Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy
Abstract
:1. Introduction
2. Neural Substrate of Spike-WAVE Discharges
2.1. Spike-Wave Discharges as a Product of Thalamocortical Network Dysfunction
2.2. Neuronal Mechanisms of Spike-Wave Discharges: The Role of the Thalamus
2.3. Neuronal Mechanisms of Spike-Wave Discharges: The Role of Neocortex
- (1)
- An increased level of mRNA of voltage-gated sodium channels Nav1.1 and Nav1.6 that conduct persistent sodium current (INaP) is required for generating neuronal bursts.
- (2)
- Dysfunction of non-specific cationic current Ih (a ‘pacemaker’ current).
- (3)
- (Amplification of action potential-triggered dendritic Ca2+ spikes and an increase in burst firing.
- (4)
- Impairment of GABA-mediated inhibitory mechanisms in deep cortical layers: a loss of GABAb subunits in pyramidal neurons; a decreased function of presynaptic GABAb receptors; a reduction of the fast (presumably GABAa) component of inhibitory synaptic responses.
- (5)
- Inflammatory processes mediated by pro-inflammatory molecules, such as interleukin-1 beta, and reactive astrocytosis.
3. Noradrenergic Regulation of Spike-Wave Activity
3.1. Noradrenergic Brain System
3.2. Adrenergic Receptors and Sedation
3.3. Adrenergic Receptors and Spike-Wave Activity
Model | Type of Treatment | Target | Effect | Reference |
---|---|---|---|---|
Tottering mice | 6-OHDA (s.c., dose 100 mg/kg) Acute effect on the first or second day after birth | Noradrenergic terminals (hyperinnervation) + Noradrenergic terminals (destruction) | Decrease in total duration of SWDs | Noebels, 1984 [72] |
GAERS rats | Salbutamol (i.p., 1.25–50, acute) Isoprenaline (i.p., 12.5–100, acute) | Beta AR (activation) | No effect | Micheletti et al., 1987 [40] |
Propranolol (i.p., 1.25–80, acute) | Beta AR (inhibition) | No effect | ||
Prazosin (i.p., 0.25–4, acute) | Alpha1 AR (inhibition) | Increase in SWDs total duration | ||
ST 587 (i.p., 1–4, acute) Cirazoline (i.p., 0.1–4, acute) | Alpha1 AR (activation) | Decrease in SWDs total duration | ||
Clonidine (i.p., 0.01–0.1, acute) | Alpha2 AR (activation) | Increase in SWDs total duration | ||
Yohimbine (i.p., 0.5–8, acute) | Alpha2 AR (inhibition) | <2 mg/kg: decrease in SWD total duration >4 mg/kg: very short decrease in SWDs total duration followed by the disappearance of the effect | ||
Desipramine (i.p., 5–40, acute) | NA reuptake (inhibition) 5HT reuptake (inhibition) | No effect | ||
Mianserine (i.p., 1.25–40, acute) | NA release (activation) alpha1 AR (inhibition) alpha2 AR (inhibition) 5HT receptors (inhibition) | No effect | ||
Fischer 344 rats | 6-OHDA (i.c., 200 μg, two injections with 48 h interval) | Noradrenergic terminals (destruction) | Increase in HVS incidence (4–7 days after administration) | Buzsáki et al., 1991 [41] |
6-OHDA (i.th., 50 μg, one injection) | Increase in HVS incidence (4–7 days after administration) | |||
DSP-4 (i.p., 50 mg/kg, acute) | No effect (4–7 days after administration) | |||
+ Xylazine (i.th., acute) | Increase in HVS incidence after intracisternal or intrathalamic 6-OHDA | |||
Clonidine (i.p., 0.02 or 0.1 mg/kg) | Alpha2 AR (activation) | Increase in HVS incidence | ||
Xylazine (i.p., 0.5 or 2 mg/kg) | Alpha2 AR (activation) | Increase in HVS incidence | ||
Yohimbine (i.p., 1 or 5 mg/kg, acute) | Alpha2 AR (inhibition) | Decrease in HVS incidence 1 mg/kg: maximal effect | ||
Prazosin (i.p., 0.5 or 2 mg/kg) | Alpha1 AR (inhibition) | Increase in HVS incidence | ||
Desipramine (i.p., 1 or 10 mg/kg, acute) Amitriptyline (i.p., 1 or 10 mg/kg, acute) | NA reuptake (inhibition) 5HT reuptake (inhibition) | Decrease in HVS incidence | ||
Amitriptyline (i.p., 10 mg/kg, 21 days) | NA reuptake (inhibition) 5HT reuptake (inhibition) alpha2 AR (decreased density) | Decrease in HVS incidence Decrease of the effect of intrathalamic xylazine Decrease of the effect of IP xylazine—not significant | ||
Clonidine (i.th., bilateral, 0.1 or 1 nmol, acute) | Alpha2 AR (activation) | Increase in HVS incidence (suppressed by 5 nmol of yohimbine) | ||
Clonidine (i.th., unilateral, 10 or 100 pmol, acute) | Alpha2 AR (activation) | Increase in HVS amplitude | ||
WAG/Rij rats | Clonidine (i.p., 0.00625 mg/kg, acute) | Alpha2 AR (activation) | Increase in SWDs incidence Decrease in total EEG power in the frontal cortex Increase in total EEG power in RTN Decrease in intracortical coherence | Sitnikova and Luijtelaar 2005 [42] |
Dexmedetomidine (i.p., 1 mg/kg, IP, acute) | Alpha2 AR (activation) | Decrease in total SWDs number (very high dose) | Al-Gailani et al., 2022 [73] | |
GAERS rats | Atipamezole (i.c.v., 1–31 µg, acute) | Alpha2 AR (inhibition) | 12/31 µg: decrease in SWDs incidence and SWDs mean duration | Yavuz et al., 2020 [43] |
Atipamezole (i.c.v., 12 µg, 5 days) | Alpha2 AR (inhibition) | Decrease in total SWDs duration | ||
Dexmedetomidine (i.c.v., 0.1, 0.5, 2.5 µg, acute) | Alpha2 AR(activation) | Increased in total SWD, absence status epilepticus | Yavuz et al., 2022 [74] | |
Charles River rats | Clonidine (p.o., 0.0001–0.1 mg/kg, acute) | Alpha2 AR (activation) | Increase in the mean duration of SWDs | Kleinlogel, 1985 [75] |
Guanfacine (p.o., 0.0001–0.1 mg/kg, acute) | Alpha2 AR (activation) | Increase in the mean duration of SWDs | ||
Yohimbine (p.o., 0.1–10 mg/kg, acute) | Alpha2 AR (inhibition) | Decrease in the mean duration of SWDs (maximal effect with dose 1 mg/kg). 3.2 mg/kg: suppressed the effect of guanfacine (1 mg/kg) | ||
Prazosin (p.o., 0.32–10 mg/kg, acute) | Alpha1 AR (inhibition) | Increase in the mean duration of SWD | ||
Long-Evans rats | Yohimbine (i.p., 0.5–10 mg/kg, acute) | Alpha2 AR (inhibition) | 0.5–5 mg/kg: decrease in the mean duration of FEAD 10 mg/kg: no effect | King and Burnham, 1982 [76] |
Wistar rats | Atipamezole (s.c., 0.1/1/10 mg/kg, acute) | Alpha2 AR (inhibition) | 0.1 mg/kg: no effect 1/10 mg/kg: suppression of HVS | Riekkinen et al., 1990 [77] |
Guanfacine (i.p., 0.004/0.02/0.1 mg/kg, acute) | Alpha2 AR (activation) | Increase in HVS incidence and duration (0.004 mg/kg: no effect on duration) + Atipamezole (1 mg/kg): suppressed an increase in HVS duration Atipamezole (10 mg/kg): suppressed an increase in HVS duration and incidence | ||
+ unilateral RT lesion (VB also damaged) | No HVS on the contralateral side; HVS still occurred on the ipsilateral side | |||
Atipamezole (s.c., minipump, 0.1 mg/kg/h, continuous) | Alpha2 AR (inhibition) | Decrease in HVS incidence during the 6-day administration No changes in sensitivity to Guanfacine (i.p., 0.001 mg/kg, acute) | Jäkälä et al., 1992 [78] | |
Aged Wistar rats (10–12 months) | Atipamezole (i.p., 0.01–4 mg/kg, acute) | Alpha2 AR (inhibition) | Decrease in HVS incidence | Yavich et al., 1994 [79] |
Idazoxan (i.p., 0.1–4 mg/kg, acute) | Alpha2 AR (inhibition) | <0.5 mg/kg: decrease in HVS incidence >0.5 mg/g: disappearance of the effect | ||
Yohimbine (i.p., 0.1–4 mg/kg, acute) | Alpha2 AR (inhibition) | <0.5 mg/kg: decrease in HVS incidence >0.5 mg/g: disappearance of the effect | ||
Dexmedetomidine (i.p., 0.005 mg/kg, acute) | Alpha2 AR(activation) | Increase in HVS incidence | ||
Prazosin (i.p., 1 mg/kg, acute) | Alpha1 AR (inhibition) | Increase in HVS incidence |
3.4. Separation of Proepileptic and Sedative Effects of Alpha2 ARs Activation
4. Cellular Targets of Alpha2 ARs in Relation to Spike-Wave Activity
4.1. Alpha2-Adrenoreceptors and HCN Channels
4.2. Alpha2-Adrenoreceptors and Calcium Channels
4.3. Astrocytic Alpha2-Adrenoreceptors
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, R.S.; Cross, J.H.; D’Souza, C.; French, J.A.; Haut, S.R.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; et al. Instruction Manual for the ILAE 2017 Operational Classification of Seizure Types. Epilepsia 2017, 58, 531–542. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, J.W.; Goodkin, H.P.E. (Eds.) Epilepsy; Wiley: Hoboken, NJ, USA, 2014; ISBN 9781118456941. [Google Scholar]
- Fisher, R.S.; Cross, J.H.; French, J.A.; Higurashi, N.; Hirsch, E.; Jansen, F.E.; Lagae, L.; Moshé, S.L.; Peltola, J.; Roulet Perez, E.; et al. Operational Classification of Seizure Types by the International League Against Epilepsy: Position Paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 522–530. [Google Scholar] [CrossRef] [Green Version]
- Seneviratne, U.; Cook, M.; D’Souza, W. The Electroencephalogram of Idiopathic Generalized Epilepsy. Epilepsia 2012, 53, 234–248. [Google Scholar] [CrossRef] [PubMed]
- Lüders, H.; Acharya, J.; Baumgartner, C.; Benbadis, S.; Bleasel, A.; Burgess, R.; Dinner, D.S.; Ebner, A.; Foldvary, N.; Geller, E.; et al. A New Epileptic Seizure Classification Based Exclusively on Ictal Semiology. Acta Neurol. Scand. 1999, 99, 137–141. [Google Scholar] [CrossRef]
- ILAE Proposal for Revised Classification of Epilepsies and Epileptic Syndromes. Commission on Classification and Terminology of the International League Against Epilepsy. Epilepsia 1989, 30, 389–399. [Google Scholar] [CrossRef]
- Sadleir, L.G.; Scheffer, I.E.; Smith, S.; Carstensen, B.; Farrell, K.; Connolly, M.B. EEG Features of Absence Seizures in Idiopathic Generalized Epilepsy: Impact of Syndrome, Age, and State. Epilepsia 2009, 50, 1572–1578. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, E.; French, J.; Scheffer, I.E.; Bogacz, A.; Alsaadi, T.; Sperling, M.R.; Abdulla, F.; Zuberi, S.M.; Trinka, E.; Specchio, N.; et al. ILAE Definition of the Idiopathic Generalized Epilepsy Syndromes: Position Statement by the ILAE Task Force on Nosology and Definitions. Epilepsia 2022, 63, 1475–1499. [Google Scholar] [CrossRef]
- Da Silva, F.H.L.; Gorter, J.A.; Wadman, W.J. Epilepsy as a Dynamic Disease of Neuronal Networks. In Handbook of Clinical Neurology; Elsevier: Amsterdam, The Netherlands, 2012; Volume 107, pp. 35–62. [Google Scholar]
- Crunelli, V.; Lőrincz, M.L.; McCafferty, C.; Lambert, R.C.; Leresche, N.; Di Giovanni, G.; David, F. Clinical and Experimental Insight into Pathophysiology, Comorbidity and Therapy of Absence Seizures. Brain 2020, 143, 2341–2368. [Google Scholar] [CrossRef]
- Shorvon, S. The Antiepileptic Drugs. In Handbook of Epilepsy Treatment, 3rd ed.; Wiley-Blackwell: Hoboken, NJ, USA, 2011; pp. 158–286. ISBN 9781405198189. [Google Scholar]
- Gören, M.Z.; Onat, F. Ethosuximide: From Bench to Bedside. CNS Drug Rev. 2007, 13, 224–239. [Google Scholar] [CrossRef]
- Brigo, F.; Igwe, S.C.; Lattanzi, S. Ethosuximide, Sodium Valproate or Lamotrigine for Absence Seizures in Children and Adolescents. Cochrane Database Syst. Rev. 2021, 1, CD003032. [Google Scholar] [CrossRef]
- Blumenfeld, H. Cellular and Network Mechanisms of Spike-Wave Seizures. Epilepsia 2005, 46, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Crunelli, V.; Leresche, N. Childhood Absence Epilepsy: Genes, Channels, Neurons and Networks. Nat. Rev. Neurosci. 2002, 3, 371–382. [Google Scholar] [CrossRef] [PubMed]
- Avoli, M. A Brief History on the Oscillating Roles of Thalamus and Cortex in Absence Seizures. Epilepsia 2012, 53, 779–789. [Google Scholar] [CrossRef] [Green Version]
- Meeren, H.; Van Luijtelaar, G.; Lopes Da Silva, F.; Coenen, A. Evolving Concepts on the Pathophysiology of Absence Seizures: The Cortical Focus Theory. Arch. Neurol. 2005, 62, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Van Luijtelaar, G.; Sitnikova, E. Global and Focal Aspects of Absence Epilepsy: The Contribution of Genetic Models. Neurosci. Biobehav. Rev. 2006, 30, 983–1003. [Google Scholar] [CrossRef] [PubMed]
- van Luijtelaar, G. On the Yin and Yang of Spike and Waves. J. Physiol. 2020, 598, 2279–2280. [Google Scholar] [CrossRef]
- Sherman, S.M.; Guillery, R.W. Exploring the Thalamus and Its Role in Cortical Function, 2nd ed.; MIT Press: Cambridge, MA, USA, 2006; ISBN 0-262-19532-1. [Google Scholar]
- Lüttjohann, A.; van Luijtelaar, G. Dynamics of Networks during Absence Seizure’s on- and Offset in Rodents and Man. Front. Physiol. 2015, 6, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Depaulis, A.; Charpier, S. Pathophysiology of Absence Epilepsy: Insights from Genetic Models. Neurosci. Lett. 2018, 667, 53–65. [Google Scholar] [CrossRef] [PubMed]
- Kozák, G.; Földi, T.; Berényi, A. Spike-and-Wave Discharges Are Not Pathological Sleep Spindles, Network-Level Aspects of Age-Dependent Absence Seizure Development in Rats. Eneuro 2020, 7, ENEURO.0253-19.2019. [Google Scholar] [CrossRef] [Green Version]
- Gobbo, D.; Scheller, A.; Kirchhoff, F. From Physiology to Pathology of Cortico-Thalamo-Cortical Oscillations: Astroglia as a Target for Further Research. Front. Neurol. 2021, 12, 661408. [Google Scholar] [CrossRef]
- Depaulis, A.; Luijtellar, G. van Genetic Models of Absence Epilepsy in the Rat. In Models of Seizures and Epilepsy; Elsevier Inc.: Amsterdam, The Netherlands, 2006; pp. 233–248. ISBN 9780120885541. [Google Scholar]
- Russo, E.; Citraro, R.; Constanti, A.; Leo, A.; Lüttjohann, A.; van Luijtelaar, G.; De Sarro, G. Upholding WAG/Rij Rats as a Model of Absence Epileptogenesis: Hidden Mechanisms and a New Theory on Seizure Development. Neurosci. Biobehav. Rev. 2016, 71, 388–408. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bazyan, A.S.; van Luijtelaar, G. Neurochemical and Behavioral Features in Genetic Absence Epilepsy and in Acutely Induced Absence Seizures. ISRN Neurol. 2013, 2013, 1–48. [Google Scholar] [CrossRef] [PubMed]
- Coenen, A.M.L.; Van Luijtelaar, E.L.J.M. Genetic Animal Models for Absence Epilepsy: A Review of the WAG/Rij Strain of Rats. Behav. Genet. 2003, 33, 635–655. [Google Scholar] [CrossRef] [PubMed]
- Sitnikova, E.; van Luijtelaar, G. Electroencephalographic Characterization of Spike-Wave Discharges in Cortex and Thalamus in WAG/Rij Rats. Epilepsia 2007, 48, 2296–2311. [Google Scholar] [CrossRef]
- Meeren, H.K.M.; Pijn, J.P.M.; Van Luijtelaar, E.L.J.M.; Coenen, A.M.L.; Da Silva, F.H.L. Cortical Focus Drives Widespread Corticothalamic Networks during Spontaneous Absence Seizures in Rats. J. Neurosci. 2002, 22, 1480–1495. [Google Scholar] [CrossRef]
- de Curtis, M.; Avanzini, G. Thalamic Regulation of Epileptic Spike and Wave Discharges. Funct. Neurol. 1994, 9, 307–326. [Google Scholar]
- Buzsáki, G. The Thalamic Clock: Emergent Network Properties. Neuroscience 1991, 41, 351–364. [Google Scholar] [CrossRef]
- Terlau, J.; Yang, J.; Khastkhodaei, Z.; Seidenbecher, T.; Luhmann, H.J.; Pape, H.; Lüttjohann, A. Spike-wave Discharges in Absence Epilepsy: Segregation of Electrographic Components Reveals Distinct Pathways of Seizure Activity. J. Physiol. 2020, 598, 2397–2414. [Google Scholar] [CrossRef]
- McCormick, D.A.; Bal, T. SLEEP AND AROUSAL: Thalamocortical Mechanisms. Annu. Rev. Neurosci. 1997. [Google Scholar] [CrossRef] [Green Version]
- Steriade, M. Grouping of Brain Rhythms in Corticothalamic Systems. Neuroscience 2006, 137, 1087–1106. [Google Scholar] [CrossRef]
- Steriade, M. Neuronal Substrates of Sleep and Epilepsy; Cambridge University Press: Cambridge, UK, 2003; ISBN 978-0521817073. [Google Scholar]
- Budde, T.; Pape, H.C.; Kumar, S.S.; Huguenard, J.R. Thalamic, Thalamocortical, and Corticocortical Models of Epilepsy with an Emphasis on Absence Seizures. Model. Seizures Epilepsy 2006, 73–88. [Google Scholar] [CrossRef]
- Kovalzon, V.M. Ascending Reticular Activating System of the Brain. Transl. Neurosci. Clin. 2016, 2, 275–285. [Google Scholar] [CrossRef] [Green Version]
- van Luijtelaar, G.; van Oijen, G. Establishing Drug Effects on Electrocorticographic Activity in a Genetic Absence Epilepsy Model: Advances and Pitfalls. Front. Pharmacol. 2020, 11, 395. [Google Scholar] [CrossRef]
- Micheletti, G.; Warter, J.-M.; Marescaux, C.; Depaulis, A.; Tranchant, C.; Rumbach, L.; Vergnes, M. Effects of Drugs Affecting Noradrenergic Neurotransmission in Rats with Spontaneous Petit Mal-like Seizures. Eur. J. Pharmacol. 1987, 135, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Buzsáki, G.; Kennedy, B.; Solt, V.B.; Ziegler, M. Noradrenergic Control of Thalamic Oscillation: The Role of Alpha-2 Receptors. Eur. J. Neurosci. 1991, 3, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Sitnikova, E.; Luijtelaar, G. van Reduction of Adrenergic Neurotransmission with Clonidine Aggravates Spike-Wave Seizures and Alters Activity in the Cortex and the Thalamus in WAG/Rij Rats. Brain Res. Bull. 2005, 64, 533–540. [Google Scholar] [CrossRef]
- Yavuz, M.; Aydın, B.; Çarçak, N.; Akman, Ö.; Raci Yananlı, H.; Onat, F. Atipamezole, a Specific A2A Antagonist, Suppresses Spike-and-Wave Discharges and Alters Ca2+ /Calmodulin-Dependent Protein Kinase II in the Thalamus of Genetic Absence Epilepsy Rats. Epilepsia 2020, 61, 2825–2835. [Google Scholar] [CrossRef]
- Pérez-Santos, I.; Palomero-Gallagher, N.; Zilles, K.; Cavada, C. Distribution of the Noradrenaline Innervation and Adrenoceptors in the Macaque Monkey Thalamus. Cereb. Cortex 2021, 31, 4115–4139. [Google Scholar] [CrossRef]
- Zhang, Y.; Fu, B.; Liu, C.; Yu, S.; Luo, T.; Zhang, L.; Zhou, W.; Yu, T. Activation of Noradrenergic Terminals in the Reticular Thalamus Delays Arousal from Propofol Anesthesia in Mice. FASEB J. 2019, 33, 7252–7260. [Google Scholar] [CrossRef]
- Rho, H.-J.; Kim, J.-H.; Lee, S.-H. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front. Neural Circuits 2018, 12, 47. [Google Scholar] [CrossRef] [Green Version]
- Aston-Jones, G.; Cohen, J.D. An Integrative Theory of Locus Coeruleus-Norepinephrine Function: Adaptive Gain and Optimal Performance. Annu. Rev. Neurosci. 2005, 28, 403–450. [Google Scholar] [CrossRef] [PubMed]
- Poe, G.R.; Foote, S.; Eschenko, O.; Johansen, J.P.; Bouret, S.; Aston-Jones, G.; Harley, C.W.; Manahan-Vaughan, D.; Weinshenker, D.; Valentino, R.; et al. Locus Coeruleus: A New Look at the Blue Spot. Nat. Rev. Neurosci. 2020, 21, 644–659. [Google Scholar] [CrossRef]
- Benarroch, E.E. The Locus Ceruleus Norepinephrine System: Functional Organization and Potential Clinical Significance. Neurology 2009, 73, 1699–1704. [Google Scholar] [CrossRef]
- Hieble, J.P. Adrenergic Receptors. Encycl. Neurosci. 2009, 135–139. [Google Scholar] [CrossRef]
- Wu, Y.; Zeng, L.; Zhao, S. Ligands of Adrenergic Receptors: A Structural Point of View. Biomolecules 2021, 11, 936. [Google Scholar] [CrossRef]
- Wahis, J.; Holt, M.G. Astrocytes, Noradrenaline, A1-Adrenoreceptors, and Neuromodulation: Evidence and Unanswered Questions. Front. Cell. Neurosci. 2021, 15, 42. [Google Scholar] [CrossRef]
- 50 Ramos, B.P.; Arnsten, A.F.T. Adrenergic Pharmacology and Cognition: Focus on the Prefrontal Cortex. Pharmacol. Ther. 2007, 113, 523–536. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Buzsáki, G.; Smith, A.; Berger, S.; Fisher, L.J.; Gage, F.H.; Aston-Jones, G.; Bloom, F.E. Petit Mal Epilepsy and Parkinsonian Tremor: Hypothesis of a Common Pacemaker. Neuroscience 1990, 36, 1–14. [Google Scholar] [CrossRef]
- Giovannitti, J.A.; Thoms, S.M.; Crawford, J.J. Alpha-2 Adrenergic Receptor Agonists: A Review of Current Clinical Applications. Anesth. Prog. 2015, 62, 31–39. [Google Scholar] [CrossRef] [Green Version]
- Giovannoni, M.P.; Ghelardini, C.; Vergelli, C.; Dal Piaz, V. Alpha2-Agonists as Analgesic Agents. Med. Res. Rev. 2009, 29, 339–368. [Google Scholar] [CrossRef]
- Zhang, Z.; Ferretti, V.; Güntan, İ.; Moro, A.; Steinberg, E.A.; Ye, Z.; Zecharia, A.Y.; Yu, X.; Vyssotski, A.L.; Brickley, S.G.; et al. Neuronal Ensembles Sufficient for Recovery Sleep and the Sedative Actions of A2 Adrenergic Agonists. Nat. Neurosci. 2015, 18, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Langer, S.Z. Presynaptic Regulation of Catecholamine Release. Biochem. Pharmacol. 1974, 23, 1793–1800. [Google Scholar] [CrossRef]
- Paton, W.D.; Vizi, E.S. The Inhibitory Action of Noradrenaline and Adrenaline on Acetylcholine Output by Guinea-Pig Ileum Longitudinal Muscle Strip. Br. J. Pharmacol. 1969, 35, 10–28. [Google Scholar] [CrossRef] [Green Version]
- Cedarbaum, J.M.; Aghajanian, G.K. Catecholamine Receptors on Locus Coeruleus Neurons: Pharmacological Characterization. Eur. J. Pharmacol. 1977, 44, 375–385. [Google Scholar] [CrossRef] [PubMed]
- De Sarro, G.B.; Ascioti, C.; Froio, F.; Libri, V.; Nisticò, G. Evidence That Locus Coeruleus Is the Site Where Clonidine and Drugs Acting at Alpha 1- and Alpha 2-Adrenoceptors Affect Sleep and Arousal Mechanisms. Br. J. Pharmacol. 1987, 90, 675–685. [Google Scholar] [CrossRef] [PubMed]
- Svensson, T.H.; Bunney, B.S.; Aghajanian, G.K. Inhibition of Both Noradrenergic and Serotonergic Neurons in Brain by the α-Adrenergic Agonist Clonidine. Brain Res. 1975, 92, 291–306. [Google Scholar] [CrossRef]
- Abercrombie, E.D.; Keller, R.W.; Zigmond, M.J. Characterization of Hippocampal Norepinephrine Release as Measured by Microdialysis Perfusion: Pharmacological and Behavioral Studies. Neuroscience 1988, 27, 897–904. [Google Scholar] [CrossRef]
- Spyraki, C.; Fibiger, H.C. Clonidine-Induced Sedation in Rats: Evidence for Mediation by Postsynaptic? 2-Adrenoreceptors. J. Neural Transm. 1982, 54, 153–163. [Google Scholar] [CrossRef]
- 62 Nassif, S.; Kempf, E.; Cardo, B.; Velley, L. Neurochemical Lesion of the Locus Coeruleus of the Rat Does Not Suppress the Sedative Effect of Clonidine. Eur. J. Pharmacol. 1983, 91, 69–76. [Google Scholar] [CrossRef]
- Gilsbach, R.; Röser, C.; Beetz, N.; Brede, M.; Hadamek, K.; Haubold, M.; Leemhuis, J.; Philipp, M.; Schneider, J.; Urbanski, M.; et al. Genetic Dissection of α 2 -Adrenoceptor Functions in Adrenergic versus Nonadrenergic Cells. Mol. Pharmacol. 2009, 75, 1160–1170. [Google Scholar] [CrossRef]
- Hu, F.Y.; Hanna, G.M.; Han, W.; Mardini, F.; Thomas, S.A.; Wyner, A.J.; Kelz, M.B. Hypnotic Hypersensitivity to Volatile Anesthetics and Dexmedetomidine in Dopamine β-Hydroxylase Knockout Mice. Anesthesiology 2012, 117, 1006–1017. [Google Scholar] [CrossRef] [PubMed]
- Giorgi, F.S.; Pizzanelli, C.; Biagioni, F.; Murri, L.; Fornai, F. The Role of Norepinephrine in Epilepsy: From the Bench to the Bedside. Neurosci. Biobehav. Rev. 2004, 28, 507–524. [Google Scholar] [CrossRef] [PubMed]
- Fitzgerald, P.J. Is Elevated Norepinephrine an Etiological Factor in Some Cases of Epilepsy? Seizure 2010, 19, 311–318. [Google Scholar] [CrossRef] [Green Version]
- Kettenmann, B.; Feichtinger, M.; Tilz, C.; Kaltenhäuser, M.; Hummel, C.; Stefan, H. Comparison of Clonidine to Sleep Deprivation in the Potential to Induce Spike or Sharp-Wave Activity. Clin. Neurophysiol. 2005, 116, 905–912. [Google Scholar] [CrossRef]
- Kirchberger, K.; Schmitt, H.; Hummel, C.; Peinemann, A.; Pauli, E.; Kettenmann, B.; Stefan, H. Clonidine and Methohexital-Induced Epileptic Magnetoencephalographic Discharges in Patients with Focal Epilepsies. Epilepsia 1998, 39, 841–849. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Noebels, J.L. A Single Gene Error of Noradrenergic Axon Growth Synchronizes Central Neurones. Nature 1984, 310, 409–411. [Google Scholar] [CrossRef]
- Al-Gailani, L.; Al-Kaleel, A.; Arslan, G.; Ayyıldız, M.; Ağar, E. The Effect of General Anesthetics on Genetic Absence Epilepsy in WAG/Rij Rats. Neurol. Res. 2022, 44, 995–1005. [Google Scholar] [CrossRef]
- Yavuz, M.; Akkol, S.; Onat, F. Alpha-2a Adrenergic Receptor (alpha2 AR) Activation in Genetic Absence Epilepsy: An Absence Status Model? Authorea 2022. [Google Scholar] [CrossRef]
- Kleinlogel, H. Spontaneous EEG Paroxysms in the Rat: Effects of Psychotropic and Alpha-Adrenergic Agents. Neuropsychobiology 1985, 13, 206–213. [Google Scholar] [CrossRef]
- King, G.A.; Burnham, W.M. Alpha 2-Adrenergic Antagonists Suppress Epileptiform EEG Activity in a Petit Mal Seizure Model. Life Sci. 1982, 30, 293–298. [Google Scholar] [CrossRef]
- Riekkinen, P.; Sirviö, J.; Jäkälä, P.; Lammintausta, R.; Riekkinen, P. Interaction between the Alpha 2-Noradrenergic and Muscarinic Systems in the Regulation of Neocortical High Voltage Spindles. Brain Res. Bull. 1990, 25, 147–149. [Google Scholar] [CrossRef] [PubMed]
- Jäkälä, P.; Viitamaa, T.; Sirviö, J.; Riekkinen, P.; Salonen, J.; Haapalinna, A.; Virtanen, R.; Riekkinen, P. Continuous Alpha 2-Adrenoceptor Blockade by Atipamezole Decreases Neocortical High-Voltage Spindle Activity in Rats. Eur. J. Pharmacol. 1992, 221, 351–357. [Google Scholar] [CrossRef] [PubMed]
- Yavich, L.; Sirviö, J.; Haapalinna, A.; Riekkinen, P. Some Unusual Effects of Alpha 2-Adrenergic Drugs on Cortical High Voltage Spindles in Rats. Eur. Neuropsychopharmacol. 1994, 4, 535–538. [Google Scholar] [CrossRef] [PubMed]
- Kjaerby, C.; Andersen, M.; Hauglund, N.; Untiet, V.; Dall, C.; Sigurdsson, B.; Ding, F.; Feng, J.; Li, Y.; Weikop, P.; et al. Memory-enhancing properties of sleep depend on the oscillatory amplitude of norepinephrine. Nat Neurosci. 2022, 25, 1059–1070. [Google Scholar] [CrossRef]
- Smyk, M.K.; van Luijtelaar, G. Circadian Rhythms and Epilepsy: A Suitable Case for Absence Epilepsy. Front. Neurol. 2020, 11, 245. [Google Scholar] [CrossRef]
- Saper, C.B.; Fuller, P.M. Wake–Sleep Circuitry: An Overview. Curr. Opin. Neurobiol. 2017, 44, 186–192. [Google Scholar] [CrossRef]
- Wang, R.; Macmillan, L.B.; Fremeau, R.T.; Magnuson, M.A.; Lindner, J.; Limbird, L.E. Expression of Alpha 2-Adrenergic Receptor Subtypes in the Mouse Brain: Evaluation of Spatial and Temporal Information Imparted by 3 Kb of 5′ Regulatory Sequence for the Alpha 2A AR-Receptor Gene in Transgenic Animals. Neuroscience 1996, 74, 199–218. [Google Scholar] [CrossRef]
- Talley, E.M.; Rosin, D.L.; Lee, A.; Guyenet, P.G.; Lynch, K.R. Distribution of Alpha2A-Adrenergic Receptor-like Immunoreactivity in the Rat Central Nervous System. J. Comp. Neurol. 1996, 372, 111–134. [Google Scholar] [CrossRef]
- Scheinin, M.; Lomasney, J.W.; Hayden-Hixson, D.M.; Schambra, U.B.; Caron, M.G.; Lefkowitz, R.J.; Fremeau, R.T. Distribution of A2-Adrenergic Receptor Subtype Gene Expression in Rat Brain. Mol. Brain Res. 1994, 21, 133–149. [Google Scholar] [CrossRef]
- Hunter, J.C.; Fontana, D.J.; Hedley, L.R.; Jasper, J.R.; Lewis, R.; Link, R.E.; Secchi, R.; Sutton, J.; Eglen, R.M. Assessment of the Role of α 2 -Adrenoceptor Subtypes in the Antinociceptive, Sedative and Hypothermic Action of Dexmedetomidine in Transgenic Mice. Br. J. Pharmacol. 1997, 122, 1339–1344. [Google Scholar] [CrossRef] [Green Version]
- Lakhlani, P.P.; MacMillan, L.B.; Guo, T.Z.; McCool, B.A.; Lovinger, D.M.; Maze, M.; Limbird, L.E. Substitution of a Mutant α 2a -Adrenergic Receptor via “Hit and Run” Gene Targeting Reveals the Role of This Subtype in Sedative, Analgesic, and Anesthetic-Sparing Responses in Vivo. Proc. Natl. Acad. Sci. USA 1997, 94, 9950–9955. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Ordway, G.A. The A2C-Adrenoceptor Modulates GABA Release in Mouse Striatum. Mol. Brain Res. 2003, 112, 24–32. [Google Scholar] [CrossRef] [PubMed]
- Rosin, D.L.; Talley, E.M.; Lee, A.; Stornetta, R.L.; Gaylinn, B.D.; Guyenet, P.G.; Lynch, K.R. Distribution of Alpha2C-Adrenergic Receptor-like Immunoreactivity in the Rat Central Nervous System. J. Comp. Neurol. 1996, 372, 135–165. [Google Scholar] [CrossRef]
- Bücheler, M.; Hadamek, K.; Hein, L. Two A2-Adrenergic Receptor Subtypes, A2A and A2C, Inhibit Transmitter Release in the Brain of Gene-Targeted Mice. Neuroscience 2002, 109, 819–826. [Google Scholar] [CrossRef]
- Björklund, M.; Sirviö, J.; Sallinen, J.; Scheinin, M.; Kobilka, B.; Riekkinen, P., Jr. Alpha2C-Adrenoceptor Overexpression Disrupts Execution of Spatial and Non-Spatial Search Patterns. Neuroscience 1999, 88, 1187–1198. [Google Scholar] [CrossRef]
- Savolainen, K.; Ihalainen, J.; Jalkanen, A.J.; Forsberg, M.M. Selective Adrenergic Alpha2C Receptor Antagonist Ameliorates Acute Phencyclidine-Induced Schizophrenia-like Social Interaction Deficits in Rats. Psychopharmacology 2019, 236, 1245–1253. [Google Scholar] [CrossRef] [Green Version]
- Sallinen, J.; Holappa, J.; Koivisto, A.; Kuokkanen, K.; Chapman, H.; Lehtimäki, J.; Piepponen, P.; Mijatovic, J.; Tanila, H.; Virtanen, R.; et al. Pharmacological Characterisation of a Structurally Novel α 2C -Adrenoceptor Antagonist ORM-10921 and Its Effects in Neuropsychiatric Models. Basic Clin. Pharmacol. Toxicol. 2013, 113, 239–249. [Google Scholar] [CrossRef]
- Eason, M.G.; Liggett, S.B. Subtype-Selective Desensitization of Alpha 2-Adrenergic Receptors. Different Mechanisms Control Short and Long Term Agonist-Promoted Desensitization of Alpha 2C10, Alpha 2C4, and Alpha 2C2. J. Biol. Chem. 1992, 267, 25473–25479. [Google Scholar] [CrossRef]
- Saunders, C.; Limbird, L.E. Localization and Trafficking of Alpha2-Adrenergic Receptor Subtypes in Cells and Tissues. Pharmacol. Ther. 1999, 84, 193–205. [Google Scholar] [CrossRef]
- Sawamura, S.; Kingery, W.S.; Davies, M.F.; Agashe, G.S.; Clark, J.D.; Kobilka, B.K.; Hashimoto, T.; Maze, M. Antinociceptive Action of Nitrous Oxide Is Mediated by Stimulation of Noradrenergic Neurons in the Brainstem and Activation of α 2B Adrenoceptors. J. Neurosci. 2000, 20, 9242–9251. [Google Scholar] [CrossRef] [Green Version]
- Swanson, L.W.; Hartman, B.K. The Central Adrenergic System. An Immunofluorescence Study of the Location of Cell Bodies and Their Efferent Connections in the Rat Utilizing Dopamine-B-Hydroxylase as a Marker. J. Comp. Neurol. 1975, 163, 467–505. [Google Scholar] [CrossRef] [PubMed]
- Tavares, A.; Handy, D.E.; Bogdanova, N.N.; Rosene, D.L.; Gavras, H. Localization of alpha 2A- and alpha 2B-adrenergic receptor subtypes in brain. Hypertension 1996, 27 3 Pt 1, 449–455. [Google Scholar] [CrossRef]
- Nicholas, A.P.; Pieribone, V.; Hökfelt, T. Distributions of MRNAs for Alpha-2 Adrenergic Receptor Subtypes in Rat Brain: An in Situ Hybridization Study. J. Comp. Neurol. 1993, 328, 575–594. [Google Scholar] [CrossRef] [PubMed]
- Sala, M.; Braida, D.; Leone, M.P.; Calcaterra, P.; Monti, S.; Gori, E. Central Effect of Yohimbine on Sexual Behavior in the Rat. Physiol. Behav. 1990, 47, 165–173. [Google Scholar] [CrossRef]
- Pertovaara, A.; Haapalinna, A.; Sirviö, J.; Virtanen, R. Pharmacological Properties, Central Nervous System Effects, and Potential Therapeutic Applications of Atipamezole, a Selective Alpha2-Adrenoceptor Antagonist. CNS Drug Rev. 2005, 11, 273–288. [Google Scholar] [CrossRef] [PubMed]
- Karhuvaara, S.; Kallio, A.; Scheinin, M.; Anttila, M.; Salonen, J.; Scheinin, H. Pharmacological Effects and Pharmacokinetics of Atipamezole, a Novel Alpha 2-Adrenoceptor Antagonist-a Randomized, Double-Blind Cross-over Study in Healthy Male Volunteers. Br. J. Clin. Pharmacol. 1990, 30, 97–106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timmons, S.D.; Geisert, E.; Stewart, A.E.; Lorenzon, N.M.; Foehring, R.C. Alpha2-Adrenergic Receptor-Mediated Modulation of Calcium Current in Neocortical Pyramidal Neurons. Brain Res. 2004, 1014, 184–196. [Google Scholar] [CrossRef] [PubMed]
- He, C.; Chen, F.; Li, B.; Hu, Z. Neurophysiology of HCN Channels: From Cellular Functions to Multiple Regulations. Prog. Neurobiol. 2014, 112, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Pape, H.C. Queer Current and Pacemaker: The Hyperpolarization-Activated Cation Current in Neurons. Annu. Rev. Physiol. 1996, 58, 299–327. [Google Scholar] [CrossRef]
- Moosmang, S.; Biel, M.; Hofmann, F.; Ludwig, A. Differential Distribution of Four Hyperpolarization-Activated Cation Channels in Mouse Brain. Biol. Chem. 1999, 380, 975–980. [Google Scholar] [CrossRef]
- Santoro, B.; Chen, S.; Luthi, A.; Pavlidis, P.; Shumyatsky, G.P.; Tibbs, G.R.; Siegelbaum, S.A. Molecular and Functional Heterogeneity of Hyperpolarization-Activated Pacemaker Channels in the Mouse CNS. J. Neurosci. 2000, 20, 5264–5275. [Google Scholar] [CrossRef] [PubMed]
- Notomi, T.; Shigemoto, R. Immunohistochemical Localization of Ih Channel Subunits, HCN1-4, in the Rat Brain. J. Comp. Neurol. 2004, 471, 241–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wainger, B.J.; DeGennaro, M.; Santoro, B.; Siegelbaum, S.A.; Tibbs, G.R. Molecular Mechanism of CAMP Modulation of HCN Pacemaker Channels. Nature 2001, 411, 805–810. [Google Scholar] [CrossRef]
- Chen, S.; Wang, J.; Siegelbaum, S.A. Properties of Hyperpolarization-Activated Pacemaker Current Defined by Coassembly of HCN1 and HCN2 Subunits and Basal Modulation by Cyclic Nucleotide. J. Gen. Physiol. 2001, 117, 491–504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seifert, R.; Scholten, A.; Gauss, R.; Mincheva, A.; Lichter, P.; Kaupp, U.B. Molecular Characterization of a Slowly Gating Human Hyperpolarization-Activated Channel Predominantly Expressed in Thalamus, Heart, and Testis. Proc. Natl. Acad. Sci. USA 1999, 96, 9391–9396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ishii, T.M.; Takano, M.; Xie, L.H.; Noma, A.; Ohmori, H. Molecular Characterization of the Hyperpolarization-Activated Cation Channel in Rabbit Heart Sinoatrial Node. J. Biol. Chem. 1999, 274, 12835–12839. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Onat, F. The Role of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels in the Pathophysiology of Absence Epilepsy. J. Turkish Epilepsi Soc. 2018, 24, 41–50. [Google Scholar] [CrossRef] [Green Version]
- Kuisle, M.; Wanaverbecq, N.; Brewster, A.L.; Frère, S.G.A.; Pinault, D.; Baram, T.Z.; Lüthi, A. Functional Stabilization of Weakened Thalamic Pacemaker Channel Regulation in Rat Absence Epilepsy. J. Physiol. 2006, 575, 83–100. [Google Scholar] [CrossRef]
- Cain, S.M.; Tyson, J.R.; Jones, K.L.; Snutch, T.P. Thalamocortical Neurons Display Suppressed Burst-Firing Due to an Enhanced Ih Current in a Genetic Model of Absence Epilepsy. Pflügers Arch.–Eur. J. Physiol. 2015, 467, 1367–1382. [Google Scholar] [CrossRef] [Green Version]
- David, F.; Çarçak, N.; Furdan, S.; Onat, F.; Gould, T.; Mészáros, Á.; Di Giovanni, G.; Hernández, V.M.; Chan, C.S.; Lőrincz, M.L.; et al. Suppression of Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel Function in Thalamocortical Neurons Prevents Genetically Determined and Pharmacologically Induced Absence Seizures. J. Neurosci. 2018, 38, 6615–6627. [Google Scholar] [CrossRef] [Green Version]
- Yavuz, M.; Aydın, B.; Çarçak, N.; Onat, F. Decreased Hyperpolarization-Activated Cyclic Nucleotide-Gated Channel 2 Activity in a Rat Model of Absence Epilepsy and the Effect of ZD7288, an Ih Inhibitor, on the Spike-and-Wave Discharges. Pharmacology 2022, 107, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Strauss, U.; Kole, M.H.P.; Bräuer, A.U.; Pahnke, J.; Bajorat, R.; Rolfs, A.; Nitsch, R.; Deisz, R.A. An Impaired Neocortical Ih Is Associated with Enhanced Excitability and Absence Epilepsy. Eur. J. Neurosci. 2004, 19, 3048–3058. [Google Scholar] [CrossRef] [PubMed]
- Kole, M.H.P.; Bräuer, A.U.; Stuart, G.J. Inherited Cortical HCN1 Channel Loss Amplifies Dendritic Calcium Electrogenesis and Burst Firing in a Rat Absence Epilepsy Model. J. Physiol. 2007, 578, 507–525. [Google Scholar] [CrossRef] [PubMed]
- Zobeiri, M.; Chaudhary, R.; Blaich, A.; Rottmann, M.; Herrmann, S.; Meuth, P.; Bista, P.; Kanyshkova, T.; Lüttjohann, A.; Narayanan, V.; et al. The Hyperpolarization-Activated HCN4 Channel Is Important for Proper Maintenance of Oscillatory Activity in the Thalamocortical System. Cereb. Cortex 2019, 29, 2291–2304. [Google Scholar] [CrossRef] [Green Version]
- Lörincz, A.; Notomi, T.; Tamás, G.; Shigemoto, R.; Nusser, Z. Polarized and Compartment-Dependent Distribution of HCN1 in Pyramidal Cell Dendrites. Nat. Neurosci. 2002, 5, 1185–1193. [Google Scholar] [CrossRef]
- Huang, Z.; Walker, M.C.; Shah, M.M. Loss of Dendritic HCN1 Subunits Enhances Cortical Excitability and Epileptogenesis. J. Neurosci. 2009, 29, 10979–10988. [Google Scholar] [CrossRef] [Green Version]
- Blumenfeld, H.; Klein, J.P.; Schridde, U.; Vestal, M.; Rice, T.; Khera, D.S.; Bashyal, C.; Giblin, K.; Paul-Laughinghouse, C.; Wang, F.; et al. Early Treatment Suppresses the Development of Spike-Wave Epilepsy in a Rat Model. Epilepsia 2008, 49, 400–409. [Google Scholar] [CrossRef]
- Yang, Y.; Meng, Q.; Pan, X.; Xia, Z.; Chen, X. Dexmedetomidine Produced Analgesic Effect via Inhibition of HCN Currents. Eur. J. Pharmacol. 2014, 740, 560–564. [Google Scholar] [CrossRef]
- Carr, D.B.; Andrews, G.D.; Glen, W.B.; Lavin, A. Alpha2-Noradrenergic Receptors Activation Enhances Excitability and Synaptic Integration in Rat Prefrontal Cortex Pyramidal Neurons via Inhibition of HCN Currents. J. Physiol. 2007, 584, 437–450. [Google Scholar] [CrossRef]
- Näsman, J.; Jansson, C.C.; Akerman, K.E. The Second Intracellular Loop of the Alpha2-Adrenergic Receptors Determines Subtype-Specific Coupling to CAMP Production. J. Biol. Chem. 1997, 272, 9703–9708. [Google Scholar] [CrossRef] [Green Version]
- Won, J.; Lee, P.R.; Oh, S.B. Alpha 2 Adrenoceptor Agonist Guanabenz Directly Inhibits Hyperpolarization-Activated, Cyclic Nucleotide-Modulated (HCN) Channels in Mesencephalic Trigeminal Nucleus Neurons. Eur. J. Pharmacol. 2019, 854, 320–327. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Ramos, B.P.; Paspalas, C.D.; Shu, Y.; Simen, A.; Duque, A.; Vijayraghavan, S.; Brennan, A.; Dudley, A.; Nou, E.; et al. Alpha2A-Adrenoceptors Strengthen Working Memory Networks by Inhibiting CAMP-HCN Channel Signaling in Prefrontal Cortex. Cell 2007, 129, 397–410. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Parkis, M.A.; Berger, A.J. Clonidine Reduces Hyperpolarization-Activated Inward Current (Ih) in Rat Hypoglossal Motoneurons. Brain Res. 1997, 769, 108–118. [Google Scholar] [CrossRef]
- Brummett, C.M.; Hong, E.K.; Janda, A.M.; Amodeo, F.S.; Lydic, R. Perineural Dexmedetomidine Added to Ropivacaine for Sciatic Nerve Block in Rats Prolongs the Duration of Analgesia by Blocking the Hyperpolarization-Activated Cation Current. Anesthesiology 2011, 115, 836–843. [Google Scholar] [CrossRef] [Green Version]
- Ramos, B.P.; Stark, D.; Verduzco, L.; van Dyck, C.H.; Arnsten, A.F.T. A2A-Adrenoceptor Stimulation Improves Prefrontal Cortical Regulation of Behavior through Inhibition of CAMP Signaling in Aging Animals. Learn. Mem. 2006, 13, 770–776. [Google Scholar] [CrossRef] [Green Version]
- Isom, L.L.; Cragoe, E.J.; Limbird, L.E. Alpha 2-Adrenergic Receptors Accelerate Na+/H+ Exchange in Neuroblastoma X Glioma Cells. J. Biol. Chem. 1987, 262, 6750–6757. [Google Scholar] [CrossRef] [PubMed]
- Munsch, T.; Pape, H.C. Modulation of the Hyperpolarization-Activated Cation Current of Rat Thalamic Relay Neurones by Intracellular PH. J. Physiol. 1999, 519 Pt 2, 493–504. [Google Scholar] [CrossRef]
- Salvati, K.A.; Souza, G.M.P.R.; Lu, A.C.; Ritger, M.L.; Guyenet, P.; Abbott, S.B.; Beenhakker, M.P. Respiratory Alkalosis Provokes Spike-Wave Discharges in Seizure-Prone Rats. Elife 2022, 11, e72898. [Google Scholar] [CrossRef]
- Lüscher, C.; Slesinger, P.A. Emerging Roles for G Protein-Gated Inwardly Rectifying Potassium (GIRK) Channels in Health and Disease. Nat. Rev. Neurosci. 2010, 11, 301–315. [Google Scholar] [CrossRef] [Green Version]
- Shirasaka, T.; Kannan, H.; Takasaki, M. Activation of a G Protein–Coupled Inwardly Rectifying K+Current and Suppression of I HContribute to Dexmedetomidine-Induced Inhibition of Rat Hypothalamic Paraventricular Nucleus Neurons. Anesthesiology 2007, 107, 605–615. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, T.; Hirai, H.; Iino, M.; Fuse, I.; Mitsumura, K.; Washiyama, K.; Kasai, S.; Ikeda, K. Inhibitory Effects of the Antiepileptic Drug Ethosuximide on G Protein-Activated Inwardly Rectifying K+ Channels. Neuropharmacology 2009, 56, 499–506. [Google Scholar] [CrossRef] [PubMed]
- Simms, B.A.; Zamponi, G.W. Neuronal Voltage-Gated Calcium Channels: Structure, Function, and Dysfunction. Neuron 2014, 82, 24–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Luijtelaar, G.; Wiaderna, D.; Elants, C.; Scheenen, W. Opposite Effects of T- and L-Type Ca2+ Channels Blockers in Generalized Absence Epilepsy. Eur. J. Pharmacol. 2000, 406, 381–389. [Google Scholar] [CrossRef]
- Sadighi, M.; Shahabi, P.; Gorji, A.; Pakdel, F.G.; Nejad, G.G.; Ghorbanzade, A. Role of L- and T-Type Calcium Channels in Regulation of Absence Seizures in Wag/Rij Rats. Neurophysiology 2013, 45, 312–318. [Google Scholar] [CrossRef] [Green Version]
- Nacif-Coelho, C.; Correa-Sales, C.; Chang, L.L.; Maze, M. Perturbation of Ion Channel Conductance Alters the Hypnotic Response to the A2-Adrenergic Agonist Dexmedetomidine in the Locus Coeruleus of the Rat. Anesthesiology 1994, 81, 1527–1534. [Google Scholar] [CrossRef] [PubMed]
- Desai, M.K.; Dikshit, R.K.; Mansuri, S.M.; Shah, U.H. Effect of Nifedipine, a Calcium Channel Inhibitor, on Sedation Produced by Reserpine, Clonidine and Propranolol in Mice. Indian J. Exp. Biol. 1994, 32, 314–317. [Google Scholar]
- Reid, K.; Guo, T.Z.; Davies, M.F.; Maze, M. Nifedipine, an L-Type Calcium Channel Blocker, Restores the Hypnotic Response in Rats Made Tolerant to the Alpha-2 Adrenergic Agonist Dexmedetomidine. J. Pharmacol. Exp. Ther. 1997, 283, 993–999. [Google Scholar]
- Czarnecka, E.; Tymczyszyn, W.; Pietrzak, B. Effect of Nifedipine and Verapamil on Hypotensive Action of Clonidine in Rabbits. Pol. J. Pharmacol. 1998, 50, 193–201. [Google Scholar]
- Nehlig, A.; Vergnes, M.; Waydelich, R.; Hirsch, E.; Charbonne, R.; Marescaux, C.; Seylaz, J. Absence Seizures Induce a Decrease in Cerebral Blood Flow: Human and Animal Data. J. Cereb. Blood Flow Metab. 1996, 16, 147–155. [Google Scholar] [CrossRef] [Green Version]
- Kolaj, M.; Renaud, L. Norepinephrine Acts via A2 Adrenergic Receptors to Suppress N-Type Calcium Channels in Dissociated Rat Median Preoptic Nucleus Neurons. Neuropharmacology 2001, 41, 472–480. [Google Scholar] [CrossRef]
- Hara, M.; Zhou, Z.Y.; Hemmings, H.C. A2-Adrenergic Receptor and Isoflurane Modulation of Presynaptic Ca2+ Influx and Exocytosis in Hippocampal Neurons. Anesthesiology 2016, 125, 535–546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tokuda, S.; Kuramoto, T.; Tanaka, K.; Kaneko, S.; Takeuchi, I.K.; Sasa, M.; Serikawa, T. The Ataxic Groggy Rat Has a Missense Mutation in the P/Q-Type Voltage-Gated Ca2+ Channel A1A Subunit Gene and Exhibits Absence Seizures. Brain Res. 2007, 1133, 168–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bomben, V.C.; Aiba, I.; Qian, J.; Mark, M.D.; Herlitze, S.; Noebels, J.L. Isolated P/Q Calcium Channel Deletion in Layer VI Corticothalamic Neurons Generates Absence Epilepsy. J. Neurosci. 2016, 36, 405–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCormick, D.A.; Connors, B.W.; Lighthall, J.W.; Prince, D.A. Comparative Electrophysiology of Pyramidal and Sparsely Spiny Stellate Neurons of the Neocortex. J. Neurophysiol. 1985, 54, 782–806. [Google Scholar] [CrossRef] [PubMed]
- Llinás, R.; Jahnsen, H. Electrophysiology of Mammalian Thalamic Neurones in Vitro. Nature 1982, 297, 406–408. [Google Scholar] [CrossRef]
- Lee, S.E.; Lee, J.; Latchoumane, C.; Lee, B.; Oh, S.-J.; Saud, Z.A.; Park, C.; Sun, N.; Cheong, E.; Chen, C.-C.; et al. Rebound Burst Firing in the Reticular Thalamus Is Not Essential for Pharmacological Absence Seizures in Mice. Proc. Natl. Acad. Sci. USA 2014, 111, 11828–11833. [Google Scholar] [CrossRef] [Green Version]
- McCafferty, C.; David, F.; Venzi, M.; Lőrincz, M.L.; Delicata, F.; Atherton, Z.; Recchia, G.; Orban, G.; Lambert, R.C.; Di Giovanni, G.; et al. Cortical Drive and Thalamic Feed-Forward Inhibition Control Thalamic Output Synchrony during Absence Seizures. Nat. Neurosci. 2018, 21, 744–756. [Google Scholar] [CrossRef]
- Coulter, D.A.; Steinhauser, C. Role of Astrocytes in Epilepsy. Cold Spring Harb. Perspect. Med. 2015, 5, a022434. [Google Scholar] [CrossRef] [Green Version]
- Verhoog, Q.P.; Holtman, L.; Aronica, E.; van Vliet, E.A. Astrocytes as Guardians of Neuronal Excitability: Mechanisms Underlying Epileptogenesis. Front. Neurol. 2020, 11, 1541. [Google Scholar] [CrossRef]
- Devinsky, O.; Vezzani, A.; Najjar, S.; De Lanerolle, N.C.; Rogawski, M.A. Glia and Epilepsy: Excitability and Inflammation. Trends Neurosci. 2013, 36, 174–184. [Google Scholar] [CrossRef]
- Binder, D.K.; Steinhäuser, C. Functional Changes in Astroglial Cells in Epilepsy. Glia 2006, 54, 358–368. [Google Scholar] [CrossRef] [PubMed]
- Ozgur, M.; Özyurt, M.G.; Arkan, S.; Cavdar, S. The Effects of Optogenetic Activation of Astrocytes on Spike-and-Wave Discharges in Genetic Absence Epileptic Rats. Ann. Neurosci. 2022, 29, 53–61. [Google Scholar] [CrossRef]
- Hertz, L.; Lovatt, D.; Goldman, S.A.; Nedergaard, M. Adrenoceptors in Brain: Cellular Gene Expression and Effects on Astrocytic Metabolism and [Ca(2+)]I. Neurochem. Int. 2010, 57, 411–420. [Google Scholar] [CrossRef] [Green Version]
- Gaidin, S.G.; Zinchenko, V.P.; Sergeev, A.I.; Teplov, I.Y.; Mal’tseva, V.N.; Kosenkov, A.M. Activation of Alpha-2 Adrenergic Receptors Stimulates GABA Release by Astrocytes. Glia 2020, 68, 1114–1130. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Vergnes, M.; Depaulis, A.; Marescaux, C. Evidence for a Critical Role of GABAergic Transmission within the Thalamus in the Genesis and Control of Absence Seizures in the Rat. Brain Res. 1991, 545, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Vergnes, M.; Depaulis, A.; Marescaux, C. Involvement of Intrathalamic GABAb Neurotransmission in the Control of Absence Seizures in the Rat. Neuroscience 1992, 48, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Vitellaro-Zuccarello, L.; Calvaresi, N.; De Biasi, S. Expression of GABA Transporters, GAT-1 and GAT-3, in the Cerebral Cortex and Thalamus of the Rat during Postnatal Development. Cell Tissue Res. 2003, 313, 245–257. [Google Scholar] [CrossRef]
Drug | Usage | Action | Side Effects |
---|---|---|---|
Ethosuximide (ETX) | The drug of choice in IGE | Reduces low threshold T-type Ca2+ currents in thalamic neurons | Dose-dependent side effects are related to the gastrointestinal tract (i.e., hematopoietic adverse effects) or the central nervous system (a wide variety of idiosyncratic reactions). Nausea, abdominal discomfort, vomiting, diarrhea, and anorexia. |
Decreases the persistent Na+ and Ca2+-activated K+ currents in thalamic and cortical neurons | |||
Reduces cortical GABA levels in cortical neurons. | |||
Reduces elevated glutamate levels in cortical neurons | |||
Valproic acid (VPA) | The drug of first choice for many types of epilepsy, including IGE | Act on GABAa receptors. 1. Increases GABA concentrations in synaptosomes via activation of the GABA—synthesizing enzyme [glutamic acid decarboxylase]. 2. Inhibits GABA catabolism through inhibition of GABA transaminase and succinic semialdehyde dehydrogenase. | Nausea, vomiting, hyperammonaemia and other metabolic effects, endocrine effects, severe hepatic toxicity, pancreatitis, drowsiness, cognitive disturbance, aggressiveness, tremor, weakness, encephalopathy, thrombocytopenia, neutropenia, aplastic anemia, hair thinning and hair loss, weight gain, polycystic ovarian syndrome. Teratogenicity. |
Inhibits excitatory neurotransmission mediated by aspartic acid, glutamic acid and γ—hydroxybutyric acid. | |||
Reduces conductance at the voltage—dependent Na+ channels. Reduction of the threshold for Ca2+ and K+ conductance in the hippocampus. | |||
Lamotrigine | Effective in generalized tonic–clonic, typical and atypical absence seizures. Add-on or monotherapy of focal seizures and generalized seizures.A second-line drug, reserved for intractable absence seizures. | Blockage of voltage—dependent Na+ channel conductance (similar to carbamazepine or phenytoin). Suggested actions: 1. Anti-glutamate and anti-aspartate effects. 2. Modulation of the glycine-binding site on the NMDA receptor. 3. Modulation of voltage-dependent Ca-conductance at N-type Ca-channels and K+ conductance. | Rash (sometimes severe), blood dyscrasia, headache, ataxia, asthenia, diplopia, nausea, vomiting, dizziness, somnolence, insomnia, depression, behavioral effects, psychosis, tremor. Marked risk of hypersensitivity. |
Carbamazepine (CBZ) | The use in IGE is more controversial. It may exacerbate myoclonus, generalized absence seizures and other non—convulsive types. | Blockage of neuronal Na+ channels, pre- and post-synaptically. Blockade of the Na+ channels is believed to inhibit glutamate release. Inhibitor of NMDA receptors, Agonists of gamma-aminobutyric acid (GABA) agonist. | Sedation, fatigue, diplopia, headache, depression, dizziness, nausea, and ataxia. Acute hypersensitivity (skin), a dose-related antidiuretic effect |
Levetiracetam | A wide range of seizure types (with the partial onset and generalized) and with good efficacy in myoclonus and absence seizures. It is effective as monotherapy and adjunctive therapy. | The antiepileptic action is not fully understood. It binds selectively and with high affinity to SV2A (a synaptic vesicle protein that is involved in synaptic vesicle exocytosis and presynaptic neurotransmitter release). It has a neuroprotective potential. | Somnolence, asthenia, infection, dizziness, headache, irritability, aggression, behavioral and mood changes, emotional lability, depersonalization, psychosis, nervousness, seizure exacerbation, rhinitis, cough, vomiting |
Phenobarbital (PB) | Monotherapy and adjunctive therapy of generalized seizures (including absence and myoclonus) in adults and children. | GABAa-receptor agonist. Reduction of glutamate excitability, affecting K+, Na+ and Ca2+ conductance | Sedation, ataxia, dizziness, insomnia, hyperkinesis (children), dysarthria, mood changes (especially depression), behavior change, aggressiveness, cognitive dysfunction, impotence, reduced libido, folate deficiency and megaloblastic anemia, vitamin K and vitamin D deficiency, osteomalacia, Dupuytren contracture, frozen shoulder, shoulder—hand syndrome, connective tissue abnormalities, rash. Risk of dependency. Potential for abuse |
Primidone (PRM) | A prodrug of phenobarbital with probably some minor additional efficacy. Monotherapy and adjunctive therapy in generalized tonic–clonic seizures | Same to Phenobarbital | Intense dizziness, nausea and sedation. Fewer behavioral side effects than either phenobarbital or phenytoin |
Benzodiazepines (BZDs): | Diazepam (DZP) Lorazepam (LZP) Midazolam (MZL) Acute treatment of absence status epilepticus | A positive allosteric modulator of GABAa receptors. Enhancement of inhibitory neurotransmission. | Sedation, addiction, development of tolerance |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitnikova, E.; Rutskova, E.; Smirnov, K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. Int. J. Mol. Sci. 2023, 24, 1477. https://doi.org/10.3390/ijms24021477
Sitnikova E, Rutskova E, Smirnov K. Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. International Journal of Molecular Sciences. 2023; 24(2):1477. https://doi.org/10.3390/ijms24021477
Chicago/Turabian StyleSitnikova, Evgenia, Elizaveta Rutskova, and Kirill Smirnov. 2023. "Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy" International Journal of Molecular Sciences 24, no. 2: 1477. https://doi.org/10.3390/ijms24021477
APA StyleSitnikova, E., Rutskova, E., & Smirnov, K. (2023). Alpha2-Adrenergic Receptors as a Pharmacological Target for Spike-Wave Epilepsy. International Journal of Molecular Sciences, 24(2), 1477. https://doi.org/10.3390/ijms24021477