Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes
Abstract
:1. Introduction
2. Results
2.1. Search for the Salt Bridge (SB1) of TbOpB in Protein Sequences of Bacterial OpBs
2.2. Comparative Structural Analysis of Bacterial SpOpB and Protozoan TbOpB in Various Conformations
2.2.1. Structural Overview of TCK-Bound SpOpB
2.2.2. TCK-Bound SpOpB Crystallized in the Closed Conformation
2.2.3. The TCK-Bound SpOpB Catalytic Center Simulates the Tetrahedral Transition State Analogue Complex
2.2.4. Catalytic Triad Stabilization in the Closed State of Bacterial SpOpB and Protozoan TbOpB
2.3. Stabilization of the Catalytic Triad in the AlphaFold-Built Models of the SpOpB- and TbOpB-like Oligopeptidases B
3. Materials and Methods
3.1. Bioinformatics Study
3.2. Production of a Recombinant Protein
3.3. Determination of the SpOpB Catalytic Activity and Kinetic Parameters of Its Inhibition by TCK
3.4. Crystallization of the SpOpB-TCK Complex
3.5. X-ray Diffraction and Structural Analysis
3.6. Data Bank Accession Numbers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polgár, L. The prolyl oligopeptidase family. Cell Mol. Life Sci. 2002, 59, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.D.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rea, D.; Fulop, V. Structure-function properties of prolyl oligopeptidase family enzymes. Cell Biochem. Biophys. 2006, 44, 349–365. [Google Scholar] [CrossRef] [PubMed]
- Fülöp, V.; Böcskei, Z.; Polgár, L. Prolyl oligopeptidase: An unusual β-propeller domain regulates proteolysis. Cell 1998, 94, 161–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shan, L.; Mathews, I.I.; Khosla, C. Structural and mechanistic analysis of two prolyl endopeptidases: Role of interdomain dynamics in catalysis and specificity. Proc. Natl. Acad. Sci. USA 2005, 102, 3599–3604. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Chen, C.; Davies, D.R.; Chiu, T.K. Induced-fit mechanism for prolyl endopeptidase. J. Biol. Chem. 2010, 285, 21487–21495. [Google Scholar] [CrossRef] [Green Version]
- Canning, P.; Rea, D.; Morty, R.E.; Fulop, V. Crystal structures of Trypanosoma brucei Oligopeptidase B broaden the paradigm of catalytic regulation in prolyl oligopeptidase family enzymes. PLoS ONE 2013, 8, e79349. [Google Scholar] [CrossRef]
- Petrenko, D.E.; Timofeev, V.I.; Britikov, V.V.; Britikova, E.V.; Kleymenov, S.Y.; Vlaskina, A.V.; Kuranova, I.P.; Mikhailova, A.G.; Rakitina, T.V. First Crystal Structure of Bacterial Oligopeptidase B in an Intermediate State: The Roles of the Hinge Region Modification and Spermine. Biology 2021, 10, 1021. [Google Scholar] [CrossRef]
- McLuskey, K.; Paterson, N.G.; Bland, N.D.; Isaacs, N.W.; Mottram, J.C. Crystal structure of Leishmania major oligopepti-dase B gives insight into the enzymatic properties of a trypanosomatid virulence factor. J. Biol. Chem. 2010, 285, 39249–39259. [Google Scholar] [CrossRef] [Green Version]
- Huang, P.; Lv, A.; Yan, Q.; Jiang, Z.; Yang, S. The structure and molecular dynamics of prolyl oligopeptidase from Microbulbifer arenaceous provide insights into catalytic and regulatory mechanisms. Acta Crystallogr D Struct Biol. 2022, 78 Pt 6, 735–751. [Google Scholar] [CrossRef]
- Haffner, C.D.; Diaz, C.J.; Miller, A.B.; Reid, R.A.; Madauss, K.P.; Hassell, A.; Hanlon, M.H.; Porter, D.J.; Becherer, J.D.; Carter, L. Pyrrolidinyl pyridone and pyrazinone analogues as potent inhibitors of prolyl oligopeptidase (POP). Bioorganic Med. Chem. Lett. 2008, 18, 4360–4363. [Google Scholar] [CrossRef]
- Kaushik, S.; Etchebest, C.; Sowdhamini, R. Decoding the structural events in substrate-gating mechanism of eukaryotic prolyl oligopeptidase using normal mode analysis and molecular dynamics simulations. Proteins 2014, 82, 1428–1443. [Google Scholar] [CrossRef]
- Kichik, N.; Tarragó, T.; Claasen, B.; Gairí, M.; Millet, O.; Giralt, E. 15N relaxation NMR studies of prolyl oligopeptidase, an 80 kDa enzyme, reveal a pre-existing equilibrium between different conformational states. ChemBioChem. 2011, 12, 2737–2739. [Google Scholar] [CrossRef]
- Szeltner, Z.; Rea, D.; Juhász, T.; Renner, V.; Fülöp, V.; Polgár, L. Concerted structural changes in the peptidase and the propeller domains of prolyl oligopeptidase are required for substrate binding. J. Mol. Biol. 2004, 340, 627–637. [Google Scholar] [CrossRef]
- Ellis-Guardiola, K.; Rui, H.; Beckner, R.L.; Srivastava, P.; Sukumar, N.; Roux, B.; Lewis, J.C. Crystal Structure and Conformational Dynamics of Pyrococcus furiosus Prolyl Oligopeptidase. Biochemistry 2019, 58, 1616–1626. [Google Scholar] [CrossRef]
- Motta, F.N.; Azevedo, C.S.; Neves, B.P.; Araújo, C.N.; Grellier, P.; Santana, J.M.; Bastos, I.M.D. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019, 167, 207–216. [Google Scholar] [CrossRef]
- Morty, R.E.; Pelle, R.; Vadasz, I.; Uzcanga, G.L.; Seeger, W.; Bubis, J. Oligopeptidase B from Trypanosoma evansi: A parasite peptidase that inactivates atrial natriuretic factor in the bloodstream of infected hosts. J. Biol. Chem. 2005, 280, 10925–10937. [Google Scholar] [CrossRef] [Green Version]
- Coetzer, T.H.; Goldring, J.P.; Huson, L.E. Oligopeptidase B: A processing peptidase involved in pathogenesis. Biochimie 2008, 90, 336–344. [Google Scholar] [CrossRef]
- Swenerton, R.K.; Zhang, S.; Sajid, M.; Medzihradszky, K.F.; Craik, C.S.; Kelly, B.L.; McKerrow, J.H. The oligopeptidase B of Leishmania regulates parasite enolase and immune evasion. J. Biol. Chem. 2011, 286, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Bivona, A.E.; Alberti, A.S.; Matos, M.N.; Cerny, N.; Cardoso, A.C.; Morales, C.; González, G.; Cazorla, S.I.; Malchiodi, E.L. Trypanosoma cruzi 80 kDa prolyl oligopeptidase (Tc80) as a novel immunogen for Chagas disease vaccine. PLoS Negl. Trop. Dis. 2018, 12, e0006384. [Google Scholar] [CrossRef]
- Mattiuzzo, M.; Gobba, C.D.; Runti, G.; Mardirossian, M.; Bandiera, A.; Gennaro, R.; Scocchi, M. Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides. J. Microbiol. Biotechnol. 2014, 24, 160–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Timofeev, V.I.; Petrenko, D.E.; Agapova, Y.K.; Vlaskina, A.V.; Karlinsky, D.M.; Mikhailova, A.G.; Kuranova, I.P.; Rakitina, T.V. The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding. Crystals 2021, 11, 1438. [Google Scholar] [CrossRef]
- Britikov, V.V.; Timofeev, V.I.; Petrenko, D.E.; Britikova, E.V.; Nikolaeva, A.Y.; Vlaskina, A.V.; Boyko, K.M.; Mikhailova, A.G.; Rakitina, T.V. Elucidation of the Conformational Transition of Oligopeptidase B by an Integrative Approach Based on the Combination of X-ray, SAXS, and Essential Dynamics Sampling Simulation. Crystals 2022, 12, 712. [Google Scholar] [CrossRef]
- Czekster, C.M.; Ludewig, H.; McMahon, S.A.; Naismith, J.H. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat. Commun. 2017, 8, 1045. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Li, Y.; Chen, Y.; Hu, J.; Hylemariam Mihiretie Mengist, H.M.; Liu, G.; Jin, T.; Cao, M. Characterization and crystal structure of prolyl endopeptidase from abalone (Haliotis discus hannai). Food Chem. 2020, 333, 127452. [Google Scholar] [CrossRef]
- Fukumoto, J.; Ismail, N.I.M.; Kubo, M.; Kinoshita, K.; Inoue, M.; Yuasa, K.; Nishimoto, M.; Matsuki, H.; Tsuji, A. Possible role of inter-domain salt bridges in oligopeptidase B from Trypanosoma brucei: Critical role of Glu172 of non-catalytic β-propeller domain in catalytic activity and Glu490 of catalytic domain in stability of OPB. J. Biochem. 2013, 154, 465–473. [Google Scholar] [CrossRef]
- Mikhailova, A.G.; Rakitina, T.V.; Timofeev, V.I.; Karlinsky, D.M.; Korzhenevsky, D.A.; Agapova, Y.K.; Vlaskina, A.V.; Ovchinnikova, M.V.; Gorlenko, V.A.; Rumsh, L.D. Activity modulation of the oligopeptidase B from Serratia proteamaculans by site-directed mutagenesis of amino acid residues surrounding catalytic triad histidine. Biochimie 2017, 139, 125–136. [Google Scholar] [CrossRef]
- Holm, L. Using Dali for Protein Structure Comparison. Methods Mol. Biol. 2020, 2112, 29–42. [Google Scholar] [CrossRef]
- Krissinel, E.; Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef]
- Collen, D.; Lijnen, H.R.; de Cock, F.; Durex, J.P.; Loffet, A. Kinetic properties of tripeptide lysyl chloromethyl ketone and lysyl p-nitroanilide derivatives towards trypsin-like serine proteinases. Biochim. Biophys. Acta. 1980, 615, 158–166. [Google Scholar] [CrossRef]
- Lu, D.; Futterer, K.; Korolev, S.; Zheng, X.; Tan, K.; Waksman, G.; Sadler, J.E. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide. J. Mol. Biol. 1999, 292, 361–373. [Google Scholar] [CrossRef]
- Asztalos, P.; Müller, A.; Hölke, W.; Sobek, H.; Rudolph, M.G. Atomic resolution structure of a lysine-specifc endoproteinase from Lysobacter enzymogenes suggests a hydroxyl group bound to the oxyanion hole. Acta Cryst. D Biol. Cryst. 2014, 70, 1832–1843. [Google Scholar] [CrossRef]
- Petrenko, D.E.; Mikhailova, A.G.; Timofeev, V.I.; Agapova, Y.K.; Karlinsky, D.M.; Komolov, A.S.; Korzhenevskiy, D.A.; Vlaskina, A.V.; Rumsh, L.D.; Rakitina, T.V. Molecular dynamics complemented by site-directed mutagenesis reveals significant difference between the interdomain salt bridge networks stabilizing oligopeptidases B from bacteria and protozoa in their active conformations. J. Biomol. Struct. Dyn. 2020, 38, 4868–4882. [Google Scholar] [CrossRef]
- Mancuso, G.; Midiri, A.; Gerace, E.; Biondo, C. Bacterial Antibiotic Resistance: The Most Critical Pathogens. Pathogens 2021, 10, 1310. [Google Scholar] [CrossRef]
- Shamova, O.; Orlov, D.S.; Zharkova, M.; Balandin, S.V.; Yamschikova, E.V.; Knappe, D.; Hoffmann, R.; Kokryakov, V.N.; Ovchinnikova, T.V. Minibactenecins ChBac7.Nα and ChBac7. Nβ—Antimicrobial Peptides from Leukocytes of the Goat Capra hircus. Acta Naturae. 2016, 8, 136–146. [Google Scholar] [CrossRef]
- Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging Strategies to Combat ESKAPE Pathogens in the Era of Antimicrobial Resistance: A Review. Front Microbiol. 2019, 10, 539. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- The UniProt Consortium. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res. 2021, 49, D480–D489. [Google Scholar] [CrossRef]
- Sievers, F.; Higgins, D.G. Clustal Omega for making accurate alignments of many protein sequences. Protein Sci. 2018, 27, 135–145. [Google Scholar] [CrossRef] [Green Version]
- Waterhouse, A.M.; Procter, J.B.; Martin, D.M.A.; Clamp, M.; Barton, G.J. Jalview Version 2—A multiple sequence alignment editor and analysis workbench. Bioinformatics 2009, 25, 1189–1191. [Google Scholar] [CrossRef] [Green Version]
- Price, M.N.; Dehal, P.S.; Arkin, A.P. FastTree 2—Approximately Maximum-Likelihood Trees for Large Alignments. PLoS ONE 2010, 5, e9490. [Google Scholar] [CrossRef] [PubMed]
- Madeira, F.; Pearce, M.; Tivey, A.R.N.; Basutkar, P.; Lee, J.; Edbali, O.; Madhusoodanan, N.; Kolesnikov, A.; Lopez, R. Search and sequence analysis tools services from EMBL-EBI in 2022. Nucleic Acids Res. 2022, 50, W276–W279. [Google Scholar] [CrossRef] [PubMed]
- Mikhailova, A.G.; Khairullin, R.F.; Demidyuk, I.V.; Kostrov, S.V.; Grinberg, N.V.; Burova, T.V.; Grinberg, V.Y.; Rumsh, L.D. Cloning, sequencing, expression, and characterization of thermostability of oligopeptidase B from Serratia proteamaculans, a novel psychrophilic protease. Protein Exp. Purif. 2014, 93, 63–76. [Google Scholar] [CrossRef] [PubMed]
- Kitz, R.; Wilson, I.B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem. 1962, 237, 3245–3249. [Google Scholar] [CrossRef]
- Nurizzo, D.; Mairs, T.; Guijarro, M.; Rey, V.; Meyer, J.; Fajardo, P.; Chavanne, J.; Biasci, J.C.; McSweeney, S.; Mitchell, E. The ID23-1 Structural Biology Beamline at the ESRF. J. Synchrotron Radiat. 2006, 13, 227–238. [Google Scholar] [CrossRef]
- Battye, T.; Kontogiannis, L.; Johnson, O.; Powell, H. iMOSFLM: A new graphical interface for diffraction-image processing with MOSFLM. Leslie, AG. Acta Crystallogr. D Biol. Crystallogr. 2011, 67 Pt 4, 271–281. [Google Scholar] [CrossRef] [Green Version]
- Evans, P. Scaling and Assessment of Data Quality. Acta Cryst. 2006, D62, 72–82. [Google Scholar] [CrossRef]
- Long, F.; Vagin, A.; Young, P.; Murshudov, G.N. BALBES: A Molecular Replacement Pipeline. Acta Cryst. 2008, D64, 125–132. [Google Scholar] [CrossRef] [Green Version]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Cryst. 2011, D67, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and Development of Coot. Acta Cryst. 2010, D66, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Krissinel, E.; Henrick, K. Secondary-Structure Matching (SSM), a New Tool for Fast Protein Structure Alignment in Three Dimensions. Acta Cryst. 2004, D60, 2256–2268. [Google Scholar] [CrossRef] [Green Version]
- Jurrus, E.; Engel, D.; Star, K.; Monson, K.; Brandi, J.; Felberg, L.E.; Brookes, D.H.; Wilson, L.; Chen, J.; Liles, K.; et al. Improvements to the APBS biomolecular solvation software suite. Protein Sci. 2018, 27, 112–128. [Google Scholar] [CrossRef] [Green Version]
PDB ID or Source | 7YWP | 7ZJZ | Supplementary File S3 | 4BP8 | 4BP9 |
---|---|---|---|---|---|
Conformation | closed | intermediate | open | open | closed |
Protein [Ref] | SpOpB-TCK | SpOpB_S532A [23] | SpOpB-SAXS [23] | TbOpB [7] | TbOpB-AIP [7] |
Residues in the structure | 675 | 677 | 677 | 712 | 710 |
Aligned residues | - | 670 | 539 | 527 | 668 |
Z-score * | - | 51.7 | 43.1 | 48.5 | 45.4 |
Identity, % * | 100 | 99 | 100 | 39 | 38 |
RMSD, Å * | - | 1.7 | 3.8 | 3.4 | 1.5 |
Catalytic S–H Cα-distance, Å | 7.9 | 17.9 | 17.4 | 18.5 | 8.3 |
Cat. S-OG Cat. H-NE2 distance, Å | 2.8 | n/a | 21.3 | 18.3 | 3.5 |
Catalytic H–D Cα-distance, Å | 4.6 | 7.2 | 6.0 | 7.6 | 4.5 |
Cat. H-ND1 Cat. D-OD2 distance, Å | 3.0 | 6.6 | 8.8 | 11.8 | 3.1 |
Center of mass distance, Å | 30.4 | 32.3 | 36.9 | 36.7 | 30.4 |
Buried surface area, cat/pro, % 1 | 16.8/13.8 | 11.7/9.8 | 8.8/7.3 | 8.4/7.5 | 14.0/12.3 |
Interface residues, cat/prop, % 2 | 21.5/18.8 | 15.7/15.3 | 11.6/10.9 | 10.3/10.5 | 17.4/16.9 |
Hydrogen bonds | 24 | 15 | 12 | 14 | 28 |
Salt Bridges | 4 | 2 | 2 | 3 | 4 |
Structural Element | Closed | Intermediate | Open | ||||
---|---|---|---|---|---|---|---|
Propeller | Catalytic | Atom 1 prop. | Atom 2 cat. | Atom 1 prop. | Atom 2 cat. | Atom 1 prop. | Atom 2 cat. |
Hinge1 | α2 | I71N | V68O | I71N | V68O | ||
H-loop | P72O | R658NH2 | |||||
Q73O | R658NH½ | ||||||
β5/β6, Blade 1 | E92O | R658NH1 | |||||
N95O | R658NH1 | ||||||
E96O/OE2 | R658N | E96O | R658NH2 | ||||
Y97OH | S656OG | Y97OH | S656N | ||||
E96O | S656OG | ||||||
H-loop, α12 border | E96OE2 | F659N | |||||
E96OE2 | K660N | ||||||
Blade 1/ Blade 2 | E125O | K660NZ | |||||
E125OE2 | K660NZ | ||||||
H-loop | E125O | S656OG | A121O | K655NZ | |||
Y127N | S656OG | R124O | K655NZ | ||||
β9/β10, Blade 2 | S149OG | G651N | |||||
α11 | R150NH1 | Q621OE1 | |||||
β13/β14, Blade 3 | β2/α1 | K194NZ | D31OD2 | ||||
Blade 3/ Blade 4 | α8/α9 | D222O | T574OG1 | ||||
β17/β18, Blade 4 | T244OG1 | G575O | T244OG1 | D578OD2 | |||
β21/β22, Blade 5 | β35/α5 | K291O | Q490NE2 | ||||
α5/α6 | K291NZ | E494OE½ | K291NZ | E494OE½ | K291NZ | E494OE1 | |
β3/α5 | N292ND2 | L488O | |||||
N292OD1 | L490N | N292OD1 | L490N | N292OD1 | L490N | ||
α5 | N292OD1 | L491N | |||||
β24, Blade 6 | M317SD | Q490N | M317SD | Q490N | |||
β25/β26, Blade 6 | β34/α4 | R333NH2 | S458OG | ||||
R333NH½ | D460OD½ | R333NH½ | D460OD½ | R333NH½ | D460OD½ | ||
β35/α5 | R333NH1 | E487O | |||||
β32 | G336O | R418NH2 | G336O | R418NH2 | |||
Blade 6/ Blade 7 | T359OG1 | R418NH1 | D357OD1 | S416OG | |||
β34/α4 | T361N | P461O | T361N/OG1 | P461O | T361N/OG1 | P461O | |
β29/β30, Blade7 | S380OG | F463N | S380OG | F463N | S380OG | F463N | |
β33 | M382SD | L433N | |||||
Hinge2 | α2 | K407N | R70O | K407N | R70O | K407NE | R70O |
N408O | R70NH1 | ||||||
η6 | T410O | N413N | T410O/OG1 | N413N/ND2 | T410OG1 | E412N |
Conformations | Closed | Intermediate | Open | |||||
---|---|---|---|---|---|---|---|---|
Interacting Elements | Interacting Atoms | |||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | |
H-loop | D-loop | M648O | H616NE2 | M648O | H616ND1 | |||
S650O | L615N | |||||||
S650O | H616N | G651N | H616O | |||||
D649O | D617N | |||||||
H652ND1 | D617OD1/2 | H652N | D617OD1 | |||||
G653N | D617OD1 | |||||||
R658NH1/2 | D617OD1/2 | |||||||
R658NH1 | S618OG | |||||||
N-loop, β2/α1 | R33NE | L615O | ||||||
R33O | H616NE2 | |||||||
R33NH2 | D617O | R33NH2 | Q619O | |||||
α11 | R33NH1 | Q621OE1 | R33NH2 | Q621OE1 | R33NH2 | V620O | ||
β36/α7 | S532OG * | H652NE2 * | ||||||
β39 | H-loop | Y645OH | K655NZ | |||||
α12 | E663OE2 | K655NZ | ||||||
D664OD2 | K655N | |||||||
Y662OH | F659O |
Organism | Taxonomy 1 | UniProt ID | Identity with SpOpB Sequence, % 2 | RMSD Cα-Alignment on SpOpB Structure, Å 3 | TbOpB or SpOpB-Like Group (Figure) | |
---|---|---|---|---|---|---|
1 | Klebsiella pneumoniae | Superphylum: Proteobacteria Class: Gammaproteobacteria Order: Enterobacteriales | W1DF13 | 65.63 | 0.6 | SpOpB- like (Figure 9A) |
2 | Pseudomonas aeruginosa | Superphylum: Proteobacteria Class: Gammaproteobacteria Order: Pseudomonadales | Q9I440 | 42.81 | 1.3 | TbOpB- like (Figure 9B) |
3 | Stenotrophomonas maltophilia | Superphylum: Proteobacteria Class: Gammaproteobacteria Order: Xanthomonadales | B2FHV9 | 50.67 | 1.1 | SpOpB- like (Figure 9C) |
4 | Mycobacterium tuberculosis | Superphylum: Terrabacteria | O07178 | 23.97 | 2.9 | TbOpB- like (Figure 9D) |
5 | Trypanosoma Brucei4 | Kingdom: Protozoa | O76728 | 38.10 | 1.5 | Figure 8B |
PDB ID Protein-Inhibitor | 7YWP SpOpB-TCK |
---|---|
Data collection | |
Diffraction source | ESRF (ID23-1beamline) |
Wavelength (Å) | 0.98 |
Temperature (K) | 100 |
Detector | PILATUS 6M |
Space group | P2(1)2(1)2(1) |
a, b, c (Å) | 75.529, 89.660, 108.650 |
α, β, γ (°) | 90.0 |
Unique reflections | 37,524 (5487) |
Resolution range (Å) | 30.00–2.2 (2.32–2.2) |
Completeness (%) | 98.57 (99.90) |
Average redundancy | 4.14 (4.27) |
〈I/σ(I)〉 | 6.6952 (3.89) |
Rmrgd-F * (%) | 7.8 (19) |
Willson B | 25.42 |
Refinement | |
Rfact (%) | 18.8 |
Rfree (%) | 25.4 |
Rfree set size (%) | 5 |
RMSD of bonds (Å) | 0.008 |
RMSD of angles (°) | 1.566 |
Ramachandran plot | |
Most favored (%) | 99.6 |
Allowed (%) | 0.4 |
No. atoms | |
Protein | 5531 |
Water | 417 |
Ligands | 20 |
B-factor (Å2) | |
Average | 22.96 |
Protein | 21.67 |
Water | 26.42 |
Ligands | 34.15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petrenko, D.E.; Karlinsky, D.M.; Gordeeva, V.D.; Arapidi, G.P.; Britikova, E.V.; Britikov, V.V.; Nikolaeva, A.Y.; Boyko, K.M.; Timofeev, V.I.; Kuranova, I.P.; et al. Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes. Int. J. Mol. Sci. 2023, 24, 2286. https://doi.org/10.3390/ijms24032286
Petrenko DE, Karlinsky DM, Gordeeva VD, Arapidi GP, Britikova EV, Britikov VV, Nikolaeva AY, Boyko KM, Timofeev VI, Kuranova IP, et al. Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes. International Journal of Molecular Sciences. 2023; 24(3):2286. https://doi.org/10.3390/ijms24032286
Chicago/Turabian StylePetrenko, Dmitry E., David M. Karlinsky, Veronika D. Gordeeva, Georgij P. Arapidi, Elena V. Britikova, Vladimir V. Britikov, Alena Y. Nikolaeva, Konstantin M. Boyko, Vladimir I. Timofeev, Inna P. Kuranova, and et al. 2023. "Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes" International Journal of Molecular Sciences 24, no. 3: 2286. https://doi.org/10.3390/ijms24032286
APA StylePetrenko, D. E., Karlinsky, D. M., Gordeeva, V. D., Arapidi, G. P., Britikova, E. V., Britikov, V. V., Nikolaeva, A. Y., Boyko, K. M., Timofeev, V. I., Kuranova, I. P., Mikhailova, A. G., Bocharov, E. V., & Rakitina, T. V. (2023). Crystal Structure of Inhibitor-Bound Bacterial Oligopeptidase B in the Closed State: Similarity and Difference between Protozoan and Bacterial Enzymes. International Journal of Molecular Sciences, 24(3), 2286. https://doi.org/10.3390/ijms24032286