Recent Advances in Novel Compositions for Electrochemical Applications
1. Introduction
2. An Overview of Published Articles
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.; Dong, S.; Wei, H. Recent advances on nanozyme-based electrochemical biosensors. Electroanalysis 2023, 35, e202100684. [Google Scholar] [CrossRef]
- Chen, C.; Li, J.; Lv, Z.; Wang, M.; Dang, J. Recent strategies to improve the catalytic activity of pristine MOFs and their derived catalysts in electrochemical water splitting. Int. J. Hydrog. Energy 2023, 48, 30435. [Google Scholar] [CrossRef]
- Gordeev, E.; Belyakov, S.; Antonova, E.; Osinkin, D. Highly conductive Fe-doped (La, Sr)(Ga, Mg) O3− δ solid-state membranes for electrochemical application. Membranes 2023, 13, 502. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, K.; Chandra, M.; Sharma, S.K.; Pradhan, D.; Kim, S.J. A critical review on transition metal phosphide based catalyst for electrochemical hydrogen evolution reaction: Gibbs free energy, composition, stability, and true identity of active site. Coord. Chem. Rev. 2023, 478, 214956. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, J.; Zhao, Q.; Wei, L.; Wang, K. Investigation of electrochemical properties, leachate purification, organic matter characteristics, and microbial diversity in a sludge treatment wetland-microbial fuel cell. Sci. Total Environ. 2023, 862, 160799. [Google Scholar] [CrossRef]
- Luo, X.; Tang, X.; Ni, J.; Wu, B.; Li, C.; Shao, M.; Wei, Z. Electrochemical oxidation of styrene to benzaldehyde by discrimination of spin-paired π electrons. Chem. Sci. 2023, 14, 1679–1686. [Google Scholar] [CrossRef]
- Mikhailov, I.K.; Gafurov, Z.N.; Kagilev, A.A.; Morozov, V.I.; Kantyukov, A.O.; Zueva, E.M.; Ganeev, G.R.; Sakhapov, I.F.; Toropchina, A.V.; Litvinov, I.A.; et al. Redox Chemistry of Pt(II) Complex with Non-Innocent NHC Bis(Phenolate) Pincer Ligand: Electrochemical, Spectroscopic, and Computational Aspects. Catalysts 2023, 13, 1291. [Google Scholar] [CrossRef]
- Wu, Q.; Xie, T.; Zhang, L.; Ding, H.; Gao, H.; Jiang, J.; Xu, G.C. N, S co-doped porous carbon with Co9S8 prepared by Co-FF-derived Co3O4 template: A bi-functional electrocatalyst for rechargeable zinc− air battery. Dalton Trans. 2023, 52, 14435–14442. [Google Scholar] [CrossRef]
- Aldosari, H.; Ali, A.; Asghar, M.A.; Haider, A.; Mehmood, Y.; Iqbal, Z.; Nazir, A.; Iqbal, M. Surface Modified Carbon Nanotubes Fiber as Flexible Bifunctional Electrocatalyst for Overall Electrochemical Water Splitting Reactions. J. Sci. Adv. Mater. Devices. 2023, 100638. [Google Scholar] [CrossRef]
- Zahra, T.; Ahmad, K.S.; Zequine, C.; Thomas, A.; Gupta, R.K.; Malik, M.A.; AA, I. Electrocatalytic water splitting studies on zirconium oxide nanoparticles synthesized by biomimetic synthesis route. Ionics 2023, 37, 1–14. [Google Scholar] [CrossRef]
- Yu, L.; Wang, M.; Ye, E.; Lei, S.; Liu, J.; Liu, G.; Qiao, G. Synergistic enhancement of optical properties in Ca/Ni co-doped LaFeO3 perovskite coatings enabling high-temperature photothermal conversion. Appl. Surf. Sci. 2024, 642, 158595. [Google Scholar] [CrossRef]
- Sahadevan, J.; Sivaprakash, P.; Esakki Muthu, S.; Kim, I.; Padmanathan, N.; Eswaramoorthi, V. Influence of Te-Incorporated LaCoO3 on Structural, Morphology and Magnetic Properties for Multifunctional Device Applications. Int. J. Mol. Sci. 2023, 24, 10107. [Google Scholar] [CrossRef]
- Liang, J.; Gao, X.; Guo, B.; Ding, Y.; Yan, J.; Guo, Z.; Tse, E.C.M.; Liu, J. Ferrocene-Based Metal–Organic Framework Nanosheets as a Robust Oxygen Evolution Catalyst. Angew. Chem. Int. Ed. 2021, 60, 12770. [Google Scholar] [CrossRef]
- Gao, X.; Guo, B.; Guo, C.; Meng, Q.; Liang, J.; Liu, J. Zirconium-based metal–organic framework for efficient photocatalytic reduction of CO2 to CO: The influence of doped metal ions. ACS Appl. Mater. Interfaces 2020, 12, 24059–24065. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Sanati, S.; Morsali, A.; García, H. Metal–Organic Frameworks as Electrocatalysts. Angew. Chem.Int. Ed. 2023, 62, e202214707. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Xiang, J.; Liu, J.; Sun, L. Surface-Supported Metal–Organic Framework Thin-Film-Derived Transparent CoS₁.₀₉₇@ N-Doped Carbon Film as an Efficient Counter Electrode for Bifacial Dye-Sensitized Solar Cells. ACS Appl. Mater. Interfaces 2019, 11, 14862–14870. [Google Scholar] [CrossRef]
- Lin, Y.D.; Lu, C.W.; Su, H.C. Long-Wavelength Light-Emitting Electrochemical Cells: Materials and Device Engineering. Chem. Eur. J. 2023, 29, e202202985. [Google Scholar] [CrossRef]
- Seger, B.; Robert, M.; Jiao, F. Best practices for electrochemical reduction of carbon dioxide. Nat. Sustain. 2023, 6, 236–238. [Google Scholar] [CrossRef]
- Omeiza, L.A.; Abdalla, A.M.; Wei, B.; Dhanasekaran, A.; Subramanian, Y.; Afroze, S.; Reza, M.S.; Bakar, S.A.; Azad, A.K. Nanostructured Electrocatalysts for Advanced Applications in Fuel Cells. Energies 2023, 16, 1876. [Google Scholar] [CrossRef]
- Yan, T.; Chen, X.; Kumari, L.; Lin, J.; Li, M.; Fan, Q.; Chi, H.; Meyer, T.J.; Zhang, S.; Ma, X. Multiscale CO2 Electrocatalysis to C2+ Products: Reaction Mechanisms, Catalyst Design, and Device Fabrication. Chem. Rev. 2023, 123, 10530. [Google Scholar] [CrossRef]
- Kocak, B.; İpek, Y.; Kececi, A. A novel electrochemical sensor for metoprolol analysis based on glutardialdehyde–zinc oxide modified boron doped diamond electrode. Diam. Relat. Mater. 2023, 131, 109558. [Google Scholar] [CrossRef]
- Nehru, R.; Chen, C.W.; Dong, C.D. In-situ growth of MoS2 nanosheets on g-C3N4 nanotube: A novel electrochemical sensing platform for vanillin determination in food samples. Carbon 2023, 208, 410–420. [Google Scholar] [CrossRef]
- Bie, K.; Fu, P.; Liu, Y.; Muhammad, A.; Xu, T. Comparative study on the electrochemical performance of coals and coal chars in a molten carbonate direct carbon fuel cell with a novel anode structure. Int. J. Hydrog. Energy 2023, 48, 10191–10202. [Google Scholar] [CrossRef]
- Zhang, J.; Lu, M.; Zhou, H.; Du, X.; Du, X. Assessment of Salt Stress to Arabidopsis Based on the Detection of Hydrogen Peroxide Released by Leaves Using an Electrochemical Sensor. Int. J. Mol. Sci. 2022, 23, 12502. [Google Scholar] [CrossRef] [PubMed]
- Nizameev, I.R.; Kadirov, D.M.; Nizameeva, G.R.; Sabirova, A.F.; Kholin, K.V.; Morozov, M.V.; Mironova, L.G.; Zairov, R.R.; Minzanova, S.T.; Sinyashin, O.G.; et al. Complexes of Sodium Pectate with Nickel for Hydrogen Oxidation and Oxygen Reduction in Proton-Exchange Membrane Fuel Cells. Int. J. Mol. Sci. 2022, 23, 14247. [Google Scholar] [CrossRef] [PubMed]
- Ermolaev, V.V.; Kadyrgulova, L.R.; Khrizanforov, M.N.; Gerasimova, T.P.; Baembitova, G.R.; Lazareva, A.A.; Miluykov, V.A. Conductive Mediators in Oxidation Based on Ferrocene Functionalized Phosphonium Ionic Liquids. Int. J. Mol. Sci. 2022, 23, 15534. [Google Scholar] [CrossRef]
- Tarasov, M.V.; Bochkova, O.D.; Gryaznova, T.V.; Mustafina, A.R.; Budnikova, Y.H. Non-Noble-Metal Mono and Bimetallic Composites for Efficient Electrocatalysis of Phosphine Oxide and Acetylene C-H/P-H Coupling under Mild Conditions. Int. J. Mol. Sci. 2023, 24, 765. [Google Scholar] [CrossRef]
- Kuchkaev, A.M.; Kuchkaev, A.M.; Sukhov, A.V.; Saparina, S.V.; Gnezdilov, O.I.; Klimovitskii, A.E.; Ziganshina, S.A.; Nizameev, I.R.; Asanov, I.P.; Brylev, K.A.; et al. In-Situ Electrochemical Exfoliation and Methylation of Black Phosphorus into Functionalized Phosphorene Nanosheets. Int. J. Mol. Sci. 2023, 24, 3095. [Google Scholar] [CrossRef]
- Khrizanforova, V.V.; Fayzullin, R.R.; Gerasimova, T.P.; Khrizanforov, M.N.; Zagidullin, A.A.; Islamov, D.R.; Lukoyanov, A.N.; Budnikova, Y.H. Chemical and Electrochemical Reductions of Monoiminoacenaphthenes. Int. J. Mol. Sci. 2023, 24, 8667. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Y.; Wang, J.; Cai, Q.; Hu, D. Enhancement of Arc Erosion Resistance in AgCuO Electrical Contact Materials through Rare Earth Element Doping: First-Principles and Experimental Studies. Int. J. Mol. Sci. 2023, 24, 12627. [Google Scholar] [CrossRef]
- Gibadullina, E.; Neganova, M.; Aleksandrova, Y.; Nguyen, H.B.T.; Voloshina, A.; Khrizanforov, M.; Nguyen, T.T.; Vinyukova, E.; Volcho, K.; Tsypyshev, D.; et al. Hybrids of Sterically Hindered Phenols and Diaryl Ureas: Synthesis, Switch from Antioxidant Activity to ROS Generation and Induction of Apoptosis. Int. J. Mol. Sci. 2023, 24, 12637. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagidullin, A.; Khrizanforov, M. Recent Advances in Novel Compositions for Electrochemical Applications. Int. J. Mol. Sci. 2023, 24, 15388. https://doi.org/10.3390/ijms242015388
Zagidullin A, Khrizanforov M. Recent Advances in Novel Compositions for Electrochemical Applications. International Journal of Molecular Sciences. 2023; 24(20):15388. https://doi.org/10.3390/ijms242015388
Chicago/Turabian StyleZagidullin, Almaz, and Mikhail Khrizanforov. 2023. "Recent Advances in Novel Compositions for Electrochemical Applications" International Journal of Molecular Sciences 24, no. 20: 15388. https://doi.org/10.3390/ijms242015388
APA StyleZagidullin, A., & Khrizanforov, M. (2023). Recent Advances in Novel Compositions for Electrochemical Applications. International Journal of Molecular Sciences, 24(20), 15388. https://doi.org/10.3390/ijms242015388