DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb
Abstract
:1. Introduction
2. Results
2.1. Fungal Diversity in LJF Samples
2.2. Fungal Composition in LJF Samples
2.3. Fungal Comparison in LJF Samples from Five Production Areas
2.4. Fungal Comparison in LJF Samples by Using Three Processing Methods
2.5. Fungal Co-Occurrence Analysis in LJF Samples
3. Discussion
3.1. Fungal Contaminations in LJF Samples
3.2. Effect of Processing Methods in LJF Samples
4. Materials and Methods
4.1. Sample Collection
4.2. Total DNA Extraction and Polymerase Chain Reaction (PCR) Amplification
4.3. DNA Metabarcoding and Data Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhou, L.; Zhang, T.; Lu, B.; Yu, Z.; Mei, X.; Abulizi, P.; Ji, L. Lonicerae Japonicae Flos attenuates diabetic retinopathy by inhibiting retinal angiogenesis. J. Ethnopharmacol. 2016, 189, 117–125. [Google Scholar] [PubMed]
- Liu, C.; Yin, Z.; Feng, T.; Zhang, M.; Zhou, Z.; Zhou, Y. An integrated network pharmacology and RNA-Seq approach for exploring the preventive effect of Lonicerae japonicae flos on LPS-induced acute lung injury. J. Ethnopharmacol. 2021, 264, 113364. [Google Scholar] [PubMed]
- Duan, M.H.; Fang, T.; Ma, J.F.; Shi, Q.L.; Peng, Y.; Ge, F.H.; Wang, X.L. Homogenate-assisted high-pressure disruption extraction for determination of phenolic acids in Lonicerae Japonicae Flos. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2018, 1097–1098, 119–127. [Google Scholar]
- Jintao, X.; Quanwei, Y.; Chunyan, L.; Xiaolong, L.; Bingxuan, N. Rapid and simultaneous quality analysis of the three active components in Lonicerae Japonicae Flos by near-infrared spectroscopy. Food Chem. 2021, 342, 128386. [Google Scholar] [PubMed]
- Commission, C.P. Pharmacopoeia of People’s Republic of China; Part 1; Chemical Industry Press: Beijing, China, 2020. [Google Scholar]
- Liu, Y.X.; Bai, J.X.; Li, T.; Fu, X.Q.; Chen, Y.J.; Zhu, P.L.; Chou, J.Y.; Yin, C.L.; Li, J.K.; Wang, Y.P.; et al. MiR-let-7a/f-CCR7 signaling is involved in the anti-metastatic effects of an herbal formula comprising Sophorae Flos and Lonicerae Japonicae Flos in melanoma. Phytomedicine 2019, 64, 153084. [Google Scholar]
- Luo, H.; Tang, Q.L.; Shang, Y.X.; Liang, S.B.; Yang, M.; Robinson, N.; Liu, J.P. Can Chinese Medicine Be Used for Prevention of Corona Virus Disease 2019 (COVID-19)? A Review of Historical Classics, Research Evidence and Current Prevention Programs. Chin. J. Integr. Med. 2020, 26, 243–250. [Google Scholar]
- Pakshir, K.; Mirshekari, Z.; Nouraei, H.; Zareshahrabadi, Z.; Zomorodian, K.; Khodadadi, H.; Hadaegh, A. Mycotoxins Detection and Fungal Contamination in Black and Green Tea by HPLC-Based Method. J. Toxicol. 2020, 2020, 2456210. [Google Scholar] [CrossRef]
- Zhang, X.; Guo, Q.; Yu, B. Rapid quantitative analysis of adulterant Lonicera species in preparations of Lonicerae Japonicae Flos. J. Sep. Sci. 2015, 38, 4014–4020. [Google Scholar]
- Yang, X.; Liu, Y.; Hou, A.; Yang, Y.; Tian, X.; He, L. Systematic review for geo-authentic Lonicerae Japonicae Flos. Front. Med. 2017, 11, 203–213. [Google Scholar]
- Shang, X.; Pan, H.; Li, M.; Miao, X.; Ding, H. Lonicera japonica Thunb.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J. Ethnopharmacol. 2011, 138, 1–21. [Google Scholar]
- Wu, P.; Wang, P.; Gu, M.; Xue, J.; Wu, X. Human health risk assessment of pesticide residues in honeysuckle samples from different planting bases in China. Sci. Total Environ. 2021, 759, 142747. [Google Scholar] [PubMed]
- Stevic, T.; Pavlovic, S.; Stankovic, S.; Savikin, K. Pathogenic microorganisms of medicinal herbal drugs. Arch. Biol. Sci. 2012, 64, 49–58. [Google Scholar]
- Tournas, V.H.; Rivera Calo, J.; Sapp, C. Fungal profiles in various milk thistle botanicals from US retail. Int. J. Food Microbiol. 2013, 164, 87–91. [Google Scholar] [PubMed]
- Shim, W.B.; Kim, K.; Ofori, J.A.; Chung, Y.C.; Chung, D.H. Occurrence of aflatoxins in herbal medicine distributed in South Korea. J. Food Prot. 2012, 75, 1991–1999. [Google Scholar]
- Thi Minh Le, T.; Thi Hong Hoang, A.; Thi Bich Le, T.; Thi Bich Vo, T.; Van Quyen, D.; Hoang Chu, H. Isolation of endophytic fungi and screening of Huperzine A-producing fungus from Huperzia serrata in Vietnam. Sci. Rep. 2019, 9, 16152. [Google Scholar] [CrossRef]
- Al-Hindi, R.R.; Aly, S.E.; Hathout, A.S.; Alharbi, M.G.; Al-Masaudi, S.; Al-Jaouni, S.K.; Harakeh, S.M. Isolation and molecular characterization of mycotoxigenic fungi in agarwood. Saudi J. Biol. Sci. 2018, 25, 1781–1787. [Google Scholar] [CrossRef]
- Aiko, V.; Mehta, A. Prevalence of toxigenic fungi in common medicinal herbs and spices in India. 3 Biotech. 2016, 6, 159. [Google Scholar] [CrossRef]
- Zheng, R.S.; Wang, W.L.; Tan, J.; Xu, H.; Zhan, R.T.; Chen, W.W. An investigation of fungal contamination on the surface of medicinal herbs in China. Chin. Med. 2017, 12, 2. [Google Scholar] [CrossRef]
- Nilsson, R.H.; Anslan, S.; Bahram, M.; Wurzbacher, C.; Baldrian, P.; Tedersoo, L. Mycobiome diversity: High-throughput sequencing and identification of fungi. Nat. Rev. Microbiol. 2019, 17, 95–109. [Google Scholar]
- Martin, F.; Uroz, S. Microbial Environmental Genomics (MEG); Humana Press: Totowa, NJ, USA, 2016; ISSN 1064-3745/1940-6029. [Google Scholar]
- Raclariu, A.C.; Heinrich, M.; Ichim, M.C.; de Boer, H. Benefits and Limitations of DNA Barcoding and Metabarcoding in Herbal Product Authentication. Phytochem. Anal. 2018, 29, 123–128. [Google Scholar] [CrossRef]
- Bush, A.; Monk, W.A.; Compson, Z.G.; Peters, D.L.; Porter, T.M.; Shokralla, S.; Wright, M.T.G.; Hajibabaei, M.; Baird, D.J. DNA metabarcoding reveals metacommunity dynamics in a threatened boreal wetland wilderness. Proc. Natl. Acad. Sci. USA 2020, 117, 8539–8545. [Google Scholar] [PubMed]
- Yu, J.; Guo, M.; Jiang, W.; Yang, M.; Pang, X. Assessment of the Microbiome and Potential Aflatoxin Associated with the Medicinal Herb Platycladus orientalis. Front. Microbiol. 2020, 11, 582679. [Google Scholar]
- Jiang, W.; Guo, M.; Yang, M.; Mantri, N.; Chen, X.; Pang, X. High-throughput analysis of fungal communities in Myristicae Semen. LWT 2020, 128, 109499. [Google Scholar]
- Guo, M.; Jiang, W.; Luo, J.; Yang, M.; Pang, X. Analysis of the Fungal Community in Ziziphi Spinosae Semen through High-Throughput Sequencing. Toxins 2018, 10, 494. [Google Scholar] [CrossRef]
- Abd El-Aty, A.M.; Choi, J.H.; Rahman, M.M.; Kim, S.W.; Tosun, A.; Shim, J.H. Residues and contaminants in tea and tea infusions: A review. Food Addit. Contam. Part. A Chem. Anal. Control Expo. Risk Assess. 2014, 31, 1794–1804. [Google Scholar] [CrossRef]
- Reinholds, I.; Bogdanova, E.; Pugajeva, I.; Alksne, L.; Stalberga, D.; Valcina, O.; Bartkevics, V. Determination of Fungi and Multi-Class Mycotoxins in Camelia Sinensis and Herbal Teas and Dietary Exposure Assessment. Toxins 2020, 12, 555. [Google Scholar] [CrossRef]
- Wang, L.-M.; Huang, D.-F.; Fang, Y.; Wang, F.; Li, F.-L.; Liao, M. Soil fungal communities in tea plantation after 10 years of chemical vs. integrated fertilization. Chil. J. Agric. Res. 2017, 77, 355–364. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Zhao, Y.; Wang, L.; Pu, G.; Zhang, Y.; Defilla, S.; Chu, W. Investigation and analysis of the fungal community structure in moldy Lonicerae japonicae Flos through ITS2 sequencing. E3S Web Conf. 2021, 233, 02031. [Google Scholar] [CrossRef]
- Bogdanova, E.; Pugajeva, I.; Reinholds, I.; Bartkevics, V. Two-dimensional liquid chromatography—High resolution mass spectrometry method for simultaneous monitoring of 70 regulated and emerging mycotoxins in Pu-erh tea. J. Chromatogr. A 2020, 1622, 461145. [Google Scholar]
- Chai, L.Y.; Denning, D.W.; Warn, P. Candida tropicalis in human disease. Crit. Rev. Microbiol. 2010, 36, 282–298. [Google Scholar]
- Barac, A.; Cevik, M.; Colovic, N.; Lekovic, D.; Stevanovic, G.; Micic, J.; Rubino, S. Investigation of a healthcare-associated Candida tropicalis candidiasis cluster in a haematology unit and a systematic review of nosocomial outbreaks. Mycoses 2020, 63, 326–333. [Google Scholar] [PubMed]
- Diallo, K.; Lefevre, B.; Cadelis, G.; Gallois, J.C.; Gandon, F.; Nicolas, M.; Hoen, B. A case report of fungemia due to Kodamaea ohmeri. BMC Infect. Dis. 2019, 19, 570. [Google Scholar]
- Ioannou, P.; Papakitsou, I. Kodamaea ohmeri infections in humans: A systematic review. Mycoses 2020, 63, 636–643. [Google Scholar] [PubMed]
- Koh, B.; Halliday, C.; Chan, R. Concurrent bloodstream infection with Lodderomyces elongisporus and Candida parapsilosis. Med. Mycol. Case Rep. 2020, 28, 23–25. [Google Scholar] [CrossRef] [PubMed]
- Prohic, A.; Jovovic Sadikovic, T.; Krupalija-Fazlic, M.; Kuskunovic-Vlahovljak, S. Malassezia species in healthy skin and in dermatological conditions. Int. J. Dermatol. 2016, 55, 494–504. [Google Scholar] [CrossRef]
- Limon, J.J.; Tang, J.; Li, D.; Wolf, A.J.; Michelsen, K.S.; Funari, V.; Gargus, M.; Nguyen, C.; Sharma, P.; Maymi, V.I.; et al. Malassezia Is Associated with Crohn’s Disease and Exacerbates Colitis in Mouse Models. Cell Host Microbe 2019, 25, 377–388.e6. [Google Scholar]
- Ghuman, H.; Shepherd-Roberts, A.; Watson, S.; Zuidscherwoude, M.; Watson, S.P.; Voelz, K. Mucor circinelloides induces platelet aggregation through integrin alphaIIbbeta3 and FcgammaRIIA. Platelets 2019, 30, 256–263. [Google Scholar] [CrossRef]
- Narazaki, T.; Nakashima, Y.; Tsukamoto, Y.; Nishida, R.; Tsuda, M.; Muta, H.; Kimura, D.; Masuda, T.; Takamatsu, A.; Kohashi, K.; et al. Schizophyllum commune sinusitis after allogeneic bone marrow transplantation for myelodysplastic syndrome: A case report and literature review. Transpl. Infect. Dis. An. Off. J. Transplant. Soc. 2020, 22, e13205. [Google Scholar] [CrossRef]
- Sedova, I.; Kiseleva, M.; Tutelyan, V. Mycotoxins in Tea: Occurrence, Methods of Determination and Risk Evaluation. Toxins 2018, 10, 444. [Google Scholar]
- Li, Q.; Huang, J.; Li, Y.; Zhang, Y.; Luo, Y.; Chen, Y.; Lin, H.; Wang, K.; Liu, Z. Fungal community succession and major components change during manufacturing process of Fu brick tea. Sci. Rep. 2017, 7, 6947. [Google Scholar]
- Guo, M.; Jiang, W.; Yang, M.; Dou, X.; Pang, X. Characterizing fungal communities in medicinal and edible Cassiae Semen using high-throughput sequencing. Int. J. Food Microbiol. 2020, 319, 108496. [Google Scholar]
- Tong, W.; Yu, J.; Wu, Q.; Hu, L.; Tabys, D.; Wang, Y.; Wei, C.; Ling, T.; Ali Inayat, M.; Bennetzen, J.L. Black Tea Quality is Highly Affected during Processing by its Leaf Surface Microbiome. J. Agric. Food Chem. 2021, 69, 7115–7126. [Google Scholar] [CrossRef]
- White, T.J.; Bruns, T.; Lee, S.; Taylor, J. PCR Protocols; Academic Press: Cambridge, MA, USA, 1990. [Google Scholar]
- Edgar, R.C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 2010, 26, 2460–2461. [Google Scholar] [CrossRef]
- Amato, K.R.; Yeoman, C.J.; Kent, A.; Righini, N.; Carbonero, F.; Estrada, A.; Gaskins, H.R.; Stumpf, R.M.; Yildirim, S.; Torralba, M.; et al. Habitat degradation impacts black howler monkey (Alouatta pigra) gastrointestinal microbiomes. ISME J. 2013, 7, 1344–1353. [Google Scholar]
- Hagberg, A.; Swart, P.; S Chult, D. Exploring Network Structure, Dynamics, and Function Using NetworkX; Los Alamos National Lab. (LANL): Los Alamos, NM, USA, 2008.
Sample | Shannon | Simpson | ACE | Chao1 | Good’s Coverage | Shannoneven |
---|---|---|---|---|---|---|
LJFSD1 | 2.76 | 0.10 | 80.74 | 80.33 | 1 | 0.64 |
LJFSD2 | 2.62 | 0.16 | 78.62 | 78.00 | 1 | 0.60 |
LJFSD3 | 2.71 | 0.10 | 73.74 | 73.50 | 1 | 0.63 |
LJFHB1 | 2.21 | 0.18 | 76.68 | 76.50 | 1 | 0.51 |
LJFHB2 | 1.50 | 0.41 | 0.00 | 20.00 | 1 | 0.50 |
LJFHB3 | 1.16 | 0.47 | 8.00 | 8.00 | 1 | 0.56 |
LJFHN1 | 1.74 | 0.36 | 45.89 | 38.00 | 1 | 0.48 |
LJFHN2 | 1.70 | 0.32 | 163.43 | 166.40 | 1 | 0.34 |
LJFHN3 | 2.21 | 0.21 | 52.00 | 48.00 | 1 | 0.58 |
LJFGX1 | 2.20 | 0.25 | 65.78 | 64.33 | 1 | 0.53 |
LJFGX2 | 2.73 | 0.16 | 217.54 | 217.50 | 1 | 0.51 |
LJFGX3 | 2.73 | 0.16 | 93.27 | 93.00 | 1 | 0.60 |
LJFSC1 | 3.17 | 0.10 | 123.51 | 123.50 | 1 | 0.66 |
LJFSC2 | 2.05 | 0.26 | 47.03 | 46.50 | 1 | 0.54 |
LJFSC3 | 2.01 | 0.30 | 65.27 | 65.00 | 1 | 0.48 |
LJFYG | 2.19 | 0.25 | 52.05 | 52.00 | 1 | 0.56 |
LJFHG | 2.12 | 0.22 | 58.48 | 58.00 | 1 | 0.52 |
LJFXY | 1.93 | 0.28 | 46.00 | 39.00 | 1 | 0.54 |
Voucher No. | Sampling Location | Group 1 | Group 2 | Collection Time | GenBank Accession No. |
---|---|---|---|---|---|
LJFSD1 | Shandong | LJFSD | / | July 2021 | SAMN24255458 |
LJFSD2 | Shandong | LJFSD | / | July 2021 | SAMN24255459 |
LJFSD3 | Shandong | LJFSD | / | July 2021 | SAMN24255460 |
LJFHB1 | Hebei | LJFHB | / | July 2021 | SAMN24255461 |
LJFHB2 | Hebei | LJFHB | / | July 2021 | SAMN24255462 |
LJFHB3 | Hebei | LJFHB | / | July 2021 | SAMN24255463 |
LJFHN1 | Henan | LJFHN | / | July 2021 | SAMN24255464 |
LJFHN2 | Henan | LJFHN | / | July 2021 | SAMN24255465 |
LJFHN3 | Henan | LJFHN | / | July 2021 | SAMN24255466 |
LJFGX1 | Guangxi | LJFGX | / | July 2021 | SAMN24255467 |
LJFGX2 | Guangxi | LJFGX | / | July 2021 | SAMN24255468 |
LJFGX3 | Guangxi | LJFGX | / | July 2021 | SAMN24255469 |
LJFSC1 | Sichuan | LJFSC | / | July 2021 | SAMN24255470 |
LJFSC2 | Sichuan | LJFSC | / | July 2021 | SAMN24255471 |
LJFSC3 | Sichuan | LJFSC | / | July 2021 | SAMN24255472 |
LJFYG | Beijing | / | LJFYG | July 2021 | SAMN24255473 |
LJFHG | Beijing | / | LJFHG | July 2021 | SAMN24255474 |
LJFXY | Beijing | / | LJFXY | July 2021 | SAMN24255475 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dao, Y.; Yu, J.; Yang, M.; Han, J.; Fan, C.; Pang, X. DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb. Int. J. Mol. Sci. 2023, 24, 15081. https://doi.org/10.3390/ijms242015081
Dao Y, Yu J, Yang M, Han J, Fan C, Pang X. DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb. International Journal of Molecular Sciences. 2023; 24(20):15081. https://doi.org/10.3390/ijms242015081
Chicago/Turabian StyleDao, Yujie, Jingsheng Yu, Meihua Yang, Jianping Han, Chune Fan, and Xiaohui Pang. 2023. "DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb" International Journal of Molecular Sciences 24, no. 20: 15081. https://doi.org/10.3390/ijms242015081
APA StyleDao, Y., Yu, J., Yang, M., Han, J., Fan, C., & Pang, X. (2023). DNA Metabarcoding Reveals the Fungal Community on the Surface of Lonicerae Japonicae Flos, an Edible and Medicinal Herb. International Journal of Molecular Sciences, 24(20), 15081. https://doi.org/10.3390/ijms242015081