Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Lainez, A.; Roux-Desgranges, G.; Grolier, J.P.E.; Wilhelm, E. Mixtures of alkanes with polar molecules showing internal rotation: An unusual composition dependence of CpE of 1,2-dichloroethane + an n-alkane. Fluid Phase Equilibria 1985, 20, 47–56. [Google Scholar] [CrossRef]
- Saint Victor, M.-E.; Patterson, D. The W-shaped concentration dependence of CpE and solution non-randomness: Systems approaching the UCST. Thermochim. Acta 1990, 159, 177–185. [Google Scholar] [CrossRef]
- Saint-Victor, M.-E.; Patterson, D. The w-shape concentration dependence of CEp and solution non-randomness: Ketones + normal and branched alkanes. Fluid Phase Equilibria 1987, 35, 237–252. [Google Scholar] [CrossRef]
- Matteoli, E.; Mansoori, G.A. (Eds.) Fluctuation Theory of Mixtures; Taylor & Francis: Boca Raton, FL, USA, 1990. [Google Scholar]
- Rubio, R.G.; Cáceres, M.; Masegosa, R.M.; Andreolli-Ball, L.; Costas, M.; Patterson, D. Mixtures with “w-Shape” CEp curves. A light scattering study. Ber. Bunsenges. Phys. Chem. 1989, 93, 48–56. [Google Scholar] [CrossRef]
- Mello, C.; Mello, T.; Sevéri, E.; Coelho, L.; Ribeiro, D.; Marangoni, A.; Poppi, R.J.; Noda, I. Microstructures formation in a seemingly ideal homogeneous mixture of ethanol and methanol: An experimental evidence and two-dimensional correlation spectroscopy approach. J. Chem. Phys. 2009, 131, 084501. [Google Scholar] [CrossRef]
- Phillips, D.J.; Brennecke, J.F. Spectroscopic measurement of local compositions in binary liquid solvents and comparison to the NRTL equation. Ind. Eng. Chem. Res. 1993, 32, 943–951. [Google Scholar] [CrossRef]
- Shulgin, I.L.; Ruckenstein, E. Excess around a central molecule with application to binary mixtures. Phys. Chem. Chem. Phys. 2008, 10, 1097–1105. [Google Scholar] [CrossRef]
- Požar, M.; Perera, A. Evolution of the micro-structure of aqueous alcohol mixtures with cooling: A computer simulation study. J. Mol. Liquids 2017, 248, 602–609. [Google Scholar] [CrossRef]
- Sarkar, S.; Maity, A.; Chakrabarti, R. Microscopic structural features of water in aqueous–reline mixtures of varying compositions. Phys. Chem. Chem. Phys. 2021, 23, 3779–3793. [Google Scholar] [CrossRef]
- Perera, A.; Kežić, B. Fluctuations and micro-heterogeneity in mixtures of complex liquids. Faraday Discuss. 2013, 167, 145–158. [Google Scholar] [CrossRef]
- Chen, H.-F.; Li, J.-T.; Gu, F.; Wang, H.-J. Kirkwood-Buff integrals for hard-core Yukawa fluids. Eur. Phys. J. E 2017, 40, 93. [Google Scholar] [CrossRef]
- Bentenitis, N.; Cox, N.R.; Smith, P.E. A Kirkwood−Buff Derived Force Field for Thiols, Sulfides, and Disulfides. J. Phys. Chem. B 2009, 113, 12306–12315. [Google Scholar] [CrossRef] [Green Version]
- Debenedetti, P.G. The statistical mechanical theory of concentration fluctuations in mixtures. J. Chem. Phys. 1987, 87, 1256–1260. [Google Scholar] [CrossRef]
- Shimizu, S.; Matubayasi, N. Statistical thermodynamic foundation for mesoscale aggregation in ternary mixtures. Phys. Chem. Chem. Phys. 2018, 20, 13777–13784. [Google Scholar] [CrossRef] [Green Version]
- Nishikawa, K.; Hayashi, H.; Iijima, T. Temperature Dependence of the Concentration Fluctuation, the Kirkwood-Buff Parameters, and the Correlation Length of fed-Butyl Alcohol and Water Mixtures Studied by Small-Angle X-ray Scattering. J. Phys. Chem. 1989, 93, 6559–6565. [Google Scholar] [CrossRef]
- Hayashi, H.; Nishikawa, K.; Iijima, T. Small-Angle X-ray Scattering Study of Fluctuations in 1-Propanol-Water and 2-Propanol-Water Systems. J. Phys. Chem. 1990, 90, 8334–8338. [Google Scholar] [CrossRef]
- Hayashi, H.; Morita, T.; Nishikawa, K. Interpretation of correlation length by small-angle X-ray scattering experiments on fluids near critical point. Chem. Phys. Lett. 2009, 471, 249–252. [Google Scholar] [CrossRef]
- Tsuchiya, Y. Elucidation of structural changes and concentration fluctuations in binary mixtures using new thermodynamic relations. J. Phys. Condens. Matter 1999, 11, 593. [Google Scholar] [CrossRef]
- Coto, B.; Mößner, F.; Pando, C.; Rubio, R.G.; Renuncio, J.A.R. Bulk and surface properties for the methanol–1,1-dimethylpropyl methyl ether and methanol–1,1-dimethylethyl methyl ether systems. J. Chem. Soc. Faraday Trans. 1996, 92, 4435–4440. [Google Scholar] [CrossRef]
- Almasi, M.; Khodamoradpoor, M. Study of molecular interactions in binary mixtures by molecular diffusion, thermal diffusion, Soret effect, and separation ratio. J. Mol. Liquids 2021, 335, 116545. [Google Scholar] [CrossRef]
- Ritacco, H.A.; Fainerman, V.B.; Ortega, F.; Rubio, R.G.; Ivanova, N.; Starov, V.M. Equilibrium and dynamic surface properties of trisiloxane aqueous solutions. Part 2. Theory and comparison with experiment. Colloids Surf. A 2010, 365, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Ritacco, H.A.; Ortega, F.; Rubio, R.G.; Ivanova, N.; Starov, V.M. Equilibrium and dynamic surface properties of trisiloxane aqueous solutions: Part 1. Experimental results. Colloids Surf. A 2010, 365, 199–203. [Google Scholar] [CrossRef] [Green Version]
- Llamas, S.; Fernández-Peña, L.; Akanno, A.; Guzmán, E.; Ortega, V.; Ortega, F.; Csaky, A.G.; Campbell, R.A.; Rubio, R.G. Towards understanding the behavior of polyelectrolyte–surfactant mixtures at the water/vapor interface closer to technologically-relevant conditions. Phys. Chem. Chem. Phys. 2018, 20, 1395–1407. [Google Scholar] [CrossRef]
- Llamas, S.; Guzmán, E.; Akanno, A.; Fernández-Peña, L.; Ortega, F.; Campbell, R.A.; Miller, R.; Rubio, R.G. Study of the Liquid/Vapor Interfacial Properties of Concentrated Polyelectrolyte–Surfactant Mixtures Using Surface Tensiometry and Neutron Reflectometry: Equilibrium, Adsorption Kinetics, and Dilational Rheology. J. Phys. Chem. C 2018, 122, 4419–4427. [Google Scholar] [CrossRef]
- Pandey, J.D.; Verma, R. Inversion of the Kirkwood–Buff theory of solutions: Application to binary systems. Chem. Phys. 2001, 270, 429–438. [Google Scholar] [CrossRef]
- Blanco, M.A.; Sahin, E.; Li, Y.; Roberts, C.J. Reexamining protein-protein and protein-solvent interactions from Kirkwood-Buff analysis of light scattering in multi-component solutions. J. Chem. Phys. 2011, 134, 225103. [Google Scholar] [CrossRef] [Green Version]
- Matteoli, E.; Lepori, L. Kirkwood–Buff integrals and preferential solvation in ternary non-electrolyte mixtures. J. Chem. Soc. Faraday Trans. 1995, 91, 431–436. [Google Scholar] [CrossRef]
- Matteoli, E.; Mansoori, G.A. A simple expression for radial distribution functions of pure fluids and mixtures. J. Chem. Phys. 1995, 103, 4672–4677. [Google Scholar] [CrossRef] [Green Version]
- Matteoli, E. A Study on Kirkwood−Buff Integrals and Preferential Solvation in Mixtures with Small Deviations from Ideality and/or with Size Mismatch of Components. Importance of a Proper Reference System. J. Phys. Chem. B 1997, 101, 9800–9810. [Google Scholar] [CrossRef]
- Wilcox, D.S.; Rankin, B.M.; Ben-Amotz, D. Distinguishing aggregation from random mixing in aqueous t-butyl alcohol solutions. Faraday Discuss. 2013, 167, 177–190. [Google Scholar] [CrossRef]
- Chakraborty, S.; Sehanobish, E.; Sarkar, M. A traditional painkiller as a probe for microheterogeneity in 1-propanol–water mixtures. Chem. Phys. Lett. 2010, 501, 118–122. [Google Scholar] [CrossRef]
- Oh, K.-I.; Baiz, C.R. Molecular heterogeneity in aqueous cosolvent systems. J. Chem. Phys. 2020, 152, 190901. [Google Scholar] [CrossRef] [PubMed]
- Marcus, Y. Preferential solvation in mixed solvents. Part 5.—Binary mixtures of water and organic solvents. J. Chem. Soc. Faraday Trans. 1990, 86, 2215–2224. [Google Scholar] [CrossRef]
- Ramírez-Verduzco, L.F.; Romero-Martínez, A.; Trejo, A. Prediction of the surface tension, surface concentration, and the relative Gibbs adsorption isotherm of binary liquid systems. Fluid Phase Equilibria 2006, 246, 119–130. [Google Scholar] [CrossRef]
- Bagheri, A.; Rafati, A.A.; Tajani, A.A.; Borujeni, A.R.A.; Hajian, A. Prediction of the Surface Tension, Surface Concentration and the Relative Gibbs Adsorption Isotherm of Non-ideal Binary Liquid Mixtures. J. Solut. Chem. 2013, 42, 2071–2086. [Google Scholar] [CrossRef]
- Heidel, B.; Findenegg, G.H. Ellipsometric study of the surface of a binary liquid mixture near a critical solution point. J. Phys. Chem. 1984, 88, 6575–6579. [Google Scholar] [CrossRef]
- Privat, M.; Bennes, R.; Tronel-Peyroz, E.; Douillard, J.-M. Ellipsometry and adsorption: The determination of isotherms and the adsorbed layer thickness and fluctuations of the composition in the liquid-vapor interface. J. Colloid Interface Sci. 1988, 121, 198–207. [Google Scholar] [CrossRef]
- Subramanian, D.; Boughter, C.T.; Klauda, J.B.; Hammouda, B.; Anisimov, M.A. Mesoscale inhomogeneities in aqueous solutions of small amphiphilic molecules. Faraday Discuss. 2013, 167, 217–238. [Google Scholar] [CrossRef]
- Shulgin, I.; Ruckenstein, E. Kirkwood−Buff Integrals in Aqueous Alcohol Systems: Aggregation, Correlation Volume, and Local Composition. J. Phys. Chem. B 1999, 103, 872–877. [Google Scholar] [CrossRef]
- Nishikawa, K.; Morita, T. Small-Angle X-ray-Scattering Study of Supercritical Trifluoromethane. J. Phys. Chem. B 1997, 101, 1413–1418. [Google Scholar] [CrossRef]
- Morita, T.; Nishikawa, K. Fluctuations in density and concentration of methanol–water mixtures at 7 MPa and 373, 423 K studied by small-angle X-ray scattering. Chem. Phys. Lett. 2004, 389, 29–33. [Google Scholar] [CrossRef]
- Nishikawa, K.; Kasahara, Y.; Ichioka, T. Inhomogeneity of Mixing in Acetonitrile Aqueous Solution Studied by Small-Angle X-ray Scattering. J. Phys. Chem. B 2002, 106, 693–700. [Google Scholar] [CrossRef]
- Kopf, S.; Bourriquen, F.; Li, W.; Neumann, H.; Junge, K.; Beller, M. Recent Developments for the Deuterium and Tritium Labeling of Organic Molecules. Chem. Rev. 2022, 122, 6634–6718. [Google Scholar] [CrossRef] [PubMed]
- Hernández, M.a.P.; Ortega, F.; Rubio, R.G. Crossover critical phenomena in an aqueous electrolyte solution: Light scattering, density and viscosity of the 3-methylpyridine+water+NaBr system. J. Chem. Phys. 2003, 119, 4428–4436. [Google Scholar] [CrossRef]
- Díez-Pascual, A.; Ortega, F.; Crespo-Colín, A.; Compostizo, A.; Monroy, F.; Rubio, R.G. Concentration Fluctuations and Surface Adsorption in Hydrogen-Bonded Mixtures. J. Phys. Chem. B 2004, 108, 10019–10024. [Google Scholar] [CrossRef]
- Lyklema, J. Fundamentals of Interface and Colloid Science; Academic Press: Cambridge, MA, USA, 2000. [Google Scholar]
- Rubio, R.G.; Renuncio, J.A.R.; Peña, M.D. Regression of vapor-liquid equilibrium data based on application of the maximum-likelihood principle. Fluid Phase Equilibria 1983, 12, 217–234. [Google Scholar] [CrossRef]
- Kirkwood, J.G.; Buff, F.P. The Statistical Mechanical Theory of Solutions. I. J. Phys. Chem. 1951, 19, 774–777. [Google Scholar] [CrossRef]
- McQuarrie, D.A. Statistical Mechanics; Harper & Row: New York, NY, USA, 1973. [Google Scholar]
- Gray, C.G.; Gubbins, K.E. Theory of Molecular Fluids; Oxfort University Press: London, UK, 1984. [Google Scholar]
- Segudovic, N.; Dezelic, G. Light Scattering in Binary Liquid Mixtures. I. Isotropic Scattering. Croat. Chem. Acta 1973, 45, 385–406. [Google Scholar]
- Johnson, B.L.; Smith, J. Light Scattering from Polymer Solutions; Huglin, M.B., Ed.; Academic Press: New York, NY, USA, 1972. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carbone, C.; Guzmán, E.; Rubio, R.G. Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions. Int. J. Mol. Sci. 2023, 24, 2276. https://doi.org/10.3390/ijms24032276
Carbone C, Guzmán E, Rubio RG. Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions. International Journal of Molecular Sciences. 2023; 24(3):2276. https://doi.org/10.3390/ijms24032276
Chicago/Turabian StyleCarbone, Carlo, Eduardo Guzmán, and Ramón G. Rubio. 2023. "Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions" International Journal of Molecular Sciences 24, no. 3: 2276. https://doi.org/10.3390/ijms24032276
APA StyleCarbone, C., Guzmán, E., & Rubio, R. G. (2023). Anomalous Concentration Dependence of Surface Tension and Concentration-Concentration Correlation Functions of Binary Non-Electrolyte Solutions. International Journal of Molecular Sciences, 24(3), 2276. https://doi.org/10.3390/ijms24032276