Long-Term Visual Prognosis of Patients Following Lens-Sparing Vitrectomy for Stage 4A Retinopathy of Prematurity
Abstract
:1. Introduction
2. Results
2.1. Patient Demographics
2.2. Refractive Errors and VA at the Final Follow-Up
2.3. Anti-VEGF Therapy
2.4. Comparison of Refractive Errors and VA of Both Eyes of Each Patient
3. Discussion
4. Materials and Methods
4.1. Patients
4.2. Indication of Anti-VEGF Therapy
4.3. Indication and Surgical Procedure of LSV
4.4. VA Measurement
4.5. Study Group
4.6. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hartnett, M.E. Advances in understanding and management of retinopathy of prematurity. Surv. Ophthalmol. 2017, 62, 257–276. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Blencowe, H.; Lawn, J.E.; Vazquez, T.; Fielder, A.; Gilbert, C. Preterm-associated visual impairment and estimates of retinopathy of prematurity at regional and global levels for 2010. Pediatr. Res 2013, 74 (Suppl. 1), 35–49. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Early Treatment For Retinopathy Of Prematurity Cooperative Group. Revised indications for the treatment of retinopathy of prematurity: Results of the early treatment for retinopathy of prematurity randomized trial. Arch. Ophthalmol. 2003, 121, 1684–1694. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kusaka, S.; Shima, C.; Wada, K.; Arahori, H.; Shimojyo, H.; Sato, T.; Fujikado, T. Efficacy of intravitreal injection of bevacizumab for severe retinopathy of prematurity: A pilot study. Br. J. Ophthalmol. 2008, 92, 1450–1455. [Google Scholar] [CrossRef]
- Mintz-Hittner, H.A.; Kennedy, K.A.; Chuang, A.Z.; BEAT-ROP Cooperative Group. Efficacy of intravitreal bevacizumab for stage 3+ retinopathy of prematurity. N. Engl. J. Med. 2011, 364, 603–615. [Google Scholar] [CrossRef] [Green Version]
- Stahl, A.; Lepore, D.; Fielder, A.; Fleck, B.; Reynolds, J.D.; Chiang, M.F.; Li, J.; Liew, M.; Maier, R.; Zhu, Q.; et al. Ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW): An open-label randomised controlled trial. Lancet 2019, 394, 1551–1559. [Google Scholar] [CrossRef]
- Stahl, A.; Sukgen, E.A.; Wu, W.C.; Lepore, D.; Nakanishi, H.; Mazela, J.; Moshfeghi, D.M.; Vitti, R.; Athanikar, A.; Chu, K.; et al. Effect of intravitreal aflibercept vs. laser photocoagulation on treatment success of retinopathy of prematurity: The FIREFLEYE randomized clinical trial. JAMA 2022, 328, 348–359. [Google Scholar] [CrossRef]
- Patel, R.D.; Blair, M.P.; Shapiro, M.J.; Lichtenstein, S.J. Significant treatment failure with intravitreous bevacizumab for retinopathy of prematurity. Arch. Ophthalmol. 2012, 130, 801–802. [Google Scholar] [CrossRef]
- Yonekawa, Y.; Wu, W.C.; Nitulescu, C.E.; Chan, R.V.P.; Thanos, A.; Thomas, B.J.; Todorich, B.; Drenser, K.A.; Trese, M.T.; Capone, A. Progressive retinal detachment in infants with retinopathy of prematurity treated with intravitreal bevacizumab or ranibizumab. Retina 2018, 38, 1079–1083. [Google Scholar] [CrossRef]
- Xu, L.T.; Levine, D.A.; Hutchinson, A.K. Clinical features and outcomes of infants with retinopathy of prematurity who fail anti-VEGF therapy. Retina 2021, 41, 2269–2277. [Google Scholar] [CrossRef]
- Kondo, C.; Iwahashi, C.; Utamura, S.; Kuniyoshi, K.; Konishi, Y.; Wada, N.; Kawasaki, R.; Kusaka, S. Characteristics of eyes developing retinal detachment after anti-vascular endothelial growth factor therapy for retinopathy of prematurity. Front. Pediatr. 2022, 10, 785292. [Google Scholar] [CrossRef] [PubMed]
- Capone, A., Jr.; Trese, M.T. Lens-sparing vitreous surgery for tractional stage 4A retinopathy of prematurity retinal detachments. Ophthalmology 2001, 108, 2068–2070. [Google Scholar] [CrossRef]
- Moshfeghi, A.A.; Banach, M.J.; Salam, G.A.; Ferrone, P.J. Lens-sparing vitrectomy for progressive tractional retinal detachments associated with stage 4A retinopathy of prematurity. Arch. Ophthalmol. 2004, 122, 1816–1818. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lakhanpal, R.R.; Sun, R.L.; Albini, T.A.; Holz, E.R. Anatomic success rate after 3-port lens-sparing vitrectomy in stage 4A or 4B retinopathy of prematurity. Ophthalmology 2005, 112, 1569–1573. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.C.; Lai, C.C.; Lin, R.I.; Wang, N.K.; Chao, A.N.; Chen, K.J.; Chen, T.L.; Hwang, Y.S. Modified 23-gauge vitrectomy system for stage 4 retinopathy of prematurity. Arch. Ophthalmol. 2011, 129, 1326–1331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hubbard, G.B., 3rd; Cherwick, D.H.; Burian, G. Lens-sparing vitrectomy for stage 4 retinopathy of prematurity. Ophthalmology 2004, 111, 2274–2277. [Google Scholar] [CrossRef]
- Maguire, A.M.; Trese, M.T. Lens-sparing vitreoretinal surgery in infants. Arch. Ophthalmol. 1992, 110, 284–286. [Google Scholar] [CrossRef] [PubMed]
- Hartnett, M.E.; Maguluri, S.; Thompson, H.W.; McColm, J.R. Comparison of retinal outcomes after scleral buckle or lens-sparing vitrectomy for stage 4 retinopathy of prematurity. Retina 2004, 24, 753–757. [Google Scholar] [CrossRef]
- Prenner, J.L.; Capone, A., Jr.; Trese, M.T. Visual outcomes after lens-sparing vitrectomy for stage 4A retinopathy of prematurity. Ophthalmology 2004, 111, 2271–2273. [Google Scholar] [CrossRef]
- Lakhanpal, R.R.; Sun, R.L.; Albini, T.A.; Coffee, R.; Coats, D.K.; Holz, E.R. Visual outcomes after 3-port lens-sparing vitrectomy in stage 4 retinopathy of prematurity. Arch. Ophthalmol. 2006, 124, 675–679. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Reddy, D.M.; Barkmeier, A.J.; Holz, E.R.; Ram, R.; Carvounis, P.E. Long-term visual outcomes following lens-sparing vitrectomy for retinopathy of prematurity. Br. J. Ophthalmol. 2012, 96, 1395–1398. [Google Scholar] [CrossRef] [PubMed]
- Karacorlu, M.; Hocaoglu, M.; Sayman Muslubas, I.; Arf, S. Long-term functional results following vitrectomy for advanced retinopathy of prematurity. Br. J. Ophthalmol. 2017, 101, 730–734. [Google Scholar] [CrossRef] [PubMed]
- Ahn, J.H.; Lee, K.M.; Kim, M.J.; Park, H.K.; Kim, Y.J.; Ahn, S.J.; Lee, H.J. Neurodevelopmental outcomes in very low birthweight infants with retinopathy of prematurity in a nationwide cohort study. Sci. Rep. 2022, 12, 5053. [Google Scholar] [CrossRef]
- Pan, Y.; Tarczy-Hornoch, K.; Cotter, S.A.; Wen, G.; Borchert, M.S.; Azen, S.P.; Varma, R.; Multi-Ethnic Pediatric Eye Disease Study Group. Visual acuity norms in pre-school children: The multi-ethnic pediatric eye disease study. Optom. Vis. Sci. 2009, 86, 607–612. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sato, T.; Wada, K.; Arahori, H.; Kuno, N.; Imoto, K.; Iwahashi-Shima, C.; Kusaka, S. Serum concentrations of bevacizumab (avastin) and vascular endothelial growth factor in infants with retinopathy of prematurity. Am. J. Ophthalmol. 2012, 153, 327–333.e1. [Google Scholar] [CrossRef]
- Wu, W.C.; Lien, R.; Liao, P.J.; Wang, N.K.; Chen, Y.P.; Chao, A.N.; Chen, K.J.; Chen, T.L.; Hwang, Y.S.; Lai, C.C. Serum levels of vascular endothelial growth factor and related factors after intravitreous bevacizumab injection for retinopathy of prematurity. JAMA Ophthalmol. 2015, 133, 391–397. [Google Scholar] [CrossRef] [Green Version]
- Iwahashi, C.; Utamura, S.; Kuniyoshi, K.; Sugioka, K.; Konishi, Y.; Wada, N.; Kusaka, S. Factors associated with reactivation after intravitreal bevacizumab or ranibizumab therapy in infants with retinopathy of prematurity. Retina 2021, 41, 2261–2268. [Google Scholar] [CrossRef]
- Natarajan, G.; Shankaran, S.; Nolen, T.L.; Sridhar, A.; Kennedy, K.A.; Hintz, S.R.; Phelps, D.L.; DeMauro, S.B.; Carlo, W.A.; Gantz, M.G.; et al. Neurodevelopmental outcomes of preterm infants with retinopathy of prematurity by treatment. Pediatrics 2019, 144, e20183537. [Google Scholar] [CrossRef]
- Arima, M.; Akiyama, M.; Fujiwara, K.; Mori, Y.; Inoue, H.; Seki, E.; Nakama, T.; Tsukamoto, S.; Ochiai, M.; Ohga, S.; et al. Neurodevelopmental outcomes following intravitreal bevacizumab injection in Japanese preterm infants with type 1 retinopathy of prematurity. PLoS ONE 2020, 15, e0230678. [Google Scholar] [CrossRef]
- Fan, Y.Y.; Huang, Y.S.; Huang, C.Y.; Hsu, J.F.; Shih, C.P.; Hwang, Y.S.; Yao, T.C.; Lai, C.C.; Wu, W.C. Neurodevelopmental outcomes after intravitreal bevacizumab therapy for retinopathy of prematurity: A prospective case-control study. Ophthalmology 2019, 126, 1567–1577. [Google Scholar] [CrossRef]
- Marlow, N.; Stahl, A.; Lepore, D.; Fielder, A.; Reynolds, J.D.; Zhu, Q.; Weisberger, A.; Stiehl, D.P.; Fleck, B.; RAINBOW Investigators Group. 2-year outcomes of ranibizumab versus laser therapy for the treatment of very low birthweight infants with retinopathy of prematurity (RAINBOW extension study): Prospective follow-up of an open label, randomised controlled trial. Lancet Child Adolesc. Health 2021, 5, 698–707. [Google Scholar] [CrossRef]
- Holz, E.R. Refractive outcomes of three-port lens-sparing vitrectomy for retinopathy of prematurity (An AOS Thesis). Trans. Am. Ophthalmol. Soc. 2009, 107, 300–310. [Google Scholar]
- Agarkar, S.; Desai, R.; Singh, S.; Jaisankar, D.; Bhende, P.; Raman, R. Influence of laser versus lens-sparing vitrectomy on myopia in children with retinopathy of prematurity. Indian J. Ophthalmol. 2017, 65, 841–845. [Google Scholar] [CrossRef]
- Macor, S.; Pignatto, S.; Capone, A., Jr.; Piermarocchi, S.; Lanzetta, P. Lens-sparing vitrectomy for stage 4A retinopathy of prematurity in infants with aggressive-posterior ROP: Anatomic and functional results. Eur. J. Ophthalmol. 2021, 31, 2020–2026. [Google Scholar] [CrossRef]
- Mintz-Hittner, H.A.; Geloneck, M.M. Review of effects of anti-VEGF treatment on refractive error. Eye Brain 2016, 8, 135–140. [Google Scholar]
- Chiang, M.F.; Quinn, G.E.; Fielder, A.R. International Classification of Retinopathy of Prematurity, 3rd ed. Ophthalmology 2021, 128, e51–e68. [Google Scholar] [CrossRef]
- Kusaka, S. Current concepts and techniques of vitrectomy for retinopathy of prematurity. Taiwan J. Ophthalmol. 2018, 8, 216–221. [Google Scholar] [CrossRef]
- Gimbel, H.V.; Debroff, B.M. Posterior capsulorhexis with optic capture: Maintaining a clear visual axis after pediatric cataract surgery. J. Cataract Refract. Surg. 1994, 20, 658–664. [Google Scholar] [CrossRef] [PubMed]
- Bressler, N.M.; Chang, T.S.; Suñer, I.J.; Fine, J.T.; Dolan, C.M.; Ward, J.; Ianchulev, T.; Marina; ANCHOR Research Groups. Vision-related function after ranibizumab treatment by better- or worse-Seeing Eye: Clinical trial results from Marina and Anchor. Ophthalmology 2010, 117, 747–756.e4. [Google Scholar] [CrossRef] [PubMed]
- Johnson, L.N.; Guy, M.E.; Krohel, G.B.; Madsen, R.W. Levodopa may improve vision loss in recent-onset, nonarteritic anterior ischemic optic neuropathy. Ophthalmology 2000, 107, 521–526. [Google Scholar] [CrossRef] [PubMed]
Group 1 (13 Patients) | Group 2 (21 Patients) | Group 3 (8 Patients) | Total (42 Patients) | p Value | |
---|---|---|---|---|---|
Male children/female children | 3/10 | 9/12 | 4/4 | 16/26 | 0.382 |
Gestational age (weeks) | 24.8 ± 2.6 | 25.1 ± 1.6 | 25.3 ± 1.3 | 25.1 ± 1.9 | 0.433 |
Birth weight (g) | 704.8 ± 358.4 | 644.1 ± 152.4 | 744.0 ± 162.9 | 681.9 ± 234.7 | 0.386 |
Age at the final follow-up (years) | 10.8 ± 3.0 | 9.1 ± 3.2 | 11.7 ± 3.6 | 10.1 ± 3.3 | 0.134 |
Group 1 (13 Eyes) | Group 2 (40 Eyes) | Group 3 (8 Eyes) | Total (61 Eyes) | p Value | |
---|---|---|---|---|---|
PMA at LSV (weeks) | 44.3 ± 10.5 | 40.7 ± 3.2 | 40.2 ± 5.8 | 41.4 ± 5.9 | 0.374 |
IVB/IVR | 4/0 | 9/4 | 2/1 | 15/5 | NA |
Decimal BCVA at the final follow-up | 0.10 ± 0.15 | 0.29 ± 0.33 | 0.30 ± 0.40 | 0.23 ± 0.26 | 0.202 |
0.4 or better | 4 (30.1%) | 24 (60.0%) | 5 (62.5%) | 33 (54.1%) | 0.159 |
Refractive error at the final follow-up (D) # | −10.5 ± 5.3 (n = 11) | −9.8 ± 5.2 (n = 32) | −10.8 ± 4.4 (n = 6) | −10.1 ± 5.0 (n = 49) | 0.958 |
Refractive error > −6.0D | 9 (81.8%) | 23 (71.9%) | 5 (83.3%) | 37 (75.5%) | 0.794 |
IVB/IVR (20 Eyes) | No Anti-VEGF Therapy (41 Eyes) | Total (61 Eyes) | p Value | |
---|---|---|---|---|
Group 1/2/3 | 4/13/3 | 9/27/5 | 13/40/8 | 0.949 |
PMA at LSV (weeks) | 39.7 ± 2.9 | 42.2 ± 6.9 | 41.4 ± 5.9 | 0.307 |
Decimal BCVA at the final follow-up | 0.25 ± 0.32 | 0.22 ± 0.23 | 0.23 ± 0.26 | 0.963 |
0.4 or better | 13 (65.0%) | 20 (18.8%) | 33 (54.1%) | 0.230 |
Refractive error at the final follow-up (D) # | −10.8 ± 6.4 (n = 15) | −9.8 ± 4.4 (n = 34) | −10.1 ± 5.0 (n = 49) | 0.467 |
Refractive error > −6.0D | 11 (73.3%) | 26 (76.5%) | 37 (75.5%) | 0.815 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iwahashi, C.; Kurihara, T.; Kuniyoshi, K.; Kusaka, S. Long-Term Visual Prognosis of Patients Following Lens-Sparing Vitrectomy for Stage 4A Retinopathy of Prematurity. Int. J. Mol. Sci. 2023, 24, 2416. https://doi.org/10.3390/ijms24032416
Iwahashi C, Kurihara T, Kuniyoshi K, Kusaka S. Long-Term Visual Prognosis of Patients Following Lens-Sparing Vitrectomy for Stage 4A Retinopathy of Prematurity. International Journal of Molecular Sciences. 2023; 24(3):2416. https://doi.org/10.3390/ijms24032416
Chicago/Turabian StyleIwahashi, Chiharu, Tomoki Kurihara, Kazuki Kuniyoshi, and Shunji Kusaka. 2023. "Long-Term Visual Prognosis of Patients Following Lens-Sparing Vitrectomy for Stage 4A Retinopathy of Prematurity" International Journal of Molecular Sciences 24, no. 3: 2416. https://doi.org/10.3390/ijms24032416
APA StyleIwahashi, C., Kurihara, T., Kuniyoshi, K., & Kusaka, S. (2023). Long-Term Visual Prognosis of Patients Following Lens-Sparing Vitrectomy for Stage 4A Retinopathy of Prematurity. International Journal of Molecular Sciences, 24(3), 2416. https://doi.org/10.3390/ijms24032416