Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid
Abstract
:1. Introduction
2. Results
3. Discussion
Limitations
4. Materials and Methods
4.1. Study Design
4.2. Participants
4.3. Physical, Dermatological and Intraoral Examinations
4.4. Gingival Crevicular Fluid (GCF) Sampling
4.5. Gingival Crevicular Fluid (GCF) Determinations
4.6. Sample Size Calculation
4.7. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, M.X.; Zhong, Y.J.; Dong, Q.Q.; Wong, H.M.; Wen, Y.F. Global, regional, and national burden of severe periodontitis, 1990-2019: An analysis of the Global Burden of Disease Study 2019. J. Clin. Periodontol. 2021, 48, 1165–1188. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Garcia, M.; Hernandez-Lemus, E. Periodontal Inflammation and Systemic Diseases: An Overview. Front. Physiol. 2021, 12, 709438. [Google Scholar] [CrossRef] [PubMed]
- Seymour, G.J.; Gemmell, E.; Reinhardt, R.A.; Eastcott, J.; Taubman, M.A. Immunopathogenesis of chronic inflammatory periodontal disease: Cellular and molecular mechanisms. J. Periodontal Res. 1993, 28 Pt 2, 478–486. [Google Scholar] [CrossRef] [PubMed]
- Bartova, J.; Kratka-Opatrna, Z.; Prochazkova, J.; Krejsa, O.; Duskova, J.; Mrklas, L.; Tlaskalova, H.; Cukrowska, B. Th1 and Th2 cytokine profile in patients with early onset periodontitis and their healthy siblings. Mediators Inflamm. 2000, 9, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Rajesh, N.; Arun, K.V.; Kumar, T.S.; Reddy, K.K.; Alamelu, S.; Reddy, B.R. Evaluation of mRNA expression of the transcription factors of Th1 and Th2 subsets (T-bet and GATA-3) in periodontal health and disease—A pilot study in south Indian population. J. Indian Soc. Periodontol. 2015, 19, 624–627. [Google Scholar] [CrossRef] [PubMed]
- Werfel, T.; Allam, J.P.; Biedermann, T.; Eyerich, K.; Gilles, S.; Guttman-Yassky, E.; Hoetzenecker, W.; Knol, E.; Simon, H.U.; Wollenberg, A.; et al. Cellular and molecular immunologic mechanisms in patients with atopic dermatitis. J. Allergy Clin. Immunol. 2016, 138, 336–349. [Google Scholar] [CrossRef] [PubMed]
- Bjerre, R.D.; Bandier, J.; Skov, L.; Engstrand, L.; Johansen, J.D. The role of the skin microbiome in atopic dermatitis: A systematic review. Br. J. Dermatol. 2017, 177, 1272–1278. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, A.A.; Jiao, Y.; Girnary, M.; Alves, T.; Chen, L.; Farrell, A.; Wu, D.; Teles, F.; Inohara, N.; Swanson, K.V.; et al. Oral biofilm dysbiosis during experimental periodontitis. Mol. Oral. Microbiol. 2022, 37, 256–265. [Google Scholar] [CrossRef]
- Brandt, E.B.; Sivaprasad, U. Th2 Cytokines and Atopic Dermatitis. J. Clin. Cell Immunol. 2011, 2, 110. [Google Scholar] [CrossRef]
- Oyoshi, M.K.; Larson, R.P.; Ziegler, S.F.; Geha, R.S. Mechanical injury polarizes skin dendritic cells to elicit a T(H)2 response by inducing cutaneous thymic stromal lymphopoietin expression. J. Allergy Clin. Immunol. 2010, 126, 976.e1–984.e5. [Google Scholar] [CrossRef]
- Wilson, S.R.; The, L.; Batia, L.M.; Beattie, K.; Katibah, G.E.; McClain, S.P.; Pellegrino, M.; Estandian, D.M.; Bautista, D.M. The epithelial cell-derived atopic dermatitis cytokine TSLP activates neurons to induce itch. Cell 2013, 155, 285–295. [Google Scholar] [CrossRef] [PubMed]
- Kitajima, M.; Lee, H.C.; Nakayama, T.; Ziegler, S.F. TSLP enhances the function of helper type 2 cells. Eur. J. Immunol. 2011, 41, 1862–1871. [Google Scholar] [CrossRef] [PubMed]
- Ochiai, S.; Jagot, F.; Kyle, R.L.; Hyde, E.; White, R.F.; Prout, M.; Schmidt, A.J.; Yamane, H.; Lamiable, O.; Le Gros, G.; et al. Thymic stromal lymphopoietin drives the development of IL-13(+) Th2 cells. Proc. Natl. Acad. Sci. USA 2018, 115, 1033–1038. [Google Scholar] [CrossRef] [PubMed]
- Hashimoto, T.; Yokozeki, H.; Karasuyama, H.; Satoh, T. IL-31-generating network in atopic dermatitis comprising macrophages, basophils, thymic stromal lymphopoietin, and periostin. J. Allergy Clin. Immunol. 2023, 151, 737–746.e6. [Google Scholar] [CrossRef] [PubMed]
- Kabashima, K.; Irie, H. Interleukin-31 as a Clinical Target for Pruritus Treatment. Front. Med. 2021, 8, 638325. [Google Scholar] [CrossRef] [PubMed]
- Campion, M.; Smith, L.; Gatault, S.; Metais, C.; Buddenkotte, J.; Steinhoff, M. Interleukin-4 and interleukin-13 evoke scratching behaviour in mice. Exp. Dermatol. 2019, 28, 1501–1504. [Google Scholar] [CrossRef] [PubMed]
- Andoh, T.; Harada, A.; Kuraishi, Y. Involvement of Leukotriene B4 Released from Keratinocytes in Itch-associated Response to Intradermal Interleukin-31 in Mice. Acta Derm. Venereol. 2017, 97, 922–927. [Google Scholar] [CrossRef] [PubMed]
- Nygaard, U.; Hvid, M.; Johansen, C.; Buchner, M.; Folster-Holst, R.; Deleuran, M.; Vestergaard, C. TSLP, IL-31, IL-33 and sST2 are new biomarkers in endophenotypic profiling of adult and childhood atopic dermatitis. J. Eur. Acad. Dermatol. Venereol. 2016, 30, 1930–1938. [Google Scholar] [CrossRef]
- Metwally, S.S.; Mosaad, Y.M.; Abdel-Samee, E.R.; El-Gayyar, M.A.; Abdel-Aziz, A.M.; El-Chennawi, F.A. IL-13 gene expression in patients with atopic dermatitis: Relation to IgE level and to disease severity. Egypt. J. Immunol. 2004, 11, 171–177. [Google Scholar]
- Katagiri, K.; Itami, S.; Hatano, Y.; Takayasu, S. Increased levels of IL-13 mRNA, but not IL-4 mRNA, are found in vivo in peripheral blood mononuclear cells (PBMC) of patients with atopic dermatitis (AD). Clin. Exp. Immunol. 1997, 108, 289–294. [Google Scholar] [CrossRef]
- Wan, J.; Fuxench, Z.C.C.; Wang, S.; Syed, M.N.; Shin, D.B.; Abuabara, K.; Lemeshow, A.R.; Gelfand, J.M. Incidence of Cardiovascular Disease and Venous Thromboembolism in Patients With Atopic Dermatitis. J. Allergy Clin. Immunol. Pract. 2023, 11, 3123–3132.e3. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, C.; Torres, T. More than skin deep: The systemic nature of atopic dermatitis. Eur. J. Dermatol. 2019, 29, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Smirnova, J.; Montgomery, S.; Lindberg, M.; Svensson, A.; von Kobyletzki, L. Associations of self-reported atopic dermatitis with comorbid conditions in adults: A population-based cross-sectional study. BMC Dermatol. 2020, 20, 23. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, F.; Aroca Chandia, M.; Astudillo Urrea, G.; Fernández, J.; Jiménez Lizana, C.; Fernández Moraga, A. Periodontitis en individuos con dermatitis atópica. Piel 2021, 36, 218–223. [Google Scholar] [CrossRef]
- Valenzuela, F.; Fernandez, J.; Aroca, M.; Jimenez, C.; Albers, D.; Hernandez, M.; Fernandez, A. Gingival Crevicular Fluid Zinc- and Aspartyl-Binding Protease Profile of Individuals with Moderate/Severe Atopic Dermatitis. Biomolecules 2020, 10, 1600. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Choi, M.; Park, H.J.; Haw, S. Dental Caries in Adults with Atopic Dermatitis: A Nationwide Cross-Sectional Study in Korea. Ann. Dermatol. 2021, 33, 154–162. [Google Scholar] [CrossRef] [PubMed]
- Matsushima, Y.; Mizutani, K.; Iida, S.; Ichishi, M.; Nakanishi, T.; Okada, K.; Umaoka, A.; Kondo, M.; Habe, K.; Watanabe, M.; et al. Severe skin inflammation leads to salivary gland atrophy and dysfunction. J. Dermatol. 2022, 49, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Goodson, J.M. Gingival crevice fluid flow. Periodontology 2000 2003, 31, 43–54. [Google Scholar] [CrossRef]
- Jimenez, C.; Carvajal, D.; Hernandez, M.; Valenzuela, F.; Astorga, J.; Fernandez, A. Levels of the interleukins 17A, 22, and 23 and the S100 protein family in the gingival crevicular fluid of psoriatic patients with or without periodontitis. An. Bras. Dermatol. 2021, 96, 163–170. [Google Scholar] [CrossRef]
- Arvikar, S.L.; Hasturk, H.; Strle, K.; Stephens, D.; Bolster, M.B.; Collier, D.S.; Kantarci, A.; Steere, A.C. Periodontal inflammation and distinct inflammatory profiles in saliva and gingival crevicular fluid compared with serum and joints in rheumatoid arthritis patients. J. Periodontol. 2021, 92, 1379–1391. [Google Scholar] [CrossRef]
- Prieto, D.; Gonzalez, C.; Weber, L.; Realini, O.; Pino-Lagos, K.; Bendek, M.J.; Retamal, I.; Beltran, V.; Riedemann, J.P.; Espinoza, F.; et al. Soluble neuropilin-1 in gingival crevicular fluid is associated with rheumatoid arthritis: An exploratory case-control study. J. Oral. Biol. Craniofac Res. 2021, 11, 303–307. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Wang, Y.; Wu, H.; Li, F.; Feng, X.; Xie, Y.; Xie, D.; Wang, W.; Lo, E.C.M.; Lu, H. Periodontal health related-inflammatory and metabolic profiles of patients with end-stage renal disease: Potential strategy for predictive, preventive, and personalized medicine. EPMA J. 2021, 12, 117–128. [Google Scholar] [CrossRef] [PubMed]
- Salvi, G.E.; Yalda, B.; Collins, J.G.; Jones, B.H.; Smith, F.W.; Arnold, R.R.; Offenbacher, S. Inflammatory mediator response as a potential risk marker for periodontal diseases in insulin-dependent diabetes mellitus patients. J. Periodontol. 1997, 68, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Sakai, A.; Ohshima, M.; Sugano, N.; Otsuka, K.; Ito, K. Profiling the cytokines in gingival crevicular fluid using a cytokine antibody array. J. Periodontol. 2006, 77, 856–864. [Google Scholar] [CrossRef] [PubMed]
- Dillon, S.R.; Sprecher, C.; Hammond, A.; Bilsborough, J.; Rosenfeld-Franklin, M.; Presnell, S.R.; Haugen, H.S.; Maurer, M.; Harder, B.; Johnston, J.; et al. Interleukin 31, a cytokine produced by activated T cells, induces dermatitis in mice. Nat. Immunol. 2004, 5, 752–760. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.; Moriyama, M.; Feld, M.; Buddenkotte, J.; Buhl, T.; Szollosi, A.; Zhang, J.; Miller, P.; Ghetti, A.; Fischer, M.; et al. New mechanism underlying IL-31-induced atopic dermatitis. J. Allergy Clin. Immunol. 2018, 141, 1677–1689.e8. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wu, K.; Zeng, Q.; Xiang, Y.; Gao, L.; Huang, J. Serum interleukin-31 level and pruritus in atopic dermatitis: A Meta-analysis. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2018, 43, 124–130. [Google Scholar]
- Nattkemper, L.A.; Tey, H.L.; Valdes-Rodriguez, R.; Lee, H.; Mollanazar, N.K.; Albornoz, C.; Sanders, K.M.; Yosipovitch, G. The Genetics of Chronic Itch: Gene Expression in the Skin of Patients with Atopic Dermatitis and Psoriasis with Severe Itch. J. Investig. Dermatol. 2018, 138, 1311–1317. [Google Scholar] [CrossRef]
- Luo, Y.; Ding, Y.; Chen, Y. The role of IL-31 and IL-34 in the diagnosis and treatment of chronic periodontitis. Open Life Sci. 2023, 18, 20220563. [Google Scholar] [CrossRef]
- Tada, H.; Nishioka, T.; Takase, A.; Numazaki, K.; Bando, K.; Matsushita, K. Porphyromonas gingivalis induces the production of interleukin-31 by human mast cells, resulting in dysfunction of the gingival epithelial barrier. Cell Microbiol. 2019, 21, e12972. [Google Scholar] [CrossRef]
- Pope, J.L.; Bhat, A.A.; Sharma, A.; Ahmad, R.; Krishnan, M.; Washington, M.K.; Beauchamp, R.D.; Singh, A.B.; Dhawan, P. Claudin-1 regulates intestinal epithelial homeostasis through the modulation of Notch-signalling. Gut 2014, 63, 622–634. [Google Scholar] [CrossRef] [PubMed]
- Medara, N.; Lenzo, J.C.; Walsh, K.A.; Darby, I.B.; O’Brien-Simpson, N.M.; Reynolds, E.C. T helper 17 cell-related cytokines in serum and saliva during management of periodontitis. Cytokine 2020, 134, 155186. [Google Scholar] [CrossRef] [PubMed]
- Yagi, Y.; Andoh, A.; Nishida, A.; Shioya, M.; Nishimura, T.; Hashimoto, T.; Tsujikawa, T.; Saito, Y.; Fujiyama, Y. Interleukin-31 stimulates production of inflammatory mediators from human colonic subepithelial myofibroblasts. Int. J. Mol. Med. 2007, 19, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Dambacher, J.; Beigel, F.; Seiderer, J.; Haller, D.; Goke, B.; Auernhammer, C.J.; Brand, S. Interleukin 31 mediates MAP kinase and STAT1/3 activation in intestinal epithelial cells and its expression is upregulated in inflammatory bowel disease. Gut 2007, 56, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Kasraie, S.; Niebuhr, M.; Werfel, T. Interleukin (IL)-31 induces pro-inflammatory cytokines in human monocytes and macrophages following stimulation with staphylococcal exotoxins. Allergy 2010, 65, 712–721. [Google Scholar] [CrossRef] [PubMed]
- Udagawa, N.; Takahashi, N.; Katagiri, T.; Tamura, T.; Wada, S.; Findlay, D.M.; Martin, T.J.; Hirota, H.; Taga, T.; Kishimoto, T.; et al. Interleukin (IL)-6 induction of osteoclast differentiation depends on IL-6 receptors expressed on osteoblastic cells but not on osteoclast progenitors. J. Exp. Med. 1995, 182, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.H.; Jin, H.M.; Kim, K.; Song, I.; Youn, B.U.; Matsuo, K.; Kim, N. The mechanism of osteoclast differentiation induced by IL-1. J. Immunol. 2009, 183, 1862–1870. [Google Scholar] [CrossRef]
- Dai, S.M.; Nishioka, K.; Yudoh, K. Interleukin (IL) 18 stimulates osteoclast formation through synovial T cells in rheumatoid arthritis: Comparison with IL1 beta and tumour necrosis factor alpha. Ann. Rheum. Dis. 2004, 63, 1379–1386. [Google Scholar] [CrossRef]
- AlQranei, M.S.; Chellaiah, M.A. Osteoclastogenesis in periodontal diseases: Possible mediators and mechanisms. J. Oral. Biosci. 2020, 62, 123–130. [Google Scholar] [CrossRef]
- Zhang, Y.; Matsuo, H.; Morita, E. Increased production of vascular endothelial growth factor in the lesions of atopic dermatitis. Arch. Dermatol. Res. 2006, 297, 425–429. [Google Scholar] [CrossRef]
- Figueredo, C.M.; Martins, A.P.; Lira-Junior, R.; Menegat, J.B.; Carvalho, A.T.; Fischer, R.G.; Gustafsson, A. Activity of inflammatory bowel disease influences the expression of cytokines in gingival tissue. Cytokine 2017, 95, 1–6. [Google Scholar] [CrossRef]
- Menegat, J.S.; Lira-Junior, R.; Siqueira, M.A.; Brito, F.; Carvalho, A.T.; Fischer, R.G.; Figueredo, C.M. Cytokine expression in gingival and intestinal tissues of patients with periodontitis and inflammatory bowel disease: An exploratory study. Arch. Oral. Biol. 2016, 66, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Fattahi, S.; Sadighi, M.; Faramarzi, M.; Karimifard, E.; Mirzaie, A. Comparison of mast cell counts between the patients with moderate and severe periodontitis. J. Adv. Periodontol. Implant. Dent. 2019, 11, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, S.; Kabata, H.; Kabashima, K.; Asano, K. Anti-TSLP antibodies: Targeting a master regulator of type 2 immune responses. Allergol. Int. 2020, 69, 197–203. [Google Scholar] [CrossRef] [PubMed]
- Soumelis, V.; Reche, P.A.; Kanzler, H.; Yuan, W.; Edward, G.; Homey, B.; Gilliet, M.; Ho, S.; Antonenko, S.; Lauerma, A.; et al. Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat. Immunol. 2002, 3, 673–680. [Google Scholar] [CrossRef]
- Luo, Y.; Zhou, B.; Zhao, M.; Tang, J.; Lu, Q. Promoter demethylation contributes to TSLP overexpression in skin lesions of patients with atopic dermatitis. Clin. Exp. Dermatol. 2014, 39, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.B.; Kim, K.W.; Hong, J.Y.; Jee, H.M.; Sohn, M.H.; Kim, K.E. Increased serum thymic stromal lymphopoietin in children with atopic dermatitis. Pediatr. Allergy Immunol. 2010, 21 Pt 2, e457–e460. [Google Scholar] [CrossRef]
- Uysal, P.; Birtekocak, F.; Karul, A.B. The Relationship Between Serum TARC, TSLP and POSTN Levels and Childhood Atopic Dermatitis. Clin. Lab. 2017, 63, 1071–1077. [Google Scholar] [CrossRef] [PubMed]
- Betancur, D.; Munoz Grez, C.; Onate, A. Comparative Analysis of Cytokine Expression in Oral Keratinocytes and THP-1 Macrophages in Response to the Most Prevalent Serotypes of Aggregatibacter actinomycetemcomitans. Microorganisms 2021, 9, 622. [Google Scholar] [CrossRef]
- Papathanasiou, E.; Teles, F.; Griffin, T.; Arguello, E.; Finkelman, M.; Hanley, J.; Theoharides, T.C. Gingival crevicular fluid levels of interferon-gamma, but not interleukin-4 or -33 or thymic stromal lymphopoietin, are increased in inflamed sites in patients with periodontal disease. J. Periodontal Res. 2014, 49, 55–61. [Google Scholar] [CrossRef]
- Gruber, R.; Bornchen, C.; Rose, K.; Daubmann, A.; Volksdorf, T.; Wladykowski, E.; Vidal, Y.S.S.; Peters, E.M.; Danso, M.; Bouwstra, J.A.; et al. Diverse regulation of claudin-1 and claudin-4 in atopic dermatitis. Am. J. Pathol. 2015, 185, 2777–2789. [Google Scholar] [CrossRef] [PubMed]
- World Medical, A. World Medical Association Declaration of Helsinki: Ethical principles for medical research involving human subjects. JAMA 2013, 310, 2191–2194. [Google Scholar]
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gotzsche, P.C.; Vandenbroucke, J.P.; Initiative, S. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. J. Clin. Epidemiol. 2008, 61, 344–349. [Google Scholar] [CrossRef] [PubMed]
- Valenzuela, F.; Fernandez, J.; Jimenez, C.; Cavagnola, D.; Mancilla, J.F.; Astorga, J.; Hernandez, M.; Fernandez, A. Identification of IL-18 and Soluble Cell Adhesion Molecules in the Gingival Crevicular Fluid as Novel Biomarkers of Psoriasis. Life 2021, 11, 1000. [Google Scholar] [CrossRef] [PubMed]
- Jamieson, L.; Skilton, M.; Maple-Brown, L.; Kapellas, K.; Askie, L.; Hughes, J.; Arrow, P.; Cherian, S.; Fernandes, D.; Pawar, B.; et al. Periodontal disease and chronic kidney disease among Aboriginal adults; an RCT. BMC Nephrol. 2015, 16, 181. [Google Scholar] [CrossRef] [PubMed]
- Saffi, M.A.; Furtado, M.V.; Montenegro, M.M.; Ribeiro, I.W.; Kampits, C.; Rabelo-Silva, E.R.; Polanczyk, C.A.; Rosing, C.K.; Haas, A.N. The effect of periodontal therapy on C-reactive protein, endothelial function, lipids and proinflammatory biomarkers in patients with stable coronary artery disease: Study protocol for a randomized controlled trial. Trials 2013, 14, 283. [Google Scholar] [CrossRef] [PubMed]
- Page, R.C.; Eke, P.I. Case definitions for use in population-based surveillance of periodontitis. J. Periodontol. 2007, 78 (Suppl. S7), 1387–1399. [Google Scholar] [CrossRef] [PubMed]
- Chaparro, A.; Realini, O.; Hernandez, M.; Albers, D.; Weber, L.; Ramirez, V.; Param, F.; Kusanovic, J.P.; Sorsa, T.; Rice, G.E.; et al. Early pregnancy levels of gingival crevicular fluid matrix metalloproteinases-8 and -9 are associated with the severity of periodontitis and the development of gestational diabetes mellitus. J. Periodontol. 2021, 92, 205–215. [Google Scholar] [CrossRef]
- Cai, F.; Hornauer, H.; Peng, K.; Schofield, C.A.; Scheerens, H.; Morimoto, A.M. Bioanalytical challenges and improved detection of circulating levels of IL-13. Bioanalysis 2016, 8, 323–332. [Google Scholar] [CrossRef]
- Roekevisch, E.; Szegedi, K.; Hack, D.P.; Schram, M.E.; Res, P.; Bos, J.D.; Leeflang, M.M.G.; Luiten, R.M.; Kezic, S.; Spuls, P.I.; et al. Effect of immunosuppressive treatment on biomarkers in adult atopic dermatitis patients. J. Eur. Acad. Dermatol. Venereol. 2020, 34, 1545–1554. [Google Scholar] [CrossRef]
Parameters | C (n = 33) | AD (n = 29) | p |
---|---|---|---|
Age (years, mean ± SD) | 37.27 ± 13.43 | 31.34 ± 12.80 | 0.091 |
Gender: Female (freq., % − n) | 69.70 − 23 | 65.38 − 17 | 0.784 |
Smoker (freq., % − n) | 40.00 − 12 | 19.23 − 5 | 0.145 |
PD (mm, mean ± SD) | 2.16 ± 0.54 | 2.01 ± 0.38 | 0.245 |
CAL (mm, mean ± SD) | 1.93 ± 1.43 | 1.96 ± 0.72 | 0.660 |
BOP (positive sites, mean freq., %) | 0.46 | 0.06 | 0.385 |
No/mild periodontitis (% − n) | 48.48 − 16 | 34.62 − 9 | 0.199 |
Moderate periodontitis (% − n) | 42.42 − 14 | 38.46 − 10 | |
Severe periodontitis (% − n) | 9.09 − 3 | 26.92 − 7 |
Cytokine | C (n = 33) | AD (n = 29) | p |
---|---|---|---|
IL-31 (mean ± SD) | 147.68 ± 5.64 | 151.18 ± 6.39 | 0.026 |
TSLP (mean ± SD) | 1.47 ± 0.07 | 1.51 ± 0.07 | 0.040 |
IL-13 (mean ± SD) | 185.19 ± 6.04 | 186.55 ± 5.91 | 0.377 |
Variables | IL-31 | TSLP | ||
---|---|---|---|---|
Coef. ± SE | p | Coef. ± SE | p | |
Moderate/severe AD | 4.215 ± 1.755 | 0.020 | 0.045 ± 0.020 | 0.036 |
Moderate periodontitis | −0.315 ± 1.804 | 0.862 | −0.020 ± 0.022 | 0.366 |
Severe periodontitis | −6.220 ± 2.407 | 0.013 | −0.018 ± 0.029 | 0.547 |
Constant | 150.209 ± 2.791 | 1.457 ± 0.031 | ||
Prob > F | 0.021 | 0.267 | ||
Adj. R2 | 0.165 | 0.023 | ||
No. observations | 55 | 58 |
Variables | IL-31 | |
---|---|---|
Coef. ± SE | p | |
AD and moderate periodontitis | 0.575 ± 3.458 | 0.869 |
AD and severe periodontitis | 0.610 ± 4.671 | 0.896 |
Constant | 148.579 ± 1.449 | |
Adj. R2 | 0.159 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez, C.; Fernández, J.; Aroca, M.; Bordagaray, M.J.; Pellegrini, E.; Contador, J.; Hernández, M.; Valenzuela, F.; Fernández, A. Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid. Int. J. Mol. Sci. 2023, 24, 15592. https://doi.org/10.3390/ijms242115592
Jiménez C, Fernández J, Aroca M, Bordagaray MJ, Pellegrini E, Contador J, Hernández M, Valenzuela F, Fernández A. Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid. International Journal of Molecular Sciences. 2023; 24(21):15592. https://doi.org/10.3390/ijms242115592
Chicago/Turabian StyleJiménez, Constanza, Javier Fernández, Marcela Aroca, María José Bordagaray, Elizabeth Pellegrini, Javier Contador, Marcela Hernández, Fernando Valenzuela, and Alejandra Fernández. 2023. "Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid" International Journal of Molecular Sciences 24, no. 21: 15592. https://doi.org/10.3390/ijms242115592
APA StyleJiménez, C., Fernández, J., Aroca, M., Bordagaray, M. J., Pellegrini, E., Contador, J., Hernández, M., Valenzuela, F., & Fernández, A. (2023). Association of Periodontitis and Atopic Dermatitis with the Levels of IL-13, IL-31, and TSLP in the Gingival Crevicular Fluid. International Journal of Molecular Sciences, 24(21), 15592. https://doi.org/10.3390/ijms242115592