The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases
Abstract
:1. Introduction
2. Rheumatoid Arthritis
2.1. The Importance of Advanced Glycation-End Products in Rheumatoid Arthritis
2.2. The Relationship between (Soluble) Receptor for Advanced Glycation-End Products and Rheumatoid Arthritis
Parameter | Study Design | Study Population | Major Findings | Ref. |
---|---|---|---|---|
Serum pentosidine | Cross-sectional study | 60 RA patients 37 SLE patients 61 diabetics 57 HC | RA vs. HC: p < 0.0001 | [38] |
Cross-sectional study | 133 non-diabetic RA patients 56 age-matched HC |
| [39] | |
Cross-sectional study | 80 RA patients 30 HC |
| [40] | |
Cross-sectional study | 39 RA patients 38 HC |
| [53] | |
Follow-up cohort study | 22 RA patients |
| [54] | |
Urinary pentosidine | Follow-up cohort study | 22 RA patients |
| [54] |
Synovial pentosidine | Cross-sectional study | 39 RA patients 38 HC |
| [53] |
Serum CML | Cross-sectional study | 80 RA patients 30 HC |
| [40] |
Cross-sectional study | 559 women of ≥65 years old |
| [62] | |
Synovial CML | Cross-sectional study | 10 RA patients 8 controls (4 healthy, 4 OA) |
| [41] |
Serum MGO | Cross-sectional study | 80 RA patients 30 HC |
| [42] |
Skin AGE | Cross-sectional study | 93 RA patients 24 OA patients 29 DRSA patients 43 HC |
| [46] |
Cross-sectional study | 49 consecutive RA patients with longstanding disease 49 age- and sex-matched HC |
| [66] | |
Serum IgG-AGE | Prospective cohort study | 69 RF+ RA patients 39 RF− RA patients 43 SpA patients 90 UA |
| [55] |
Serum sRAGE | Prospective follow-up cohort study | 171 female RA patients CMRG (n = 13; CVD high risk: sRAGE ≤ Q3; CVDlow risk: > Q4) |
| [16] |
Cross-sectional study | 559 women of ≥65 years old |
| [62] | |
Cross-sectional study | 138 patients with established RA 44 HC |
| [21] | |
Prospective cohort study | 94 early RA patients |
| [75] | |
Cross-sectional study | 60 RA patients 30 age- and sex-matched HC |
| [76] | |
Cross-sectional study | 20 patients with Behcet disease 20 RA patients 20 SLE patients 22 HC |
| [77] | |
Follow-up cohort study | 342 early RA patients |
| [78] | |
Blood sRAGE | Cross-sectional study | 62 RA patients 33 NID 45 HC |
| [37] |
Synovial sRAGE | Cross-sectional study | 14 RA patients 7 OA patients |
| [67] |
Cross-sectional study | 62 RA patients 33 NID 45 HC |
| [37] | |
Cross-sectional study | Human FLSs isolated from synovial tissues from RA and OA patients * |
| [82] |
3. Systemic Lupus Erythematosus
3.1. The Importance of Advanced Glycation-End Products in Systemic Lupus Erythematosus
3.2. The Relationship between (Soluble) Receptor for Advanced Glycation-End Products and Systemic Lupus Erythematosus
Parameter | Study Design | Study Population | Major Findings | Ref. |
---|---|---|---|---|
Serum pentosidine | Cross-sectional study | 60 RA patients 37 SLE patients 61 diabetics 57 HC |
| [38] |
Cross-sectional study | 31 adult, female SLE patients 26 age-matched female HC |
| [89] | |
Cross-sectional study | 38 SLE patients LN 44 SLE patients non-LN 40 HC |
| [90] | |
Serum CML | Cross-sectional study | 31 adult, female SLE patients 26 age-matched female HC |
| [89] |
Serum CEL | Cross-sectional study | 31 adult, female SLE patients 26 age-matched female HC |
| [89] |
Serum AGE | Cross-sectional study | 31 adult, female SLE patients 26 age-matched female HC |
| [89] |
Cross-sectional study | 38 SLE patients LN 44 SLE patients without LN 40 HC |
| [90] | |
Plasma AGE | Cross-sectional study | 52 AOSD patients 36 SLE patients 16 HC |
| [91] |
Skin AGE | Cross-sectional study | 55 SLE patients with inactive disease 55 age- and sex-matched HC |
| [93] |
Cross-sectional study | 30 SLE patients 30 age- and sex-matched HC |
| [92] | |
Serum sRAGE | Cross-sectional study | 20 patients with Behcet disease 20 RA patients 20 SLE patients 22 HC |
| [77] |
Cross-sectional study | 31 adult, female SLE patients 26 age-matched female HC |
| [89] | |
Cross-sectional study | 38 SLE patients LN 44 SLE patients without LN 40 HC |
| [90] | |
Cross-sectional study | 97 JIA children 19 SLE children 27 HC |
| [97] | |
Cross-sectional study | 60 APS patients 30 HC |
| [100] | |
Cross-sectional study | 82 proliferative LN patients 53 non-proliferative LN patients 43 mixed LN patients |
| [103] | |
Plasma sRAGE | Cross-sectional study | 52 AOSD patients 36 SLE patients 16 HC |
| [91] |
Cross-sectional study | 105 SLE patients 43 HC |
| [96] | |
Cross-sectional study | 11 pAPS patients 17 APA + SLE patients without APS manifestations (APA + SLE) 12 SLE patients with secondary APS (APS + SLE) 10 HC |
| [98] | |
Cross-sectional study | 27 female SLE-LN+ patients 24 female HC |
| [99] | |
Cross-sectional study | 94 female SLE patients (2 groups: HAS: BaPWV > 1400 cm/s (n = 35); LAS: BaPWV ≤ 1400 cm/s (n = 59) |
| [102] |
4. Sjögren’s Syndrome
The Relationship between (Soluble) Receptor for Advanced Glycation-End Products and Sjögren’s Syndrome
5. Adult-Onset Still’s Disease
5.1. The Importance of Advanced Glycation-End Products in Adult-Onset Still’s Disease
5.2. The Relationship between Soluble Receptor for Advanced Glycation-End Products and Adult-Onset Still’s Disease
6. Juvenile Idiopathic Arthritis
The Relationship between (Soluble) Receptor for Advanced Glycation-End Products and Juvenile Idiopathic Arthritis
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabbani, N.; Thornalley, P.J. Advanced Glycation End Products in the Pathogenesis of Chronic Kidney Disease. Kidney Int. 2018, 93, 803–813. [Google Scholar] [CrossRef] [PubMed]
- Stinghen, A.E.M.; Massy, Z.A.; Vlassara, H.; Striker, G.E.; Boullier, A. Uremic Toxicity of Advanced Glycation End Products in CKD. J. Am. Soc. Nephrol. 2016, 27, 354–370. [Google Scholar] [CrossRef]
- Maillard-Lefebvre, H.; Boulanger, E.; Daroux, M.; Gaxatte, C.; Hudson, B.I.; Lambert, M. Soluble Receptor for Advanced Glycation End Products: A New Biomarker in Diagnosis and Prognosis of Chronic Inflammatory Diseases. Rheumatology 2009, 48, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Vistoli, G.; De Maddis, D.; Cipak, A.; Zarkovic, N.; Carini, M.; Aldini, G. Advanced Glycoxidation and Lipoxidation End Products (AGEs and ALEs): An Overview of Their Mechanisms of Formation. Free Radic. Res. 2013, 47 (Suppl. 1), 3–27. [Google Scholar] [CrossRef]
- Chaudhuri, J.; Bains, Y.; Guha, S.; Kahn, A.; Hall, D.; Bose, N.; Gugliucci, A.; Kapahi, P. The Role of Advanced Glycation End Products in Aging and Metabolic Diseases: Bridging Association and Causality. Cell Metab. 2018, 28, 337–352. [Google Scholar] [CrossRef] [PubMed]
- Bierhaus, A.; Humpert, P.M.; Morcos, M.; Wendt, T.; Chavakis, T.; Arnold, B.; Stern, D.M.; Nawroth, P.P. Understanding RAGE, the Receptor for Advanced Glycation End Products. J. Mol. Med. 2005, 83, 876–886. [Google Scholar] [CrossRef]
- Schmidt, A.M.; Yan, S.D.; Yan, S.F.; Stern, D.M. The Biology of the Receptor for Advanced Glycation End Products and Its Ligands. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2000, 1498, 99–111. [Google Scholar] [CrossRef]
- Schmidt, A.M.; Yan, S.D.; Yan, S.F.; Stern, D.M. The Multiligand Receptor RAGE as a Progression Factor Amplifying Immune and Inflammatory Responses. J. Clin. Investig. 2001, 108, 949–955. [Google Scholar] [CrossRef] [PubMed]
- Neeper, M.; Schmidt, A.M.; Brett, J.; Yan, S.D.; Wang, F.; Pan, Y.C.; Elliston, K.; Stern, D.; Shaw, A. Cloning and Expression of a Cell Surface Receptor for Advanced Glycosylation End Products of Proteins. J. Biol. Chem 1992, 267, 14998–15004. [Google Scholar] [CrossRef]
- Hudson, B.I.; Lippman, M.E. Targeting RAGE Signaling in Inflammatory Disease. Annu. Rev. Med. 2018, 69, 349–364. [Google Scholar] [CrossRef]
- Jangde, N.; Ray, R.; Rai, V. RAGE and Its Ligands: From Pathogenesis to Therapeutics. Crit. Rev. Biochem. Mol. Biol. 2020, 55, 555–575. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.J.; Jeong, M.S.; Jang, S.B. Molecular Characteristics of RAGE and Advances in Small-Molecule Inhibitors. Int. J. Mol. Sci. 2021, 22, 6904. [Google Scholar] [CrossRef] [PubMed]
- Buckley, S.T.; Ehrhardt, C. The Receptor for Advanced Glycation End Products (RAGE) and the Lung. J. Biomed. Biotechnol. 2010, 2010, 917108. [Google Scholar] [CrossRef] [PubMed]
- Martens, H.A.; Nienhuis, H.L.A.; Gross, S.; van der Steege, G.; Brouwer, E.; Berden, J.H.M.; de Sévaux, R.G.L.; Derksen, R.H.W.M.; Voskuyl, A.E.; Berger, S.P.; et al. Receptor for Advanced Glycation End Products (RAGE) Polymorphisms Are Associated with Systemic Lupus Erythematosus and Disease Severity in Lupus Nephritis. Lupus 2012, 21, 959–968. [Google Scholar] [CrossRef]
- Kumar Pasupulati, A.; Chitra, P.S.; Reddy, G.B. Advanced Glycation End Products Mediated Cellular and Molecular Events in the Pathology of Diabetic Nephropathy. Biomol. Concepts 2016, 7, 293–309. [Google Scholar] [CrossRef]
- Nadali, M.; Lyngfelt, L.; Erlandsson, M.C.; Silfverswärd, S.T.; Andersson, K.M.E.; Bokarewa, M.I.; Pullerits, R. Low Soluble Receptor for Advanced Glycation End Products Precedes and Predicts Cardiometabolic Events in Women With Rheumatoid Arthritis. Front. Med. 2020, 7, 594622. [Google Scholar] [CrossRef]
- Sárkány, Z.; Ikonen, T.P.; Ferreira-da-Silva, F.; Saraiva, M.J.; Svergun, D.; Damas, A.M. Solution Structure of the Soluble Receptor for Advanced Glycation End Products (SRAGE). J. Biol. Chem. 2011, 286, 37525–37534. [Google Scholar] [CrossRef]
- Zhang, L.; Bukulin, M.; Kojro, E.; Roth, A.; Metz, V.V.; Fahrenholz, F.; Nawroth, P.P.; Bierhaus, A.; Postina, R. Receptor for Advanced Glycation End Products Is Subjected to Protein Ectodomain Shedding by Metalloproteinases. J. Biol. Chem. 2008, 283, 35507–35516. [Google Scholar] [CrossRef]
- Geroldi, D.; Falcone, C.; Emanuele, E. Soluble Receptor for Advanced Glycation End Products: From Disease Marker to Potential Therapeutic Target. Curr. Med. Chem. 2006, 13, 1971–1978. [Google Scholar] [CrossRef]
- Yonekura, H.; Yamamoto, Y.; Sakurai, S.; Petrova, R.G.; Abedin, M.J.; Li, H.; Yasui, K.; Takeuchi, M.; Makita, Z.; Takasawa, S.; et al. Novel Splice Variants of the Receptor for Advanced Glycation End-Products Expressed in Human Vascular Endothelial Cells and Pericytes, and Their Putative Roles in Diabetes-Induced Vascular Injury. Biochem. J. 2003, 370, 1097–1109. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.-S.; Yan, W.; Geczy, C.L.; Brown, M.A.; Thomas, R. Serum Levels of Soluble Receptor for Advanced Glycation End Products and of S100 Proteins Are Associated with Inflammatory, Autoantibody, and Classical Risk Markers of Joint and Vascular Damage in Rheumatoid Arthritis. Arthritis Res. Ther. 2009, 11, R39. [Google Scholar] [CrossRef]
- Nienhuis, H.L.; de Leeuw, K.; Bijzet, J.; Smit, A.; Schalkwijk, C.G.; Graaff, R.; Kallenberg, C.G.; Bijl, M. Skin Autofluorescence Is Increased in Systemic Lupus Erythematosus but Is Not Reflected by Elevated Plasma Levels of Advanced Glycation Endproducts. Rheumatology 2008, 47, 1554–1558. [Google Scholar] [CrossRef] [PubMed]
- Steenbeke, M.; De Bruyne, S.; De Buyzere, M.; Lapauw, B.; Speeckaert, R.; Petrovic, M.; Delanghe, J.R.; Speeckaert, M.M. The Role of Soluble Receptor for Advanced Glycation End-Products (SRAGE) in the General Population and Patients with Diabetes Mellitus with a Focus on Renal Function and Overall Outcome. Crit. Rev. Clin. Lab. Sci. 2021, 58, 113–130. [Google Scholar] [CrossRef] [PubMed]
- Hofmann, M.A.; Drury, S.; Hudson, B.I.; Gleason, M.R.; Qu, W.; Lu, Y.; Lalla, E.; Chitnis, S.; Monteiro, J.; Stickland, M.H.; et al. RAGE and Arthritis: The G82S Polymorphism Amplifies the Inflammatory Response. Genes Immun. 2002, 3, 123–135. [Google Scholar] [CrossRef]
- Pettersson-Fernholm, K.; Forsblom, C.; Hudson, B.I.; Perola, M.; Grant, P.J.; Groop, P.-H. Finn-Diane Study Group The Functional-374 T/A RAGE Gene Polymorphism Is Associated with Proteinuria and Cardiovascular Disease in Type 1 Diabetic Patients. Diabetes 2003, 52, 891–894. [Google Scholar] [CrossRef] [PubMed]
- Falcone, C.; Emanuele, E.; D’Angelo, A.; Buzzi, M.P.; Belvito, C.; Cuccia, M.; Geroldi, D. Plasma Levels of Soluble Receptor for Advanced Glycation End Products and Coronary Artery Disease in Nondiabetic Men. Arter. Thromb. Vasc. Biol. 2005, 25, 1032–1037. [Google Scholar] [CrossRef]
- Hudson, B.I.; Stickland, M.H.; Futers, T.S.; Grant, P.J. Effects of Novel Polymorphisms in the RAGE Gene on Transcriptional Regulation and Their Association with Diabetic Retinopathy. Diabetes 2001, 50, 1505–1511. [Google Scholar] [CrossRef]
- Jang, Y.; Kim, J.Y.; Kang, S.-M.; Kim, J.-S.; Chae, J.S.; Kim, O.Y.; Koh, S.J.; Lee, H.C.; Ahn, C.W.; Song, Y.D.; et al. Association of the Gly82Ser Polymorphism in the Receptor for Advanced Glycation End Products (RAGE) Gene with Circulating Levels of Soluble RAGE and Inflammatory Markers in Nondiabetic and Nonobese Koreans. Metabolism 2007, 56, 199–205. [Google Scholar] [CrossRef]
- Kalousová, M.; Jáchymová, M.; Mestek, O.; Hodková, M.; Kazderová, M.; Tesar, V.; Zima, T. Receptor for Advanced Glycation End Products--Soluble Form and Gene Polymorphisms in Chronic Haemodialysis Patients. Nephrol. Dial. Transpl. 2007, 22, 2020–2026. [Google Scholar] [CrossRef]
- Tesarová, P.; Kalousová, M.; Jáchymová, M.; Mestek, O.; Petruzelka, L.; Zima, T. Receptor for Advanced Glycation End Products (RAGE)--Soluble Form (SRAGE) and Gene Polymorphisms in Patients with Breast Cancer. Cancer Investig. 2007, 25, 720–725. [Google Scholar] [CrossRef]
- Cush, J.J. Rheumatoid Arthritis: Early Diagnosis and Treatment. Med. Clin. N. Am. 2021, 105, 355–365. [Google Scholar] [CrossRef]
- Tarannum, A.; Arif, Z.; Alam, K.; Ahmad, S.; Uddin, M. Nitroxidized-Albumin Advanced Glycation End Product and Rheumatoid Arthritis. Arch. Rheumatol. 2019, 34, 461–475. [Google Scholar] [CrossRef]
- Najafizadeh, S.R.; Amiri, K.; Moghaddassi, M.; Khanmohammadi, S.; Mirmiranpour, H.; Nakhjavani, M. Advanced Glycation End Products, Advanced Oxidation Protein Products, and Ferric Reducing Ability of Plasma in Patients with Rheumatoid Arthritis: A Focus on Activity Scores. Clin. Rheumatol. 2021, 40, 4019–4026. [Google Scholar] [CrossRef]
- Li, J.-T.; Hou, F.-F.; Guo, Z.-J.; Shan, Y.-X.; Zhang, X.; Liu, Z.-Q. Advanced Glycation End Products Upregulate C-Reactive Protein Synthesis by Human Hepatocytes through Stimulation of Monocyte IL-6 and IL-1 Beta Production. Scand. J. Immunol. 2007, 66, 555–562. [Google Scholar] [CrossRef]
- Vytásek, R.; Sedová, L.; Vilím, V. Increased Concentration of Two Different Advanced Glycation End-Products Detected by Enzyme Immunoassays with New Monoclonal Antibodies in Sera of Patients with Rheumatoid Arthritis. BMC Musculoskelet. Disord. 2010, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Lander, H.M.; Tauras, J.M.; Ogiste, J.S.; Hori, O.; Moss, R.A.; Schmidt, A.M. Activation of the Receptor for Advanced Glycation End Products Triggers a P21(Ras)-Dependent Mitogen-Activated Protein Kinase Pathway Regulated by Oxidant Stress. J. Biol. Chem. 1997, 272, 17810–17814. [Google Scholar] [CrossRef] [PubMed]
- Pullerits, R.; Bokarewa, M.; Dahlberg, L.; Tarkowski, A. Decreased levels of soluble receptor for advanced glycation end products in patients with rheumatoid arthritis indicating deficient inflammatory control. Arthritis Res. Ther. 2005, 7, R817. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-García, J.; Requena, J.R.; Rodríguez-Segade, S. Increased Concentrations of Serum Pentosidine in Rheumatoid Arthritis. Clin. Chem. 1998, 44, 250–255. [Google Scholar] [CrossRef] [PubMed]
- Hein, G.E.; Köhler, M.; Oelzner, P.; Stein, G.; Franke, S. The Advanced Glycation End Product Pentosidine Correlates to IL-6 and Other Relevant Inflammatory Markers in Rheumatoid Arthritis. Rheumatol. Int. 2005, 26, 137–141. [Google Scholar] [CrossRef] [PubMed]
- Knani, I.; Bouzidi, H.; Zrour, S.; Bergaoui, N.; Hammami, M.; Kerkeni, M. Increased Serum Concentrations of Nε-Carboxymethyllysine Are Related to the Presence and the Severity of Rheumatoid Arthritis. Ann. Clin. Biochem. 2018, 55, 430–436. [Google Scholar] [CrossRef]
- Drinda, S.; Franke, S.; Canet, C.C.; Petrow, P.; Bräuer, R.; Hüttich, C.; Stein, G.; Hein, G. Identification of the Advanced Glycation End Products N(Epsilon)-Carboxymethyllysine in the Synovial Tissue of Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2002, 61, 488–492. [Google Scholar] [CrossRef]
- Knani, I.; Bouzidi, H.; Zrour, S.; Bergaoui, N.; Hammami, M.; Kerkeni, M. Methylglyoxal: A Relevant Marker of Disease Activity in Patients with Rheumatoid Arthritis. Dis. Markers 2018, 2018, 8735926. [Google Scholar] [CrossRef]
- Lin, C.-C.; Chan, C.-M.; Huang, Y.-P.; Hsu, S.-H.; Huang, C.-L.; Tsai, S.-J. Methylglyoxal Activates NF-ΚB Nuclear Translocation and Induces COX-2 Expression via a P38-Dependent Pathway in Synovial Cells. Life Sci. 2016, 149, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Yamawaki, H.; Saito, K.; Okada, M.; Hara, Y. Methylglyoxal Mediates Vascular Inflammation via JNK and P38 in Human Endothelial Cells. Am. J. Physiol. Cell Physiol. 2008, 295, C1510–C1517. [Google Scholar] [CrossRef]
- Monu; Agnihotri, P.; Saquib, M.; Sarkar, A.; Chakraborty, D.; Kumar, U.; Biswas, S. Transthyretin and Receptor for Advanced Glycation End Product’s Differential Levels Associated with the Pathogenesis of Rheumatoid Arthritis. J. Inflamm. Res. 2021, 14, 5581–5596. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, T.; Tsurumoto, T.; Baba, H.; Osaki, M.; Enomoto, H.; Yonekura, A.; Shindo, H.; Miyata, T. Measurement of Advanced Glycation Endproducts in Skin of Patients with Rheumatoid Arthritis, Osteoarthritis, and Dialysis-Related Spondyloarthropathy Using Non-Invasive Methods. Rheumatol. Int. 2007, 28, 157–160. [Google Scholar] [CrossRef]
- van Halm, V.P.; Peters, M.J.L.; Voskuyl, A.E.; Boers, M.; Lems, W.F.; Visser, M.; Stehouwer, C.D.A.; Spijkerman, A.M.W.; Dekker, J.M.; Nijpels, G.; et al. Rheumatoid Arthritis versus Diabetes as a Risk Factor for Cardiovascular Disease: A Cross-Sectional Study, the CARRE Investigation. Ann. Rheum. Dis. 2009, 68, 1395–1400. [Google Scholar] [CrossRef] [PubMed]
- Van Doornum, S.; McColl, G.; Wicks, I.P. Accelerated Atherosclerosis: An Extraarticular Feature of Rheumatoid Arthritis? Arthritis Rheum. 2002, 46, 862–873. [Google Scholar] [CrossRef]
- del Rincón, I.D.; Williams, K.; Stern, M.P.; Freeman, G.L.; Escalante, A. High Incidence of Cardiovascular Events in a Rheumatoid Arthritis Cohort Not Explained by Traditional Cardiac Risk Factors. Arthritis Rheum. 2001, 44, 2737–2745. [Google Scholar] [CrossRef] [PubMed]
- Syngle, A.; Vohra, K.; Garg, N.; Kaur, L.; Chand, P. Advanced Glycation End-Products Inhibition Improves Endothelial Dysfunction in Rheumatoid Arthritis. Int. J. Rheum. Dis. 2012, 15, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Gerrits, E.G.; Lutgers, H.L.; Kleefstra, N.; Graaff, R.; Groenier, K.H.; Smit, A.J.; Gans, R.O.; Bilo, H.J. Skin Autofluorescence: A Tool to Identify Type 2 Diabetic Patients at Risk for Developing Microvascular Complications. Diabetes Care 2008, 31, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Goh, S.-Y.; Cooper, M.E. The Role of Advanced Glycation End Products in Progression and Complications of Diabetes. J. Clin. Endocrinol. Metab. 2008, 93, 1143–1152. [Google Scholar] [CrossRef]
- Senolt, L.; Braun, M.; Vencovský, J.; Sedová, L.; Pavelka, K. Advanced Glycation End-Product Pentosidine Is Not a Relevant Marker of Disease Activity in Patients with Rheumatoid Arthritis. Physiol. Res. 2007, 56, 771–777. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, Y.; Takahashi, M.; Nagafusa, T.; Torikai, E.; Nagano, A. Etanercept Reduces the Oxidative Stress Marker Levels in Patients with Rheumatoid Arthritis. Rheumatol. Int. 2008, 28, 245–251. [Google Scholar] [CrossRef] [PubMed]
- Newkirk, M.M.; Goldbach-Mansky, R.; Lee, J.; Hoxworth, J.; McCoy, A.; Yarboro, C.; Klippel, J.; El-Gabalawy, H.S. Advanced Glycation End-Product (AGE)-Damaged IgG and IgM Autoantibodies to IgG-AGE in Patients with Early Synovitis. Arthritis Res. Ther. 2003, 5, R82–R90. [Google Scholar] [CrossRef]
- Tai, A.W.-H.; Newkirk, M.M. An Autoantibody Targeting Glycated IgG Is Associated with Elevated Serum Immune Complexes in Rheumatoid Arthritis (RA). Clin. Exp. Immunol. 2000, 120, 188–193. [Google Scholar] [CrossRef]
- Ahmad, S.; Habib, S.; Moinuddin; Ali, A. Preferential Recognition of Epitopes on AGE–IgG by the Autoantibodies in Rheumatoid Arthritis Patients. Hum. Immunol. 2013, 74, 23–27. [Google Scholar] [CrossRef]
- Lucey, M.D.; Newkirk, M.M.; Neville, C.; Lepage, K.; Fortin, P.R. Association between IgM Response to IgG Damaged by Glyoxidation and Disease Activity in Rheumatoid Arthritis. J. Rheumatol. 2000, 27, 319–323. [Google Scholar]
- Ahmad, S.; Moinuddin; Khan, R.H.; Ali, A. Physicochemical Studies on Glycation-Induced Structural Changes in Human IgG. IUBMB Life 2012, 64, 151–156. [Google Scholar] [CrossRef]
- Islam, S.; Mir, A.R.; Abidi, M.; Talha, M.; Zafar, A.; Habib, S. Moinuddin, null Methylglyoxal Modified IgG Generates Autoimmune Response in Rheumatoid Arthritis. Int. J. Biol. Macromol. 2018, 118, 15–23. [Google Scholar] [CrossRef]
- Newkirk, M.M.; LePage, K.; Niwa, T.; Rubin, L. Advanced Glycation Endproducts (AGE) on IgG, a Target for Circulating Antibodies in North American Indians with Rheumatoid Arthritis (RA). Cell Mol. Biol. (Noisy-le-Grand) 1998, 44, 1129–1138. [Google Scholar] [PubMed]
- Semba, R.D.; Ferrucci, L.; Sun, K.; Beck, J.; Dalal, M.; Varadhan, R.; Walston, J.; Guralnik, J.M.; Fried, L.P. Advanced Glycation End Products and Their Circulating Receptors Predict Cardiovascular Disease Mortality in Older Community-Dwelling Women. Aging Clin. Exp. Res. 2009, 21, 182–190. [Google Scholar] [CrossRef] [PubMed]
- Kume, S.; Takeya, M.; Mori, T.; Araki, N.; Suzuki, H.; Horiuchi, S.; Kodama, T.; Miyauchi, Y.; Takahashi, K. Immunohistochemical and Ultrastructural Detection of Advanced Glycation End Products in Atherosclerotic Lesions of Human Aorta with a Novel Specific Monoclonal Antibody. Am. J. Pathol. 1995, 147, 654–667. [Google Scholar] [PubMed]
- Schleicher, E.D.; Wagner, E.; Nerlich, A.G. Increased Accumulation of the Glycoxidation Product N(Epsilon)-(Carboxymethyl)Lysine in Human Tissues in Diabetes and Aging. J. Clin. Investig. 1997, 99, 457–468. [Google Scholar] [CrossRef] [PubMed]
- Basta, G.; Lazzerini, G.; Massaro, M.; Simoncini, T.; Tanganelli, P.; Fu, C.; Kislinger, T.; Stern, D.M.; Schmidt, A.M.; De Caterina, R. Advanced Glycation End Products Activate Endothelium through Signal-Transduction Receptor RAGE: A Mechanism for Amplification of Inflammatory Responses. Circulation 2002, 105, 816–822. [Google Scholar] [CrossRef]
- de Groot, L.; Hinkema, H.; Westra, J.; Smit, A.J.; Kallenberg, C.G.M.; Bijl, M.; Posthumus, M.D. Advanced Glycation Endproducts Are Increased in Rheumatoid Arthritis Patients with Controlled Disease. Arthritis. Res. Ther. 2011, 13, R205. [Google Scholar] [CrossRef]
- Sunahori, K.; Yamamura, M.; Yamana, J.; Takasugi, K.; Kawashima, M.; Makino, H. Increased Expression of Receptor for Advanced Glycation End Products by Synovial Tissue Macrophages in Rheumatoid Arthritis. Arthritis Rheum. 2006, 54, 97–104. [Google Scholar] [CrossRef]
- van Beijnum, J.R.; Buurman, W.A.; Griffioen, A.W. Convergence and Amplification of Toll-like Receptor (TLR) and Receptor for Advanced Glycation End Products (RAGE) Signaling Pathways via High Mobility Group B1 (HMGB1). Angiogenesis 2008, 11, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, A.; Blood, D.C.; del Toro, G.; Canet, A.; Lee, D.C.; Qu, W.; Tanji, N.; Lu, Y.; Lalla, E.; Fu, C.; et al. Blockade of RAGE-Amphoterin Signalling Suppresses Tumour Growth and Metastases. Nature 2000, 405, 354–360. [Google Scholar] [CrossRef] [PubMed]
- Andersson, U.; Erlandsson-Harris, H. HMGB1 Is a Potent Trigger of Arthritis. J. Intern. Med. 2004, 255, 344–350. [Google Scholar] [CrossRef]
- Kokkola, R.; Andersson, A.; Mullins, G.; Ostberg, T.; Treutiger, C.-J.; Arnold, B.; Nawroth, P.; Andersson, U.; Harris, R.A.; Harris, H.E. RAGE Is the Major Receptor for the Proinflammatory Activity of HMGB1 in Rodent Macrophages. Scand J. Immunol. 2005, 61, 1–9. [Google Scholar] [CrossRef]
- Hammer, H.B.; Ødegård, S.; Syversen, S.W.; Landewé, R.; van der Heijde, D.; Uhlig, T.; Mowinckel, P.; Kvien, T.K. Calprotectin (a Major S100 Leucocyte Protein) Predicts 10-Year Radiographic Progression in Patients with Rheumatoid Arthritis. Ann. Rheum. Dis. 2010, 69, 150–154. [Google Scholar] [CrossRef] [PubMed]
- Pullerits, R.; Urbonaviciute, V.; Voll, R.E.; Forsblad-D’Elia, H.; Carlsten, H. Serum Levels of HMGB1 in Postmenopausal Patients with Rheumatoid Arthritis: Associations with Proinflammatory Cytokines, Acute-Phase Reactants, and Clinical Disease Characteristics. J. Rheumatol. 2011, 38, 1523–1525. [Google Scholar] [CrossRef] [PubMed]
- Pullerits, R.; Bokarewa, M.; Dahlberg, L.; Tarkowski, A. Synovial Fluid Expression of Autoantibodies Specific for RAGE Relates to Less Erosive Course of Rheumatoid Arthritis. Rheumatology 2007, 46, 1367–1371. [Google Scholar] [CrossRef]
- Tam, L.-S.; Shang, Q.; Li, E.K.; Wong, S.; Li, R.-J.; Lee, K.-L.; Leung, Y.-Y.; Ying, K.-Y.; Yim, C.-W.; Kun, E.W.; et al. Serum Soluble Receptor for Advanced Glycation End Products Levels and Aortic Augmentation Index in Early Rheumatoid Arthritis—A Prospective Study. Semin. Arthritis Rheum. 2013, 42, 333–345. [Google Scholar] [CrossRef] [PubMed]
- Jafari Nakhjavani, M.R.; Jafarpour, M.; Ghorbanihaghjo, A.; Abedi Azar, S.; Malek Mahdavi, A. Relationship between Serum-Soluble Receptor for Advanced Glycation End Products (SRAGE) and Disease Activity in Rheumatoid Arthritis Patients. Mod. Rheumatol. 2019, 29, 943–948. [Google Scholar] [CrossRef]
- Okuyucu, M.; Kehribar, D.; Çelik, Z.B.; Özgen, M. An Investigation of the Relationship between Rheumatological Diseases and Soluble Receptor for Advanced Glycation End Products. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 3450–3455. [Google Scholar] [CrossRef]
- Heslinga, M.; Teunissen, C.; Agca, R.; van der Woude, D.; Huizinga, T.; van Laar, J.; den Broeder, A.; Lems, W.; Nurmohamed, M. NT-ProBNP and SRAGE Levels in Early Rheumatoid Arthritis. Scand. J. Rheumatol. 2022, 1–7. [Google Scholar] [CrossRef]
- Lindsey, J.B.; Cipollone, F.; Abdullah, S.M.; McGuire, D.K. Receptor for Advanced Glycation End-Products (RAGE) and Soluble RAGE (SRAGE): Cardiovascular Implications. Diab. Vasc. Dis. Res. 2009, 6, 7–14. [Google Scholar] [CrossRef] [PubMed]
- Tsioufis, C.; Dimitriadis, K.; Selima, M.; Thomopoulos, C.; Mihas, C.; Skiadas, I.; Tousoulis, D.; Stefanadis, C.; Kallikazaros, I. Low-Grade Inflammation and Hypoadiponectinaemia Have an Additive Detrimental Effect on Aortic Stiffness in Essential Hypertensive Patients. Eur. Heart J. 2007, 28, 1162–1169. [Google Scholar] [CrossRef] [PubMed]
- Lin, L.; Park, S.; Lakatta, E.G. RAGE Signaling in Inflammation and Arterial Aging. Front. Biosci. 2009, 14, 1403–1413. [Google Scholar] [CrossRef] [Green Version]
- Heo, Y.-J.; Oh, H.-J.; Jung, Y.O.; Cho, M.-L.; Lee, S.-Y.; Yu, J.-G.; Park, M.-K.; Kim, H.-R.; Lee, S.-H.; Park, S.-H.; et al. The Expression of the Receptor for Advanced Glycation End-Products (RAGE) in RA-FLS Is Induced by IL-17 via Act-1. Arthritis Res. Ther. 2011, 13, R113. [Google Scholar] [CrossRef] [PubMed]
- Park, M.-J.; Lee, S.H.; Moon, S.-J.; Lee, J.-A.; Lee, E.-J.; Kim, E.-K.; Park, J.-S.; Lee, J.; Min, J.-K.; Kim, S.J.; et al. Overexpression of Soluble RAGE in Mesenchymal Stem Cells Enhances Their Immunoregulatory Potential for Cellular Therapy in Autoimmune Arthritis. Sci. Rep. 2016, 6, 35933. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Xie, N.; Li, W.; Yuan, B.; Shi, Y.; Wang, Y. Immunobiology of Mesenchymal Stem Cells. Cell Death Differ. 2014, 21, 216–225. [Google Scholar] [CrossRef] [PubMed]
- Durcan, L.; O’Dwyer, T.; Petri, M. Management Strategies and Future Directions for Systemic Lupus Erythematosus in Adults. Lancet 2019, 393, 2332–2343. [Google Scholar] [CrossRef] [PubMed]
- Fortuna, G.; Brennan, M.T. Systemic Lupus Erythematosus: Epidemiology, Pathophysiology, Manifestations, and Management. Dent. Clin. N. Am. 2013, 57, 631–655. [Google Scholar] [CrossRef] [PubMed]
- Rasaratnam, I.; Ryan, P.F.J. 10. Systemic Lupus Erythematosus. Med. J. Aust. 1997, 166, 266–270. [Google Scholar] [CrossRef]
- Bakshi, J.; Segura, B.T.; Wincup, C.; Rahman, A. Unmet Needs in the Pathogenesis and Treatment of Systemic Lupus Erythematosus. Clin. Rev. Allergy Immunol. 2018, 55, 352–367. [Google Scholar] [CrossRef]
- Nowak, A.; Przywara-Chowaniec, B.; Damasiewicz-Bodzek, A.; Blachut, D.; Nowalany-Kozielska, E.; Tyrpień-Golder, K. Advanced Glycation End-Products (AGEs) and Their Soluble Receptor (SRAGE) in Women Suffering from Systemic Lupus Erythematosus (SLE). Cells 2021, 10, 3523. [Google Scholar] [CrossRef]
- Ene, C.D.; Georgescu, S.R.; Tampa, M.; Matei, C.; Mitran, C.I.; Mitran, M.I.; Penescu, M.N.; Nicolae, I. Cellular Response against Oxidative Stress, a Novel Insight into Lupus Nephritis Pathogenesis. J. Pers. Med. 2021, 11, 693. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-Y.; Chen, Y.-M.; Lin, C.-C.; Hsieh, C.-W.; Wu, Y.-C.; Hung, W.-T.; Chen, H.-H.; Lan, J.-L. The Potential Role of Advanced Glycation End Products (AGEs) and Soluble Receptors for AGEs (SRAGE) in the Pathogenesis of Adult-Onset Still’s Disease. BMC Musculoskelet Disord. 2015, 16, 111. [Google Scholar] [CrossRef] [Green Version]
- Nienhuis, H.L.A.; de Leeuw, K.; Bijzet, J.; van Doormaal, J.J.; van Roon, A.M.; Smit, A.J.; Graaff, R.; Kallenberg, C.G.M.; Bijl, M. Small Artery Elasticity Is Decreased in Patients with Systemic Lupus Erythematosus without Increased Intima Media Thickness. Arthritis Res. Ther. 2010, 12, R181. [Google Scholar] [CrossRef]
- de Leeuw, K.; Graaff, R.; de Vries, R.; Dullaart, R.P.; Smit, A.J.; Kallenberg, C.G.; Bijl, M. Accumulation of Advanced Glycation Endproducts in Patients with Systemic Lupus Erythematosus. Rheumatology 2007, 46, 1551–1556. [Google Scholar] [CrossRef] [PubMed]
- de Leeuw, K.; Freire, B.; Smit, A.J.; Bootsma, H.; Kallenberg, C.G.; Bijl, M. Traditional and Non-Traditional Risk Factors Contribute to the Development of Accelerated Atherosclerosis in Patients with Systemic Lupus Erythematosus. Lupus 2006, 15, 675–682. [Google Scholar] [CrossRef] [PubMed]
- Henning, C.; Glomb, M.A. Pathways of the Maillard Reaction under Physiological Conditions. Glycoconj. J. 2016, 33, 499–512. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.-Y.; Ma, J.-L.; Jiao, Y.-L.; Li, J.-F.; Wang, L.-C.; Yang, Q.-R.; You, L.; Cui, B.; Chen, Z.-J.; Zhao, Y.-R. The Plasma Level of Soluble Receptor for Advanced Glycation End Products Is Decreased in Patients with Systemic Lupus Erythematosus. Scand. J. Immunol. 2012, 75, 614–622. [Google Scholar] [CrossRef]
- Bobek, D.; Grčević, D.; Kovačić, N.; Lukić, I.K.; Jelušić, M. The Presence of High Mobility Group Box-1 and Soluble Receptor for Advanced Glycation End-Products in Juvenile Idiopathic Arthritis and Juvenile Systemic Lupus Erythematosus. Pediatr. Rheumatol. Online J. 2014, 12, 50. [Google Scholar] [CrossRef]
- Tang, K.-T.; Hsieh, T.-Y.; Chao, Y.-H.; Lin, M.-X.; Chen, Y.-H.; Chen, D.-Y.; Lin, C.-C. Plasma Levels of High-Mobility Group Box 1 and Soluble Receptor for Advanced Glycation End Products in Primary Antiphospholipid Antibody Syndrome Patients. PLoS ONE 2017, 12, e0178404. [Google Scholar] [CrossRef]
- Yu, S.L.; Wong, C.K.; Szeto, C.C.; Li, E.K.; Cai, Z.; Tam, L.S. Members of the Receptor for Advanced Glycation End Products Axis as Potential Therapeutic Targets in Patients with Lupus Nephritis. Lupus 2015, 24, 675–686. [Google Scholar] [CrossRef]
- Manganelli, V.; Truglia, S.; Capozzi, A.; Alessandri, C.; Riitano, G.; Spinelli, F.R.; Ceccarelli, F.; Mancuso, S.; Garofalo, T.; Longo, A.; et al. Alarmin HMGB1 and Soluble RAGE as New Tools to Evaluate the Risk Stratification in Patients With the Antiphospholipid Syndrome. Front. Immunol. 2019, 10, 460. [Google Scholar] [CrossRef]
- Chavakis, T.; Bierhaus, A.; Nawroth, P.P. RAGE (Receptor for Advanced Glycation End Products): A Central Player in the Inflammatory Response. Microbes. Infect. 2004, 6, 1219–1225. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zeng, Y.; Zheng, H.; Liu, B. Association Between SRAGE and Arterial Stiffness in Women with Systemic Lupus Erythematosus. Endocr. Metab. Immune. Disord. Drug Targets 2021, 21, 504–510. [Google Scholar] [CrossRef] [PubMed]
- Lan, L.; Han, F.; Lang, X.; Chen, J. Monocyte Chemotactic Protein-1, Fractalkine, and Receptor for Advanced Glycation End Products in Different Pathological Types of Lupus Nephritis and Their Value in Different Treatment Prognoses. PLoS ONE 2016, 11, e0159964. [Google Scholar] [CrossRef] [PubMed]
- Kanková, K.; Sebeková, K. Genetic Variability in the RAGE Gene: Possible Implications for Nutrigenetics, Nutrigenomics, and Understanding the Susceptibility to Diabetic Complications. Mol. Nutr. Food Res. 2005, 49, 700–709. [Google Scholar] [CrossRef]
- Serveaux-Dancer, M.; Jabaudon, M.; Creveaux, I.; Belville, C.; Blondonnet, R.; Gross, C.; Constantin, J.-M.; Blanchon, L.; Sapin, V. Pathological Implications of Receptor for Advanced Glycation End-Product (AGER) Gene Polymorphism. Dis. Markers 2019, 2019, 2067353. [Google Scholar] [CrossRef]
- Kanková, K.; Márová, I.; Záhejský, J.; Muzík, J.; Stejskalová, A.; Znojil, V.; Vácha, J. Polymorphisms 1704G/T and 2184A/G in the RAGE Gene Are Associated with Antioxidant Status. Metabolism 2001, 50, 1152–1160. [Google Scholar] [CrossRef]
- Manoussakis, M.N.; Georgopoulou, C.; Zintzaras, E.; Spyropoulou, M.; Stavropoulou, A.; Skopouli, F.N.; Moutsopoulos, H.M. Sjögren’s Syndrome Associated with Systemic Lupus Erythematosus: Clinical and Laboratory Profiles and Comparison with Primary Sjögren’s Syndrome. Arthritis Rheum. 2004, 50, 882–891. [Google Scholar] [CrossRef]
- Stewart, C.; Cha, S.; Caudle, R.M.; Berg, K.; Katz, J. Decreased Levels of Soluble Receptor for Advanced Glycation End Products in Patients with Primary Sjögren’s Syndrome. Rheumatol. Int. 2008, 28, 771–776. [Google Scholar] [CrossRef]
- Katz, J.; Stavropoulos, F.; Bhattacharyya, I.; Stewart, C.; Perez, F.M.; Caudle, R.M. Receptor of Advanced Glycation End Product (RAGE) Expression in the Minor Salivary Glands of Patients with Sjögren’s Syndrome: A Preliminary Study. Scand. J. Rheumatol. 2004, 33, 174–178. [Google Scholar] [CrossRef]
- Kanne, A.-M.; Jülich, M.; Mahmutovic, A.; Tröster, I.; Sehnert, B.; Urbonaviciute, V.; Voll, R.E.; Kollert, F. Association of High Mobility Group Box Chromosomal Protein 1 and Receptor for Advanced Glycation End Products Serum Concentrations with Extraglandular Involvement and Disease Activity in Sjögren’s Syndrome. Arthritis Care Res. 2018, 70, 944–948. [Google Scholar] [CrossRef]
- Chavakis, T.; Bierhaus, A.; Al-Fakhri, N.; Schneider, D.; Witte, S.; Linn, T.; Nagashima, M.; Morser, J.; Arnold, B.; Preissner, K.T.; et al. The Pattern Recognition Receptor (RAGE) Is a Counterreceptor for Leukocyte Integrins: A Novel Pathway for Inflammatory Cell Recruitment. J. Exp. Med. 2003, 198, 1507–1515. [Google Scholar] [CrossRef] [Green Version]
- Gerfaud-Valentin, M.; Jamilloux, Y.; Iwaz, J.; Sève, P. Adult-Onset Still’s Disease. Autoimmun. Rev. 2014, 13, 708–722. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.-Y.; Lan, J.-L.; Lin, F.-J.; Hsieh, T.-Y. Proinflammatory Cytokine Profiles in Sera and Pathological Tissues of Patients with Active Untreated Adult Onset Still’s Disease. J. Rheumatol. 2004, 31, 2189–2198. [Google Scholar] [PubMed]
- Roy, C.N.; Semba, R.D.; Sun, K.; Bandinelli, S.; Varadhan, R.; Patel, K.V.; Guralnik, J.M.; Ferrucci, L. Circulating Selenium and Carboxymethyl-Lysine, an Advanced Glycation Endproduct, Are Independent Predictors of Anemia in Older Community-Dwelling Adults. Nutrition 2012, 28, 762–766. [Google Scholar] [CrossRef]
- Bae, C.-B.; Suh, C.-H.; An, J.-M.; Jung, J.-Y.; Jeon, J.-Y.; Nam, J.-Y.; Kim, H.-A. Serum S100A12 May Be a Useful Biomarker of Disease Activity in Adult-Onset Still’s Disease. J. Rheumatol. 2014, 41, 2403–2408. [Google Scholar] [CrossRef]
- Däbritz, J.; Friedrichs, F.; Weinhage, T.; Hampe, J.; Kucharzik, T.; Lügering, A.; Broeckel, U.; Schreiber, S.; Spieker, T.; Stoll, M.; et al. The Functional -374T/A Polymorphism of the Receptor for Advanced Glycation End Products May Modulate Crohn’s Disease. Am. J. Physiol. Gastrointest. Liver Physiol. 2011, 300, G823–G832. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.S.; Wu, Z.-Y.; Zhang, H.P.; Furtado, G.; Chen, X.; Yan, S.F.; Schmidt, A.M.; Brown, C.; Stern, A.; LaFaille, J.; et al. Suppression of Experimental Autoimmune Encephalomyelitis by Selective Blockade of Encephalitogenic T-Cell Infiltration of the Central Nervous System. Nat. Med. 2003, 9, 287–293. [Google Scholar] [CrossRef]
- Renard, C.; Chappey, O.; Wautier, M.P.; Nagashima, M.; Lundh, E.; Morser, J.; Zhao, L.; Schmidt, A.M.; Scherrmann, J.M.; Wautier, J.L. Recombinant Advanced Glycation End Product Receptor Pharmacokinetics in Normal and Diabetic Rats. Mol. Pharmacol. 1997, 52, 54–62. [Google Scholar] [CrossRef]
- Martini, A.; Lovell, D.J.; Albani, S.; Brunner, H.I.; Hyrich, K.L.; Thompson, S.D.; Ruperto, N. Juvenile Idiopathic Arthritis. Nat. Rev. Dis. Prim. 2022, 8, 5. [Google Scholar] [CrossRef]
- Prakken, B.; Albani, S.; Martini, A. Juvenile Idiopathic Arthritis. Lancet 2011, 377, 2138–2149. [Google Scholar] [CrossRef] [PubMed]
- Ellis, J.A.; Munro, J.E.; Ponsonby, A.-L. Possible Environmental Determinants of Juvenile Idiopathic Arthritis. Rheumatology 2010, 49, 411–425. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Myles, A.; Viswanath, V.; Singh, Y.P.; Aggarwal, A. Soluble Receptor for Advanced Glycation Endproducts Is Decreased in Patients with Juvenile Idiopathic Arthritis (ERA Category) and Inversely Correlates with Disease Activity and S100A12 Levels. J. Rheumatol. 2011, 38, 1994–1999. [Google Scholar] [CrossRef]
- Bakutenko, I.Y.; Haurylchyk, I.D.; Sechko, E.V.; Tchitchko, A.M.; Batyan, G.M.; Sukalo, A.V.; Ryabokon, N.I. AGER Gene Variant as a Risk Factor for Juvenile Idiopathic Arthritis. J. Gene. Med. 2022, 24, e3399. [Google Scholar] [CrossRef]
- Perrone, A.; Giovino, A.; Benny, J.; Martinelli, F. Advanced Glycation End Products (AGEs): Biochemistry, Signaling, Analytical Methods, and Epigenetic Effects. Oxid. Med. Cell Longev. 2020, 2020, 3818196. [Google Scholar] [CrossRef] [PubMed]
- Lanati, N.; Emanuele, E.; Brondino, N.; Geroldi, D. Soluble RAGE-Modulating Drugs: State-of-the-Art and Future Perspectives for Targeting Vascular Inflammation. Curr. Vasc. Pharmacol. 2010, 8, 86–92. [Google Scholar] [CrossRef]
- Santilli, F.; Bucciarelli, L.; Noto, D.; Cefalù, A.B.; Davì, V.; Ferrante, E.; Pettinella, C.; Averna, M.R.; Ciabattoni, G.; Davì, G. Decreased Plasma Soluble RAGE in Patients with Hypercholesterolemia: Effects of Statins. Free Radic. Biol. Med. 2007, 43, 1255–1262. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Delrue, C.; Speeckaert, R.; Delanghe, J.R.; Speeckaert, M.M. The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases. Int. J. Mol. Sci. 2023, 24, 2894. https://doi.org/10.3390/ijms24032894
Delrue C, Speeckaert R, Delanghe JR, Speeckaert MM. The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases. International Journal of Molecular Sciences. 2023; 24(3):2894. https://doi.org/10.3390/ijms24032894
Chicago/Turabian StyleDelrue, Charlotte, Reinhart Speeckaert, Joris R. Delanghe, and Marijn M. Speeckaert. 2023. "The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases" International Journal of Molecular Sciences 24, no. 3: 2894. https://doi.org/10.3390/ijms24032894
APA StyleDelrue, C., Speeckaert, R., Delanghe, J. R., & Speeckaert, M. M. (2023). The Potential Influence of Advanced Glycation End Products and (s)RAGE in Rheumatic Diseases. International Journal of Molecular Sciences, 24(3), 2894. https://doi.org/10.3390/ijms24032894