Genomics: Infectious Disease and Host–Pathogen Interaction
1. Introduction
2. Bacteria and Biofilm Formation
3. Diagnostics
4. Genomics and Transcriptomics on Host–Pathogen Interactions
5. Microbiomics
Conflicts of Interest
References
- Shenkutie, A.M.; Zhang, J.; Yao, M.; Asrat, D.; Chow, F.W.N.; Leung, P.H.M. Effects of Sub-Minimum Inhibitory Concentrations of Imipenem and Colistin on Expression of Biofilm-Specific Antibiotic Resistance and Virulence Genes in Acinetobacter baumannii Sequence Type 1894. Int. J. Mol. Sci. 2022, 23, 12705. [Google Scholar] [CrossRef]
- Loke, M.F.; Yadav, I.; Lim, T.K.; van der Maarel, J.R.C.; Sham, L.T.; Chow, V.T. SARS-CoV-2 Spike Protein and Mouse Coronavirus Inhibit Biofilm Formation by Streptococcus pneumoniae and Staphylococcus aureus. Int. J. Mol. Sci. 2022, 23, 3291. [Google Scholar] [CrossRef]
- Jahan, F.; Chinni, S.V.; Samuggam, S.; Reddy, L.V.; Solayappan, M.; Su Yin, L. The Complex Mechanism of the Salmonella typhi Biofilm Formation That Facilitates Pathogenicity: A Review. Int. J. Mol. Sci. 2022, 23, 6462. [Google Scholar] [CrossRef]
- Elnagar, A.; Harder, T.C.; Blome, S.; Beer, M.; Hoffmann, B. Optimizing Release of Nucleic Acids of African Swine Fever Virus and Influenza A Virus from FTA Cards. Int. J. Mol. Sci. 2021, 22, 12915. [Google Scholar] [CrossRef]
- Triller, G.; Garyfallos, D.A.; Papavasiliou, F.N.; Sklaviadis, T.; Stavropoulos, P.; Xanthopoulos, K. Immunization with Genetically Modified Trypanosomes Provides Protection against Transmissible Spongiform Encephalopathies. Int. J. Mol. Sci. 2022, 23, 10629. [Google Scholar] [CrossRef]
- Sun, Y.D.; Spellman-Kruse, A.; Folimonova, S.Y. Blaze a New Trail: Plant Virus Xylem Exploitation. Int. J. Mol. Sci. 2022, 23, 8375. [Google Scholar] [CrossRef]
- Barik, S. Mechanisms of Viral Degradation of Cellular Signal Transducer and Activator of Transcription 2. Int. J. Mol. Sci. 2022, 23, 489. [Google Scholar] [CrossRef]
- Kataria, R.; Kaundal, R. alfaNET: A Database of Alfalfa-Bacterial Stem Blight Protein-Protein Interactions Revealing the Molecular Features of the Disease-causing Bacteria. Int. J. Mol. Sci. 2021, 22, 8342. [Google Scholar] [CrossRef]
- Li, X.; Chen, S.; Niu, G.; Zhang, X.; Ji, W.; Ren, Y.; Zhang, L.; Ren, L. Porcine Circovirus Type 4 Strains Circulating in China Are Relatively Stable and Have Higher Homology with Mink Circovirus than Other Porcine Circovirus Types. Int. J. Mol. Sci. 2022, 23, 3288. [Google Scholar] [CrossRef]
- Bai, Q.; Wang, M.; Xia, C.; See, D.R.; Chen, X. Identification of Secreted Protein Gene-Based SNP Markers Associated with Virulence Phenotypes of Puccinia striiformis f. sp. tritici, the Wheat Stripe Rust Pathogen. Int. J. Mol. Sci. 2022, 23, 4114. [Google Scholar] [CrossRef]
- Rai, N.; Kim, M.; Tagkopoulos, I. Understanding the Formation and Mechanism of Anticipatory Responses in Escherichia coli. Int. J. Mol. Sci. 2022, 23, 5985. [Google Scholar] [CrossRef]
- Aw, D.Z.H.; Heng, K.K.; Heok, J.Y.H.; Kong, X.Y.; Chen, H.; Zhang, T.; Zhai, W.; Chow, V.T.K. Serial Passaging of Seasonal H3N2 Influenza A/Singapore/G2-31.1/2014 Virus in MDCK-SIAT1 Cells and Primary Chick Embryo Cells Generates HA D457G Mutation and Other Variants in HA, NA, PB1, PB1-F2, and NS1. Int. J. Mol. Sci. 2022, 23, 12408. [Google Scholar] [CrossRef]
- Diallo, I.; Husseini, Z.; Guellal, S.; Vion, E.; Ho, J.; Kozak, R.A.; Kobinger, G.P.; Provost, P. Ebola Virus Encodes Two microRNAs in Huh7-Infected Cells. Int. J. Mol. Sci. 2022, 23, 5228. [Google Scholar] [CrossRef]
- Mas, A.; Martinez-Rodrigo, A.; Carrion, J.; Orden, J.A.; Alzate, J.F.; Dominguez-Bernal, G.; Horcajo, P. Transcriptomic Profile of Canine DH82 Macrophages Infected by Leishmania infantum Promastigotes with Different Virulence Behavior. Int. J. Mol. Sci. 2022, 23, 1466. [Google Scholar] [CrossRef]
- Jo, Y.; Back, C.G.; Kim, K.H.; Chu, H.; Lee, J.H.; Moh, S.H.; Cho, W.K. Comparative Study of Metagenomics and Metatranscriptomics to Reveal Microbiomes in Overwintering Pepper Fruits. Int. J. Mol. Sci. 2021, 22, 6202. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chow, F.W.-N. Genomics: Infectious Disease and Host–Pathogen Interaction. Int. J. Mol. Sci. 2023, 24, 1748. https://doi.org/10.3390/ijms24021748
Chow FW-N. Genomics: Infectious Disease and Host–Pathogen Interaction. International Journal of Molecular Sciences. 2023; 24(2):1748. https://doi.org/10.3390/ijms24021748
Chicago/Turabian StyleChow, Franklin Wang-Ngai. 2023. "Genomics: Infectious Disease and Host–Pathogen Interaction" International Journal of Molecular Sciences 24, no. 2: 1748. https://doi.org/10.3390/ijms24021748
APA StyleChow, F. W. -N. (2023). Genomics: Infectious Disease and Host–Pathogen Interaction. International Journal of Molecular Sciences, 24(2), 1748. https://doi.org/10.3390/ijms24021748