BRACNAC: A BRCA1 and BRCA2 Copy Number Alteration Caller from Next-Generation Sequencing Data
Abstract
:1. Introduction
2. Results
2.1. Algorithm
2.2. BRACNAC vs. MLPA and Panelcn.MOPS for Targeted NGS
2.3. BRACNAC for WES
2.4. BRACNAC Limitations
3. Discussion
4. Materials and Methods
4.1. Algorithm
- The deletion score is calculated as follows:
- The amplification score is calculated as follows:
4.2. Datasets
4.3. Statistics
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, Y.; Bernhardy, A.J.; Nacson, J.; Krais, J.J.; Tan, Y.-F.; Nicolas, E.; Radke, M.R.; Handorf, E.; Llop-Guevara, A.; Balmaña, J.; et al. BRCA1 Intronic Alu Elements Drive Gene Rearrangements and PARP Inhibitor Resistance. Nat. Commun. 2019, 10, 5661. [Google Scholar] [CrossRef] [PubMed]
- Nicolussi, A.; Belardinilli, F.; Mahdavian, Y.; Colicchia, V.; D’Inzeo, S.; Petroni, M.; Zani, M.; Ferraro, S.; Valentini, V.; Ottini, L.; et al. Next-Generation Sequencing of BRCA1 and BRCA2 Genes for Rapid Detection of Germline Mutations in Hereditary Breast/Ovarian Cancer. PeerJ 2019, 7, e6661. [Google Scholar] [CrossRef] [PubMed]
- Kowalik, A.; Siołek, M.; Kopczyński, J.; Krawiec, K.; Kalisz, J.; Zięba, S.; Kozak-Klonowska, B.; Wypiórkiewicz, E.; Furmańczyk, J.; Nowak-Ozimek, E.; et al. BRCA1 Founder Mutations and beyond in the Polish Population: A Single-Institution BRCA1/2 next-Generation Sequencing Study. PLoS ONE 2018, 13, e0201086. [Google Scholar] [CrossRef] [PubMed]
- Tung, N.; Lin, N.U.; Kidd, J.; Allen, B.A.; Singh, N.; Wenstrup, R.J.; Hartman, A.-R.; Winer, E.P.; Garber, J.E. Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer. J. Clin. Oncol. 2016, 34, 1460–1468. [Google Scholar] [CrossRef] [PubMed]
- Wallace, A.J. New Challenges for BRCA Testing: A View from the Diagnostic Laboratory. Eur. J. Hum. Genet. 2016, 24, S10. [Google Scholar] [CrossRef] [PubMed]
- Povysil, G.; Tzika, A.; Vogt, J.; Haunschmid, V.; Messiaen, L.; Zschocke, J.; Klambauer, G.; Hochreiter, S.; Wimmer, K. Panelcn.MOPS: Copy-Number Detection in Targeted NGS Panel Data for Clinical Diagnostics. Hum. Mutat. 2017, 38, 889–897. [Google Scholar] [CrossRef] [PubMed]
- Suvakov, M.; Panda, A.; Diesh, C.; Holmes, I.; Abyzov, A. CNVpytor: A Tool for Copy Number Variation Detection and Analysis from Read Depth and Allele Imbalance in Whole-Genome Sequencing. Gigascience 2021, 10, giab074. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.K.; Olsen, M.F.; Lavik, L.A.S.; Vold, T.; Drabløs, F.; Sjursen, W. Detecting Copy Number Variation in next Generation Sequencing Data from Diagnostic Gene Panels. BMC Med. Genom. 2021, 14, 214. [Google Scholar] [CrossRef] [PubMed]
- Solodskikh, S.A.; Panevina, A.V.; Gryaznova, M.V.; Gureev, A.P.; Serzhantova, O.V.; Mikhailov, A.A.; Maslov, A.Y.; Popov, V.N. Targeted Sequencing to Discover Germline Variants in the BRCA1 and BRCA2 Genes in a Russian Population and Their Association with Breast Cancer Risk. Mutat. Res./Fundam. Mol. Mech. Mutagen. 2019, 813, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Han, E.; Yoo, J.; Chae, H.; Lee, S.; Kim, D.-H.; Kim, K.J.; Kim, Y.; Kim, M. Detection of BRCA1/2 Large Genomic Rearrangement Including BRCA1 Promoter-Region Deletions Using next-Generation Sequencing. Clin. Chim. Acta 2020, 505, 49–54. [Google Scholar] [CrossRef] [PubMed]
- Cao, W.-M.; Zheng, Y.-B.; Gao, Y.; Ding, X.-W.; Sun, Y.; Huang, Y.; Lou, C.-J.; Pan, Z.-W.; Peng, G.; Wang, X.-J. Comprehensive Mutation Detection of BRCA1/2 Genes Reveals Large Genomic Rearrangements Contribute to Hereditary Breast and Ovarian Cancer in Chinese Women. BMC Cancer 2019, 19, 551. [Google Scholar] [CrossRef] [PubMed]
- Fachal, L.; Blanco, A.; Santamariña, M.; Carracedo, A.; Vega, A. Large Genomic Rearrangements of BRCA1 and BRCA2 among Patients Referred for Genetic Analysis in Galicia (NW Spain): Delimitation and Mechanism of Three Novel BRCA1 Rearrangements. PLoS ONE 2014, 9, e93306. [Google Scholar] [CrossRef] [PubMed]
- Nicolussi, A.; Belardinilli, F.; Silvestri, V.; Mahdavian, Y.; Valentini, V.; D’Inzeo, S.; Petroni, M.; Zani, M.; Ferraro, S.; Di Giulio, S.; et al. Identification of Novel BRCA1 Large Genomic Rearrangements by a Computational Algorithm of Amplicon-Based Next-Generation Sequencing Data. PeerJ 2019, 7, e7972. [Google Scholar] [CrossRef] [PubMed]
- Atanesyan, L.; Steenkamer, M.J.; Horstman, A.; Moelans, C.B.; Schouten, J.P.; Savola, S.P. Optimal Fixation Conditions and DNA Extraction Methods for MLPA Analysis on FFPE Tissue-Derived DNA. Am. J. Clin. Pathol. 2017, 147, 60–68. [Google Scholar] [CrossRef] [PubMed]
- Oscorbin, I.; Kechin, A.; Boyarskikh, U.; Filipenko, M. Multiplex DdPCR Assay for Screening Copy Number Variations in BRCA1 Gene. Breast Cancer Res. Treat. 2019, 178, 545–555. [Google Scholar] [CrossRef] [PubMed]
- De Paolis, E.; De Bonis, M.; Concolino, P.; Piermattei, A.; Fagotti, A.; Urbani, A.; Scambia, G.; Minucci, A.; Capoluongo, E. Droplet Digital PCR for Large Genomic Rearrangements Detection: A Promising Strategy in Tissue BRCA1 Testing. Clin. Chim. Acta 2021, 513, 17–24. [Google Scholar] [CrossRef] [PubMed]
- van der Walt, S.; Colbert, S.C.; Varoquaux, G. The NumPy Array: A Structure for Efficient Numerical Computation. Comput. Sci. Eng. 2011, 13, 22–30. [Google Scholar] [CrossRef]
- McKinney, W. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference, Austin, TX, USA, 28 June–3 July 2010; pp. 51–56. [Google Scholar]
- Kechin, A.; Khrapov, E.; Boyarskikh, U.; Kel, A.; Filipenko, M. BRCA-Analyzer: Automatic Workflow for Processing NGS Reads of BRCA1 and BRCA2 Genes. Comput. Biol. Chem. 2018, 77, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830. [Google Scholar]
- Hunter, J.D. Matplotlib: A 2D Graphics Environment. Comput. Sci. Eng. 2007, 9, 90–95. [Google Scholar] [CrossRef]
Step | Type of Dataset | Number of Samples | Method of CNV Validation |
---|---|---|---|
- Initial algorithm development - Optimization of threshold values - Comparison with panelcn.MOPS results | in-house targeted NGS data | 147 | Only BRCA1 MRC-Holland-179 BRCA1 and BRCA2/CHEK2 MRC-Holland-34 |
GeneRead BRCA panel v2 (Qiagen) | 66 | ||
- Comparison with panelcn.MOPS results - Validation using other researchers’ targeted NGS data | TruSightTM Cancer targeted NGS-panel | 99 | BRCA1 and BRCA2 MLPA |
- Validation using other researchers’ targeted NGS data | AmpliSeq BRCA1 and BRCA2 targeted NGS panel | 192 | No |
- Validation using other researchers’ WES data | Whole-exome sequencing data | 60 | No |
Sample ID | CNV Detected with MLPA | CNV Detected with BRACNAC |
---|---|---|
mlpa_1 | del_BRCA1_ex20-ex23 | del_BRCA1_ex20-ex23 |
mlpa_2 | del_BRCA1_ex10-ex11 | del_BRCA1_ex10-ex11 |
mlpa_3 | del_BRCA2_ex21-ex24 | del_BRCA2_ex21-ex24 |
mlpa_4 | del_BRCA1_up-ex2 | del_BRCA1_ex2-ex2 |
mlpa_5 | dupl_BRCA1_ex4-ex6 | dupl_BRCA1_ex5-ex6 |
mlpa_6 | del_BRCA1_ex3-ex12 | del_BRCA1_ex4-ex12 |
mlpa_7 | del_BRCA1_ex20-ex21 | del_BRCA1_ex20-ex21 |
mlpa_8 | del_BRCA1_up-ex2 | del_BRCA1_ex2-ex2 |
mlpa_9 | del_BRCA1_ex19-ex23 | del_BRCA1_ex19-ex23 |
mlpa_10 | del_BRCA1_ex19-ex23 | del_BRCA1_ex20-ex22 |
mlpa_11 | del_BRCA1_up-ex2 | del_BRCA1_ex2-ex2 |
mlpa_12 | del_BRCA1_ex20-ex23 | del_BRCA1_ex20-ex23 |
Sample ID | Age | Short Pathogenic Variants | CNV | p-Value |
---|---|---|---|---|
SRR7910157 | 33 | No | del_BRCA1_ex2-ex22 | 0.001 |
SRR7910176 | 49 | No | del_BRCA2_ex2-ex3 | 0.001 |
SRR7910204 | 59 | No | dupl_BRCA2_ex3-ex6 | 0.001 |
SRR7910262 | 62 | No | dupl_BRCA1_ex21-ex23 | 0.001 |
SRR7910265 | 62 | No | del_BRCA1_ex2-ex2 | 0.001 |
SRR7910283 | 35 | No | del_BRCA1_ex23-ex23 | 0.001 |
Sample ID | Age | Cancer | Short Pathogenic Variants | CNV | p-Value |
---|---|---|---|---|---|
SRR5604273 | 55 | Ovary | No | del_BRCA1_ex13-ex13 | 0.018 |
SRR5604275 | 33 | Breast | BRCA2 c.271_271delTA | del_BRCA1_ex2-ex23 | 0.001 |
SRR5604279 | 58 | Breast | BRCA1 c.5266dupC | del_BRCA1_ex17-ex21 | 0.018 |
SRR5604281 | 43 | Breast | BRCA2 c.5946delT | dupl_BRCA1_ex13-ex23 | 0.001 |
SRR5604292 | 35 | Breast | BRCA2 c.8364G>A | dupl_BRCA1_ex2-ex23 | 0.001 |
SRR5604295 | 39 | Breast | No | del_BRCA1_ex13-ex19 | 0.001 |
SRR5604298 | 57 | Ovary | BRCA1 c.68_69delAG | del_BRCA1_ex11-ex12 | 0.001 |
SRR5604299 | 49 | Breast | BRCA2 c.5645C>A | del_BRCA1_ex2-ex23 | 0.018 |
SRR5604308 | 43 | Breast | BRCA2 c.3922G>T | dupl_BRCA1_ex17-ex22 | 0.001 |
SRR5604312 | 34 | Breast | BRCA1 c.68_69delAG | del_BRCA2_ex15-ex18 | 0.001 |
SRR5604313 | 50 | Breast | BRCA2 c.1054dupT | dupl_BRCA1_ex15-ex16 | 0.001 |
SRR5604314 | 40 | Ovary | BRCA1 c.3155delA | dupl_BRCA1_ex13-ex17 | 0.001 |
dupl_BRCA1_ex19-ex23 | 0.001 | ||||
SRR5604315 | 40 | Ovary | BRCA1 c.3155delA | del_BRCA1_ex12-ex13 | 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kechin, A.; Boyarskikh, U.; Borobova, V.; Khrapov, E.; Subbotin, S.; Filipenko, M. BRACNAC: A BRCA1 and BRCA2 Copy Number Alteration Caller from Next-Generation Sequencing Data. Int. J. Mol. Sci. 2023, 24, 16630. https://doi.org/10.3390/ijms242316630
Kechin A, Boyarskikh U, Borobova V, Khrapov E, Subbotin S, Filipenko M. BRACNAC: A BRCA1 and BRCA2 Copy Number Alteration Caller from Next-Generation Sequencing Data. International Journal of Molecular Sciences. 2023; 24(23):16630. https://doi.org/10.3390/ijms242316630
Chicago/Turabian StyleKechin, Andrey, Ulyana Boyarskikh, Viktoriya Borobova, Evgeniy Khrapov, Sergey Subbotin, and Maxim Filipenko. 2023. "BRACNAC: A BRCA1 and BRCA2 Copy Number Alteration Caller from Next-Generation Sequencing Data" International Journal of Molecular Sciences 24, no. 23: 16630. https://doi.org/10.3390/ijms242316630
APA StyleKechin, A., Boyarskikh, U., Borobova, V., Khrapov, E., Subbotin, S., & Filipenko, M. (2023). BRACNAC: A BRCA1 and BRCA2 Copy Number Alteration Caller from Next-Generation Sequencing Data. International Journal of Molecular Sciences, 24(23), 16630. https://doi.org/10.3390/ijms242316630