surface and eyelid margin. Vitamin D systemic supplementation also improved the symptoms of DED. In conclusion, vitamin D systemic supplementation is an effective and useful treatment for patients with DED refractory to conventional treatment |
Kizilgul et al., 2018 [123] | Prospective clinical study | 44 patients, 38 females and 6 males, with vitamin D deficiency | 8 weeks after vitamin D replacement | Tear film osmolarity (TFO) | Tear film osmolarity, an important indicator of dry eye disease, decreased after successful vitamin D replacement |
Karaca et al., 2020 [124] | Prospective clinical study | 40 patients, 34 females, and 6 males, with vitamin D deficiency | 8, 12, and 24 weeks after vitamin D replacement | Eyelid margin score, meibomian gland expressibility score, Oxford grading, Schirmer test, tear breakup time, tear osmolarity, and Ocular Surface Disease Index score | Vitamin D replacement appeared to improve ocular surface health in patients with vitamin D deficiency |
Hwang et al., 2019 [125] | Retrospective, observational study | 116 patients with DED, 82 women and 34 men. All patients were treated with topical carbomer-basedlipid-containing artificial tears (CLAT) and hyaluronate (HU) and supplemented with vitamin D. Patients were divided in vitamin D deficiency (VDD) group (52 patients), and non-VDD group (64 patients) on the basis of vitamin D serum levels | 2 weeks after vitamin D supplementation | Ocular Surface Disease Index (OSDI) score, visual analog pain scale score, lid hyperemia, tear breakup time (TBUT), corneal fluorescein staining score, and Schirmer test | Vitamin D supplementation enhanced the efficacy of topical treatment and can be used as potential adjuvant therapy for patients with DED. |
Watts et al., 2020 [126] | Prospective interventional randomized study | 90 patients with dry eye symptoms and vitamin D deficiency | At days 15, 30, and 90 of treatment | TBUT, Schirmer’s test, and OSDI score | Vitamin D levels play an important role in patients with dry eye and supplementation of vitamin D patients can lead to earlier and significant improvement in dry eye parameters |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rolando, M.; Barabino, S. Dry Eye Disease: What Is the Role of Vitamin D? Int. J. Mol. Sci. 2023, 24, 1458. https://doi.org/10.3390/ijms24021458
Rolando M, Barabino S. Dry Eye Disease: What Is the Role of Vitamin D? International Journal of Molecular Sciences. 2023; 24(2):1458. https://doi.org/10.3390/ijms24021458
Chicago/Turabian StyleRolando, Maurizio, and Stefano Barabino. 2023. "Dry Eye Disease: What Is the Role of Vitamin D?" International Journal of Molecular Sciences 24, no. 2: 1458. https://doi.org/10.3390/ijms24021458
APA StyleRolando, M., & Barabino, S. (2023). Dry Eye Disease: What Is the Role of Vitamin D? International Journal of Molecular Sciences, 24(2), 1458. https://doi.org/10.3390/ijms24021458