Changes in Pancreatic Senescence Mediate Pancreatic Diseases
Abstract
:1. Introduction
2. Morphological and Pathological Changes Induced by Pancreatic Senescence
2.1. General Morphological Changes
2.2. Microstructural and Pathological Changes
2.3. Ultrastructural Changes
Parts | Variations | Detection Methods | Ref. |
---|---|---|---|
General morphological changes | |||
Pancreatic volume | Decrease | Autopsy | [20] |
Anteroposterior diameters of the pancreatic head, body, and tail | Peak at the age range of 30–39 years and then gradually decrease | MRI | [21] |
Pancreatic stiffness | Increase | Semiquantitative elastography | [22] |
Increase | MRE | [23] | |
Main pancreatic duct | Dilate | ERCP | [24] |
63.3% dilate (most dilatations are global, a few are confined to the head and/or body); 31.4% is normal | ERP | [25] | |
Microstructural and pathological changes | |||
Pancreatic fat | Accumulation is accompanied by reduced volume of pancreatic parenchyma | Autopsy | [26] |
Duct epithelial cell fatty degeneration | Autopsy | [29] | |
Usually do not affect islets of Langerhans and the duct system | Autopsy | [21] | |
Density of granular mast cells | Decrease in the interlobular region | Animal model | [30] |
Pancreatic focal fibrosis | Increased in 78-week-old SD rats | Animal model | [33] |
Mainly occurred in the peripheral pancreatic lobes, involving acinar tissue, small ducts and islets | Autopsy | [24] | |
Lymphocytes encircle | Autopsy | [25] | |
Harbor metaplastic changes | Acinar to ductal metaplasia Squamous metaplasia Goblet metaplasia Eosinophil metaplasia | Autopsy | [27] |
Spontaneous islet hemorrhage | More common in males | Animal model | [34] |
Amyloid deposition | In islet | Animal model | [36] |
Ultrastructural changes | |||
Nucleus | Vacuolate; Pyknotic; Euchromatins unevenly distribute | TEM | [37] |
Mitochondria | Swollen; Cristae broke | TEM | [37] |
Rough endoplasmic | Reticulum expand and scatter | TEM | [37] |
Quantity of zymogen granules | Decrease | TEM | [37] |
Secretory granules of islet cells | Accompanied by a larger halo | TEM | [38] |
3. Mechanisms of Pancreatic Senescence
3.1. Endoplasmic Reticulum Stress
3.2. Mitochondrial Dysfunction
3.3. DNA Methylation
3.4. Inflammation
Mechanism | Variations | Ref. |
---|---|---|
ER stress |
| [9] |
Mitochondrial dysfunction |
| [47] |
| [48] | |
| [50] | |
DNA methylation |
| [51] |
| [53] | |
Inflammation |
| [57] |
Others |
| [60] |
| [61] | |
| [52,62] |
4. The Role of Senescence in Types of Pancreatic Diseases
4.1. Pancreatitis
4.2. Pancreatic Cancer
4.3. Type 2 Diabetes
4.3.1. Proliferation and Regeneration of Senescent β-Cells
4.3.2. Insulin Secretion of Senescent β-Cells
- (1)
- Glucose is transported into β-cells via glucose transporters (GLUTs), especially Glut2 which has a low affinity for glucose and a high transport capacity [109]. The research indicated that during aging, the expression of the solute carrier family 2 member 2 (Slc2a2) gene for GLUT2 was down-regulated and affected insulin sensitivity [110]. Glut2-related changes in insulin secretion during aging are caused by several factors, such as the level of Sirt1, β-cell sensitivity to incretins, mitochondrial function, and oxidative stress [16]. Additionally, glucose uptake in mice is mediated by GLUT2, while GLUT1 constitutes the primary GLUT in human β-cells [109]. This may lead to different GSIS in human and rodents [60].
- (2)
- After that, glucose metabolism is caused by phosphorylation induced by glucokinase (GK), which is the rate-limiting step in insulin secretion and the first reaction in glycolysis. Actually, almost all the glucose entering glycolysis go into the Krebs cycle [109]. Gong and Muzumdar reported that GK activity significantly increased with age in healthy rats, leading to an increase in GSIS. This situation suggested that β-cells tried to overcome the age-dependent development of impaired glucose tolerance, decreased insulin sensitivity, and elevated IR [60]. Glucose oxidizes and generates ATP in the cytoplasm, mainly in the mitochondria through the tricarboxylic acid (TCA) cycle and Krebs cycle. There is a tight coupling between glycolysis and mitochondrial oxidation. Glycolysis accelerates under the condition of decreasing ATP [111]. Wortham et al. observed that TCA cycle metabolism enzymes or metabolites were more abundant in older mice, which could contribute to the varying GSIS with age [47].
- (3)
- Mice and human β-cells are hyperpolarized (−80 mV vs −70 mV) and electrically silent at low glucose levels [112]. The ATP-sensitive K+ (KATP) channel is the main ion channel open at the resting potential in β-cells of all species. Inwardly rectifying K+ channels (Kir5.1 and Kir7.1) are also active at lower glucose concentrations, but their contribution to the resting conductance is small [109]. Increased ATP/ADP ratio reduces β-cell KATP conductance by closing KATP channels on the cell surface, leading to depolarization of the cell membrane, initiating electrical activity [109]. Gregg et al. proved that p16INK4a down-regulated E2F transcription factors were required for Kir6.2 promoter by inhibiting the phosphorylation of Rb. Kir6.2 was contained in the pore-forming subunits of KATP. Therefore, the high expression of p16INK4a in senescent β-cells reduced KATP channel activity [113]. Of note, the β-cell must be equipped with an inward current in the absence of other ion channels [109]. The potential candidates for the background inward current include chloride (Cl−) channels, transient receptor potential (TRP) channels, and pumps and transporters [114,115].
- (4)
- The importance of β-cell electrical activity is that it increases the intracellular Ca2+ concentration, which is required to trigger exocytosis of insulin-containing secretory granules (triggering pathway) [109]. At least in mouse β-cells, the increase in intracellular Ca2+ concentration that leads to GSIS is almost entirely due to the influx of extracellular Ca2+ through voltage-gated Ca2+ channels, with a marginal contribution from intracellular Ca2+ storage [116]. In human islets, the depolarization resulting from the T-type Ca2+ channel opening activates Na channels and L-type Ca2+ channels. At the peak of the action potential, P/Q-type Ca2+ channels open and trigger exocytosis of insulin granules [117]. Additionally, mitochondrial metabolism not only leads to ATP production, it also produces necessary coupling factors that amplify insulin secretion, such as glutamate, ATP, and NADPH [118]. Actually, only a few nutrients (such as glucose and leucine) induce insulin secretion on their own. Many other nutrients require the presence of an initiator to promote insulin release [119]. These include most amino acids, fatty acids, hormones, and neurotransmitters, which are referred to as “amplifiers” of insulin secretion [120]. The triggering pathway is necessary, but without the amplification pathway, which primarily affects the sensitivity of the secretory mechanisms, its role is diminished [121]. At the same time, ryanodine receptor (RyR), inositol triphosphate receptor (IP3R), and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) in the ER Ca2+ pool are involved in the regulation of GSIS by controlling the balance of Ca2+ in the ER and cytoplasm [122]. Furthermore, the decrease in Ca2+ concentration within the ER can induce store-operated Ca2+ entry (SOCE), which is also involved in GSIS [123]. Studies have shown different manifestations of Ca2+ in the senescence of β-cells. Some people have announced that they have observed a decline in coordinated Ca2+ within human islets during aging, which decreased the GSIS and disrupted the insulin secretion dynamics [124]. Others have suggested that the production of metabolic coupling factors increase during aging. These metabolites can activate the amplifying pathway of Ca2+ to enhance GSIS [47].
- (5)
- The enhancement of cytosolic Ca2+ triggers the exocytosis of insulin granules. Insulin is stored in the crystalline form in the secretory vesicles as a Zn2-insulin6 complex [109]. The exocytosis of insulin granules is a multistage process, including vesicle trafficking, docking, and fusing with the plasma membrane [60]. Pclo is one of the key factors in regulating the exocytosis of insulin. Previous studies reported that in the pancreatic tissue, aging increased Pclo mRNA levels (p < 0.0001) and then showed high insulin levels [110].
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kimmel, R.A.; Meyer, D. Molecular Regulation of Pancreas Development in Zebrafish. In Zebrafish: Cellular and Developmental Biology, Pt A, 3rd ed.; Detrich, H.W., 3rd, Westerfield, M., Zon, L.I., Eds.; Methods in Cell Biology; Academic Press: Cambridge, MA, USA, 2010; Volume 100, pp. 261–280. [Google Scholar]
- Zhou, Q.; Melton, D.A. Pancreas regeneration. Nature 2018, 557, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Cleveland, M.H.; Sawyer, J.M.; Afelik, S.; Jensen, J.; Leach, S.D. Exocrine ontogenies: On the development of pancreatic acinar, ductal and centroacinar cells. Semin. Cell Dev. Biol. 2012, 23, 711–719. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Huang, X.; Liu, Z.; Lai, L.; Sun, R.; Shen, R.; Li, Y.; He, L.; Pu, W.; Lv, Z.; et al. Use of a dual genetic system to decipher exocrine cell fate conversions in the adult pancreas. Cell Discov. 2023, 9, 1. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Cavelti-Weder, C.; Zhang, Y.; Clement, K.; Donovan, S.; Gonzalez, G.; Zhu, J.; Stemann, M.; Xu, K.; Hashimoto, T.; et al. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells. Nat. Biotechnol. 2014, 32, 1223–1230. [Google Scholar] [CrossRef] [PubMed]
- Petersen, O.H.; Gerasimenko, J.V.; Gerasimenko, O.V.; Gryshchenko, O.; Peng, S. The roles of calcium and ATP in the physiology and pathology of the exocrine pancreas. Physiol. Rev. 2021, 101, 1691–1744. [Google Scholar] [CrossRef]
- Lee, M.G.; Ohana, E.; Park, H.W.; Yang, D.; Muallem, S.; Lüscher, B.P.; Vachel, L.; Munemasa, T.; Mukaibo, T.; Melvin, J.E.; et al. Molecular Mechanism of Pancreatic and Salivary Gland Fluid and HCO3− Secretion. Physiol. Rev. 2012, 92, 39–74. [Google Scholar] [CrossRef]
- Pang, T.C.Y.; Xu, Z.; Pothula, S.; Becker, T.; Goldstein, D.; Pirola, R.C.; Wilson, J.S.; Apte, M.V. Circulating pancreatic stellate (stromal) cells in pancreatic cancer-a fertile area for novel research. Carcinogenesis 2017, 38, 588–591. [Google Scholar] [CrossRef]
- Li, J.; Zheng, Y.; Yan, P.; Song, M.; Wang, S.; Sun, L.; Liu, Z.; Ma, S.; Belmonte, J.C.I.; Chan, P.; et al. A single-cell transcriptomic atlas of primate pancreatic islet aging. Natl. Sci. Rev. 2021, 8, 127. [Google Scholar] [CrossRef]
- Mastracci, T.L.; Sussel, L. The Endocrine Pancreas: Insights into development, differentiation and diabetes. Wiley Interdiscip. Rev. Membr. Transp. Signal. 2012, 1, 609–628. [Google Scholar] [CrossRef]
- Roscioni, S.S.; Migliorini, A.; Gegg, M.; Lickert, H. Impact of islet architecture on beta-cell heterogeneity, plasticity and function. Nat. Rev. Endocrinol. 2016, 12, 695–709. [Google Scholar] [CrossRef]
- Aronoff, S.L.; Berkowitz, K.; Shreiner, B.; Want, L. Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectr. 2004, 17, 183–190. [Google Scholar] [CrossRef]
- Marta, K.; Lazarescu, A.M.; Farkas, N.; Matrai, P.; Cazacu, I.; Ottoffy, M.; Habon, T.; Eross, B.; Vincze, A.; Veres, G.; et al. Aging and Comorbidities in Acute Pancreatitis I: A Meta-Analysis and Systematic Review Based on 194,702 Patients. Front. Physiol. 2019, 10, 328. [Google Scholar] [CrossRef]
- Kushner, J.A. The role of aging upon β cell turnover. J. Clin. Investig. 2013, 123, 990–995. [Google Scholar] [CrossRef]
- Sinclair, A.; Saeedi, P.; Kaundal, A.; Karuranga, S.; Malanda, B.; Williams, R. Diabetes and global ageing among 65–99-year-old adults: Findings from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2020, 162, 108078. [Google Scholar] [CrossRef]
- Baeeri, M.; Rahimifard, M.; Daghighi, S.M.; Khan, F.; Salami, S.A.; Moini-Nodeh, S.; Haghi-Aminjan, H.; Bayrami, Z.; Rezaee, F.; Abdollahi, M. Cannabinoids as anti-ROS in aged pancreatic islet cells. Life Sci. 2020, 256, 117969. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, J. Endoplasmic Reticulum (ER) Stress and Its Role in Pancreatic beta-Cell Dysfunction and Senescence in Type 2 Diabetes. Int. J. Mol. Sci. 2022, 23, 4843. [Google Scholar] [CrossRef]
- Hetz, C. Adapting the proteostasis capacity to sustain brain healthspan. Cell 2021, 184, 1545–1560. [Google Scholar] [CrossRef]
- Eizirik, D.L.; Miani, M.; Cardozo, A.K. Signalling danger: Endoplasmic reticulum stress and the unfolded protein response in pancreatic islet inflammation. Diabetologia 2013, 56, 234–241. [Google Scholar] [CrossRef]
- Feldman, M. The pancreas in the aged; An autopsy study. Geriatrics 1955, 10, 373–374. [Google Scholar]
- Wang, L.; Jia, H.; Lin, G.; Zheng, S. Magnetic resonance imaging investigation of age-related morphological changes in the pancreases of 226 Chinese. Aging Med. 2021, 4, 297–303. [Google Scholar] [CrossRef]
- Janssen, J.; Papavassiliou, I. Effect of aging and diffuse chronic pancreatitis on pancreas elasticity evaluated using semiquantitative EUS elastography. Ultraschall. Med. 2014, 35, 253–258. [Google Scholar] [CrossRef] [PubMed]
- Kolipaka, A.; Schroeder, S.; Mo, X.; Shah, Z.; Hart, P.A.; Conwell, D.L. Magnetic resonance elastography of the pancreas: Measurement reproducibility and relationship with age. Magn. Reason. Imaging 2017, 42, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Anand, B.S.; Vij, J.C.; Mac, H.S.; Chowdhury, V.; Kumar, A. Effect of aging on the pancreatic ducts: A study based on endoscopic retrograde pancreatography. Gastrointest. Endosc. 1989, 35, 210–213. [Google Scholar] [CrossRef] [PubMed]
- Hastier, P.; Buckley, M.J.; Dumas, R.; Kuhdorf, H.; Staccini, P.; Demarquay, J.F.; Caroli-Bosc, F.X.; Delmont, J.P. A study of the effect of age on pancreatic duct morphology. Gastrointest. Endosc. 1998, 48, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Wagner, R.; Eckstein, S.S.; Yamazaki, H.; Gerst, F.; Machann, J.; Jaghutriz, B.A.; Schurmann, A.; Solimena, M.; Singer, S.; Konigsrainer, A.; et al. Metabolic implications of pancreatic fat accumulation. Nat. Rev. Endocrinol. 2022, 18, 43–54. [Google Scholar] [CrossRef]
- Matsuda, Y. Age-related pathological changes in the pancreas. Front. Biosci. 2018, 10, 137–142. [Google Scholar] [CrossRef]
- Matsuda, Y. Age-related morphological changes in the pancreas and their association with pancreatic carcinogenesis. Pathol. Int. 2019, 69, 450–462. [Google Scholar] [CrossRef]
- Wang, L.; Zheng, S. Pancreatic senescence and its clinical manifestations. Aging Med. 2020, 3, 48–52. [Google Scholar] [CrossRef]
- Petrova, E.S.; Kolos, E.A.; Chumasov, E.I. Comparative study of the mast cells in the pancreas of young and aged rats (in Russian with English abstract). Mezhdunarodnyi Vestn. Vet. 2018, 1, 54–59. [Google Scholar]
- Detlefsen, S.; Sipos, B.; Feyerabend, B.; Kloppel, G. Pancreatic fibrosis associated with age and ductal papillary hyperplasia. Virchows Archiv. 2005, 447, 800–805. [Google Scholar] [CrossRef]
- Riccillo, F.L.; Bracamonte, M.I.; Console, G.M.; Dumm, C. Histomorphological and quantitative immunohistochemical changes in the rat pancreas during aging. Biocell 2004, 28, 127–134. [Google Scholar] [CrossRef]
- Imaoka, M.; Jindo, T.; Takasaki, W. The Process and Development Mechanism of Age-related Fibrosis in the Pancreatic Islets of Sprague-Dawley Rats: Immunohistochemical Detection of Myofibroblasts and Suppression Effect by Estrogen Treatment. J. Toxicol. Pathol. 2013, 26, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Imaoka, M.; Satoh, H.; Furuhama, K. Age- and sex-related differences in spontaneous hemorrhage and fibrosis of the pancreatic islets in Sprague-Dawley rats. Toxicol. Pathol. 2007, 35, 388–394. [Google Scholar] [CrossRef]
- Kehm, R.; Konig, J.; Nowotny, K.; Jung, T.; Deubel, S.; Gohlke, S.; Schulz, T.J.; Hohn, A. Age-related oxidative changes in pancreatic islets are predominantly located in the vascular system. Redox Biol. 2018, 15, 387–393. [Google Scholar] [CrossRef]
- Ozmen, O.; Topsakal, S. Pregabalin Ameliorates Lipopolysaccharide-Induced Pancreatic Inflammation in Aged Rats. Endocr. Metab. Immune Disord. -Drug Targets 2019, 19, 1141–1147. [Google Scholar] [CrossRef]
- Janssen, S.W.J.; Martens, G.J.M.; Sweep, C.G.J.; Span, P.N.; Verhofstad, A.A.J.; Hermus, A. Phlorizin treatment prevents the decrease in plasma insulin levels but not the progressive histopathological changes in the pancreatic islets during aging of Zucker diabetic fatty rats. J. Endocrinol. Investig. 2003, 26, 508–515. [Google Scholar] [CrossRef]
- Tuduri, E.; Soriano, S.; Almagro, L.; Garcia-Heredia, A.; Rafacho, A.; Alonso-Magdalena, P.; Nadal, A.; Quesada, I. The Effects of Aging on Male Mouse Pancreatic beta-Cell Function Involve Multiple Events in the Regulation of Secretion: Influence of Insulin Sensitivity. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 77, 405–415. [Google Scholar] [CrossRef]
- Aguayo-Mazzucato, C.; Andle, J.; Lee, T.B., Jr.; Midha, A.; Talemal, L.; Chipashvili, V.; Hollister-Lock, J.; van Deursen, J.; Weir, G.; Bonner-Weir, S. Acceleration of beta Cell Aging Determines Diabetes and Senolysis Improves Disease Outcomes. Cell Metab. 2019, 30, 129–142.e4. [Google Scholar] [CrossRef]
- Jiang, X.; Kanda, T.; Nakamoto, S.; Haga, Y.; Sasaki, R.; Nakamura, M.; Wu, S.; Mikata, R.; Yokosuka, O. Knockdown of glucose-regulated protein 78 enhances poly(ADP-ribose) polymerase cleavage in human pancreatic cancer cells exposed to endoplasmic reticulum stress. Oncol. Rep. 2014, 32, 2343–2348. [Google Scholar] [CrossRef]
- Marrocco, V.; Tran, T.; Zhu, S.; Choi, S.H.; Gamo, A.M.; Li, S.; Fu, Q.; Cunado, M.D.; Roland, J.; Hull, M.; et al. A small molecule UPR modulator for diabetes identified by high throughput screening. Acta Pharm. Sin. B 2021, 11, 3983–3993. [Google Scholar] [CrossRef]
- Mihailidou, C.; Chatzistamou, I.; Papavassiliou, A.G.; Kiaris, H. Modulation of Pancreatic Islets’ Function and Survival During Aging Involves the Differential Regulation of Endoplasmic Reticulum Stress by p21 and CHOP. Antioxid. Redox Signal 2017, 27, 185–200. [Google Scholar] [CrossRef] [PubMed]
- Vezza, T.; Diaz-Pozo, P.; Canet, F.; Maranon, A.M.D.; Abad-Jimenez, Z.; Garcia-Gargallo, C.; Roldan, I.; Sola, E.; Banuls, C.; Lopez-Domenech, S.; et al. The Role of Mitochondrial Dynamic Dysfunction in Age-Associated Type 2 Diabetes. World J. Men’s Health 2022, 40, 399–411. [Google Scholar] [CrossRef] [PubMed]
- Sebastian, D.; Sorianello, E.; Segales, J.; Irazoki, A.; Ruiz-Bonilla, V.; Sala, D.; Planet, E.; Berenguer-Llergo, A.; Pablo Munoz, J.; Sanchez-Feutrie, M.; et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J. 2016, 35, 1677–1693. [Google Scholar] [CrossRef] [PubMed]
- Voronina, S.G.; Barrow, S.L.; Simpson, A.W.M.; Gerasimenko, O.V.; Xavier, G.D.S.; Rutter, G.A.; Petersen, O.H.; Tepikin, A.V. Dynamic Changes in Cytosolic and Mitochondrial ATP Levels in Pancreatic Acinar Cells. Gastroenterology 2010, 138, 1976–1987.e5. [Google Scholar] [CrossRef]
- Komatsu, M.; Takei, M.; Ishii, H.; Sato, Y. Glucose-stimulated insulin secretion: A newer perspective. J. Diabetes Investig. 2013, 4, 511–516. [Google Scholar] [CrossRef]
- Wortham, M.; Benthuysen, J.R.; Wallace, M.; Savas, J.N.; Mulas, F.; Divakaruni, A.S.; Liu, F.; Albert, V.; Taylor, B.L.; Sui, Y.; et al. Integrated In Vivo Quantitative Proteomics and Nutrient Tracing Reveals Age-Related Metabolic Rewiring of Pancreatic beta Cell Function. Cell Rep. 2018, 25, 2904–2918.e8. [Google Scholar] [CrossRef]
- Ivarsson, R.; Quintens, R.; Dejonghe, S.; Tsukamoto, K.; Veld, P.; Renstrom, E.; Schuit, F.C. Redox control of exocytosis—Regulatory role of NADPH, thioredoxin, and glutaredoxin. Diabetes 2005, 54, 2132–2142. [Google Scholar] [CrossRef]
- Hamon, M.-P.; Bulteau, A.-L.; Friguet, B. Mitochondrial proteases and protein quality control in ageing and longevity. Ageing Res. Rev. 2015, 23, 56–66. [Google Scholar] [CrossRef]
- Rovira-Llopis, S.; Banuls, C.; de Maranon, A.M.; Diaz-Morales, N.; Jover, A.; Garzon, S.; Rocha, M.; Victor, V.M.; Hernandez-Mijares, A. Low testosterone levels are related to oxidative stress, mitochondrial dysfunction and altered subclinical atherosclerotic markers in type 2 diabetic male patients. Free. Radic. Biol. Med. 2017, 108, 155–162. [Google Scholar] [CrossRef]
- Li, G.; Petkova, T.D.; Laritsky, E.; Kessler, N.; Baker, M.S.; Zhu, S.; Waterland, R.A. Early postnatal overnutrition accelerates aging-associated epigenetic drift in pancreatic islets. Environ. Epigenet. 2019, 5, dvz015. [Google Scholar] [CrossRef]
- Pan, F.; He, X.; Feng, J.; Cui, W.; Gao, L.; Li, M.; Yang, H.; Wang, C.; Hu, Y. Peptidome analysis reveals the involvement of endogenous peptides in mouse pancreatic dysfunction with aging. J. Cell Physiol. 2019, 234, 14090–14099. [Google Scholar] [CrossRef]
- Volkov, P.; Bacos, K.; Ofori, J.K.; Esguerra, J.L.S.; Eliasson, L.; Ronn, T.; Ling, C. Whole-Genome Bisulfite Sequencing of Human Pancreatic Islets Reveals Novel Differentially Methylated Regions in Type 2 Diabetes Pathogenesis. Diabetes 2017, 66, 1074–1085. [Google Scholar] [CrossRef] [Green Version]
- Sandovici, I.; Hammerle, C.M.; Cooper, W.N.; Smith, N.H.; Tarry-Adkins, J.L.; Dunmore, B.J.; Bauer, J.; Andrews, S.R.; Yeo, G.S.; Ozanne, S.E.; et al. Ageing is associated with molecular signatures of inflammation and type 2 diabetes in rat pancreatic islets. Diabetologia 2016, 59, 502–511. [Google Scholar] [CrossRef]
- Wautier, M.-P.; Guillausseau, P.-J.; Wautier, J.-L. Activation of the receptor for advanced glycation end products and consequences on health. Diabetes Metab. Syndr. 2017, 11, 305–309. [Google Scholar] [CrossRef]
- Ott, C.; Jacobs, K.; Haucke, E.; Santos, A.N.; Grune, T.; Simm, A. Role of advanced glycation end products in cellular signaling. Redox Biology 2014, 2, 411–429. [Google Scholar] [CrossRef]
- Janjuha, S.; Singh, S.P.; Tsakmaki, A.; Mousavy Gharavy, S.N.; Murawala, P.; Konantz, J.; Birke, S.; Hodson, D.J.; Rutter, G.A.; Bewick, G.A.; et al. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish. Elife 2018, 7, e32965. [Google Scholar] [CrossRef]
- Puchta, A.; Naidoo, A.; Verschoor, C.P.; Loukov, D.; Thevaranjan, N.; Mandur, T.S.; Nguyen, P.S.; Jordana, M.; Loeb, M.; Xing, Z.; et al. TNF Drives Monocyte Dysfunction with Age and Results in Impaired Anti-pneumococcal Immunity. PLoS Pathog. 2016, 12, e1005368. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, F.; Chai, Y.; Wang, L.; Yu, B. The role of bone-derived PDGF-AA in age-related pancreatic beta cell proliferation and function. Biochem. Biophys. Res. Commun. 2020, 524, 22–27. [Google Scholar] [CrossRef]
- Gong, Z.; Muzumdar, R.H. Pancreatic function, type 2 diabetes, and metabolism in aging. Int. J. Endocrinol. 2012, 2012, 320482. [Google Scholar] [CrossRef]
- Zeng, N.; Yang, K.T.; Bayan, J.A.; He, L.N.; Aggarwal, R.; Stiles, J.W.; Hou, X.G.; Medina, V.; Abad, D.; Palian, B.M.; et al. PTEN controls beta-cell regeneration in aged mice by regulating cell cycle inhibitor p16(ink4a). Aging Cell 2013, 12, 1000–1011. [Google Scholar] [CrossRef]
- Czech, M.P. Insulin action and resistance in obesity and type 2 diabetes. Nat. Med. 2017, 23, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Zhong, D.; Wan, Z.; Cai, J.; Quan, L.; Zhang, R.; Teng, T.; Gao, H.; Fan, C.; Wang, M.; Guo, D.; et al. mPGES-2 blockade antagonizes beta-cell senescence to ameliorate diabetes by acting on NR4A1. Nature Metabolism 2022, 4, 269–283. [Google Scholar] [CrossRef] [PubMed]
- Szakacs, Z.; Gede, N.; Pecsi, D.; Izbeki, F.; Papp, M.; Kovacs, G.; Feher, E.; Dobszai, D.; Kui, B.; Marta, K.; et al. Aging and Comorbidities in Acute Pancreatitis II.: A Cohort-Analysis of 1203 Prospectively Collected Cases. Front. Physiol. 2019, 9, 1776. [Google Scholar] [CrossRef] [PubMed]
- Li, K.; Xiao, Y.; Bian, J.; Han, L.; He, C.; El-Omar, E.; Gong, L.; Wang, M. Ameliorative Effects of Gut Microbial Metabolite Urolithin A on Pancreatic Diseases. Nutrients 2022, 14, 2549. [Google Scholar] [CrossRef]
- Gryshchenko, O.; Gerasimenko, J.V.; Gerasimenko, O.V.; Petersen, O.H. Ca2+ signals mediated by bradykinin type 2 receptors in normal pancreatic stellate cells can be inhibited by specific Ca2+ channel blockade. J. Physiol. 2016, 594, 281–293. [Google Scholar] [CrossRef]
- Ferdek, P.E.; Jakubowska, M.A.; Gerasimenko, J.V.; Gerasimenko, O.V.; Petersen, O.H. Bile acids induce necrosis in pancreatic stellate cells dependent on calcium entry and sodium-driven bile uptake. J. Physiol. 2016, 594, 6147–6164. [Google Scholar] [CrossRef]
- Desai, B.N.; Leitinger, N. Purinergic and calcium signaling in macrophage function and plasticity. Front. Immunol. 2014, 5, 580. [Google Scholar] [CrossRef]
- Yang, D.D.; Zuo, H.D.; Wu, C.Q.; Chen, T.W.; Xue, H.D.; Jin, Z.Y.; Zhang, X.M. The characteristics of acute necrotizing pancreatitis in different age stages: An MRI study. Eur. J. Radiol. 2020, 122, 108752. [Google Scholar] [CrossRef]
- Barbeiro, D.F.; Koike, M.K.; Coelho, A.M.; da Silva, F.P.; Machado, M.C. Intestinal barrier dysfunction and increased COX-2 gene expression in the gut of elderly rats with acute pancreatitis. Pancreatology 2016, 16, 52–56. [Google Scholar] [CrossRef]
- Coelho, A.M.M.; Machado, M.C.C.; Sampietre, S.N.; da Silva, F.P.; Cunha, J.E.M.; D’Albuquerque, L.A.C. Local and systemic effects of aging on acute pancreatitis. Pancreatology 2019, 19, 638–645. [Google Scholar] [CrossRef]
- Katsinelos, P.; Lazaraki, G.; Chatzimavroudis, G.; Terzoudis, S.; Gatopoulou, A.; Xanthis, A.; Anastasiadis, S.; Anastasiadou, K.; Georgakis, N.; Tzivras, D.; et al. The impact of age on the incidence and severity of post-endoscopic retrograde cholangiopancreatography pancreatitis. Ann. Gastroenterol. 2018, 31, 96–101. [Google Scholar] [CrossRef]
- Fitzner, B.; Mueller, S.; Walther, M.; Fischer, M.; Engelmann, R.; Mueller-Hilke, B.; Puetzer, B.M.; Kreutzer, M.; Nizze, H.; Jaster, R. Senescence determines the fate of activated rat pancreatic stellate cells. J. Cell. Mol. Med. 2012, 16, 2620–2630. [Google Scholar] [CrossRef]
- Guo, J.-Y.; Zhu, J.-H.; Pan, J.; Wang, Y.-C.; Qian, Y.-Y.; Hu, L.-H.; He, C.-H.; Zou, W.-B. Increased severity of complications after therapeutic ERCP in geriatric patients with chronic pancreatitis: An observational study. Medicine 2022, 101, e29753. [Google Scholar] [CrossRef]
- Opitz, F.V.; Haeberle, L.; Daum, A.; Esposito, I. Tumor Microenvironment in Pancreatic Intraepithelial Neoplasia. Cancers 2021, 13, 6188. [Google Scholar] [CrossRef]
- DePinho, R.A. The age of cancer. Nature 2000, 408, 248–254. [Google Scholar] [CrossRef]
- Arnold, M.; Rutherford, M.J.; Bardot, A.; Ferlay, J.; Andersson, T.M.L.; Myklebust, T.A.; Tervonen, H.; Thursfield, V.; Ransom, D.; Shack, L.; et al. Progress in cancer survival, mortality, and incidence in seven high-income countries 1995-2014 (ICBP SURVMARK-2): A population-based study. Lancet Oncol. 2019, 20, 1493–1505. [Google Scholar] [CrossRef]
- Wheeler, A.A.; Nicholl, M.B. Age Influences Likelihood of Pancreatic Cancer Treatment, but not Outcome. World J. Oncol. 2014, 5, 7–13. [Google Scholar] [CrossRef]
- Wang, D.; Ge, H.; Tian, M.; Li, C.; Zhao, L.; Pei, Q.; Tan, F.; Li, Y.; Ling, C.; Gungor, C. The Survival Effect of Radiotherapy on Stage IIB/III Pancreatic Cancer Undergone Surgery in Different Age and Tumor Site Groups: A Propensity Scores Matching Analysis Based on SEER Database. Front. Oncol. 2022, 12, 799930. [Google Scholar] [CrossRef]
- Klimstra, D.S.; Longnecker, D.S. K-ras mutations in pancreatic ductal proliferative lesions. Am. J. Pathol. 1994, 145, 1547–1548. [Google Scholar]
- Vehvilainen, S.; Fagerstrom, N.; Valente, R.; Seppanen, H.; Udd, M.; Lindstrom, O.; Mustonen, H.; Swahn, F.; Arnelo, U.; Kylanpaa, L. Single-operator peroral pancreatoscopy in the preoperative diagnostics of suspected main duct intraductal papillary mucinous neoplasms: Efficacy and novel insights on complications. Surg. Endosc. 2022, 36, 7431–7443. [Google Scholar] [CrossRef]
- Jablonska, B. Pancreatic cysts: Etiology, diagnosis and management. Cent. Eur. J. Med. 2014, 9, 92–107. [Google Scholar] [CrossRef]
- Ohashi, K.; Murakami, Y.; Maruyama, M.; Takekoshi, T.; Ohta, H.; Ohashi, I. Four cases of mucus-secreting pancreatic cancer (in Japanese with English abstract). Prog. Digest. Endosc. 1982, 20, 348–351. [Google Scholar]
- Miyasaka, Y.; Nagai, E.; Ohuchida, K.; Fujita, H.; Nakata, K.; Hayashi, A.; Mizumoto, K.; Tsuneyoshi, M.; Tanaka, M. Senescence in intraductal papillary mucinous neoplasm of the pancreas. Hum. Pathol. 2011, 42, 2010–2017. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, M.E.; DeNicola, G.M.; Martins, C.P.; Jacobetz, M.A.; Maitra, A.; Hruban, R.H.; Tuveson, D.A. Cellular features of senescence during the evolution of human and murine ductal pancreatic cancer. Oncogene 2012, 31, 1599–1608. [Google Scholar] [CrossRef] [Green Version]
- Tourlakis, M.E.; Zhang, S.; Ball, H.L.; Gandhi, R.; Liu, H.; Zhong, J.; Yuan, J.S.; Guidos, C.J.; Durie, P.R.; Rommens, J.M. In Vivo Senescence in the Sbds-Deficient Murine Pancreas: Cell-Type Specific Consequences of Translation Insufficiency. PLoS Genet. 2015, 11, e1005288. [Google Scholar] [CrossRef]
- Ruscetti, M.; Leibold, J.; Bott, M.J.; Fennell, M.; Kulick, A.; Salgado, N.R.; Chen, C.C.; Ho, Y.J.; Sanchez-Rivera, F.J.; Fencht, J.; et al. NK cell-mediated cytotoxicity contributes to tumor control by a cytostatic drug combination. Science 2018, 362, 1416–1422. [Google Scholar] [CrossRef]
- Xiang, H.; Yang, R.; Tu, J.; Xi, Y.; Yang, S.; Lv, L.; Zhai, X.; Zhu, Y.; Dong, D.; Tao, X. Metabolic reprogramming of immune cells in pancreatic cancer progression. Biomed. Pharmacother. 2023, 157, 113992. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhang, W.; Zhang, Z.; Sha, G.; Wang, D.; Tang, D. Intratumoral microbiota: A new force in diagnosing and treating pancreatic cancer. Cancer Lett. 2023, 554, 216031. [Google Scholar] [CrossRef]
- Fujisawa, M.; Kanda, T.; Shibata, T.; Sasaki, R.; Masuzaki, R.; Matsumoto, N.; Nirei, K.; Imazu, H.; Kuroda, K.; Sugitani, M.; et al. Involvement of the Interferon Signaling Pathways in Pancreatic Cancer Cells. Anticancer Res. 2020, 40, 4445–4455. [Google Scholar] [CrossRef]
- Kanda, T.; Jiang, X.; Yokosuka, O. Androgen receptor signaling in hepatocellular carcinoma and pancreatic cancers. World J. Gastroenterol. 2014, 20, 9229–9236. [Google Scholar] [CrossRef]
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; Suvi, K., Joao da Rocha Fernandes, B.M., Eds.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://www.diabetesatlas.org (accessed on 16 October 2022).
- Koufakis, T.; Grammatiki, M.; Kotsa, K. Type 2 diabetes management in people aged over seventy-five years: Targets and treatment strategies. Maturitas 2021, 143, 118–126. [Google Scholar] [CrossRef]
- Palmer, A.K.; Gustafson, B.; Kirkland, J.L.; Smith, U. Cellular senescence: At the nexus between ageing and diabetes. Diabetologia 2019, 62, 1835–1841. [Google Scholar] [CrossRef]
- Fang, J.Q.; Yang, J.P.; Wu, X.; Zhang, G.M.; Li, T.; Wang, X.; Zhang, H.; Wang, C.C.; Liu, G.H.; Wang, L. Metformin alleviates human cellular aging by upregulating the endoplasmic reticulum glutathione peroxidase 7. Aging Cell 2018, 17, e12765. [Google Scholar] [CrossRef]
- Bao, X.Y.; Xie, C.; Yang, M.S. Association between Type 2 Diabetes and CDKN2A/B: A meta-analysis study. Mol. Biol. Rep. 2012, 39, 1609–1616. [Google Scholar] [CrossRef]
- Helman, A.; Avrahami, D.; Klochendler, A.; Glaser, B.; Kaestner, K.H.; Ben-Porath, I.; Dor, Y. Effects of ageing and senescence on pancreatic beta-cell function. Diabetes Obes. Metab. 2016, 18 (Suppl. 1), 58–62. [Google Scholar] [CrossRef]
- Gunasekaran, U.; Gannon, M. Type 2 Diabetes and the Aging Pancreatic Beta Cell. Aging 2011, 3, 565–575. [Google Scholar] [CrossRef]
- Krishnamurthy, J.; Ramsey, M.R.; Ligon, K.L.; Torrice, C.; Koh, A.; Bonner-Weir, S.; Sharpless, N.E. p16(INK4a) induces an age-dependent decline in islet regenerative potential. Nature 2006, 443, 453–457. [Google Scholar] [CrossRef]
- De Tata, V. Age-related impairment of pancreatic Beta-cell function: Pathophysiological and cellular mechanisms. Front. Endocrinol. 2014, 5, 138. [Google Scholar] [CrossRef]
- Xiong, Y.; Yepuri, G.; Necetin, S.; Montani, J.P.; Ming, X.F.; Yang, Z. Arginase-II Promotes Tumor Necrosis Factor-alpha Release From Pancreatic Acinar Cells Causing beta-Cell Apoptosis in Aging. Diabetes 2017, 66, 1636–1649. [Google Scholar] [CrossRef]
- Hinault, C.; Hu, J.; Maier, B.F.; Mirmira, R.G.; Kulkarni, R.N. Differential expression of cell cycle proteins during ageing of pancreatic islet cells. Diabetes Obes. Metab. 2008, 10 (Suppl. 4), 136–146. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, J.; Pope, C.F.; Crawford, L.A.; Vasavada, R.C.; Jagasia, S.M.; Gannon, M. Gestational Diabetes Mellitus Resulting From Impaired beta-Cell Compensation in the Absence of FoxM1, a Novel Downstream Effector of Placental Lactogen. Diabetes 2010, 59, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Kurauti, M.; Soares, G.; Marmentini, C.; Bronczek, G.; Branco, R.; Boschero, A. Insulin and aging. Vitam. Horm. 2021, 115, 185–219. [Google Scholar] [CrossRef] [PubMed]
- Helman, A.; Klochendler, A.; Azazmeh, N.; Gabai, Y.; Horwitz, E.; Anzi, S.; Swisa, A.; Condiotti, R.; Granit, R.Z.; Nevo, Y.; et al. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion. Nat. Med. 2016, 22, 412–420. [Google Scholar] [CrossRef] [PubMed]
- Saisho, Y.; Butler, A.E.; Manesso, E.; Elashoff, D.; Rizza, R.A.; Butler, P.C. beta-Cell Mass and Turnover in Humans Effects of obesity and aging. Diabetes Care 2013, 36, 111–117. [Google Scholar] [CrossRef] [Green Version]
- Cho, J.H.; Lee, K.M.; Lee, Y.I.; Nam, H.G.; Jeon, W.B. Glutamate decarboxylase 67 contributes to compensatory insulin secretion in aged pancreatic islets. Islets 2019, 11, 33–43. [Google Scholar] [CrossRef]
- Ahren, B.; Pacini, G. Age-related reduction in glucose elimination is accompanied by reduced glucose effectiveness and increased hepatic insulin extraction in man. J. Clin. Endocrinol. Metab. 1998, 83, 3350–3356. [Google Scholar] [CrossRef]
- Rorsman, P.; Ashcroft, F.M. Pancreatic β-Cell Electrical Activity and Insulin Secretion: Of Mice and Men. Physiol. Rev. 2018, 98, 117–214. [Google Scholar] [CrossRef]
- Novosadova, Z.; Polidarova, L.; Sladek, M.; Sumova, A. Alteration in glucose homeostasis and persistence of the pancreatic clock in aged mPer2(Luc) mice. Sci. Rep. 2018, 8, 11668. [Google Scholar] [CrossRef]
- Zehetner, J.; Danzer, C.; Collins, S.; Eckhardt, K.; Gerber, P.A.; Ballschmieter, P.; Galvanovskis, J.; Shimomura, K.; Ashcroft, F.M.; Thorens, B.; et al. pVHL is a regulator of glucose metabolism and insulin secretion in pancreatic beta cells. Genes Dev. 2008, 22, 3135–3146. [Google Scholar] [CrossRef]
- Misler, S.; Barnett, D.W.; Gillis, K.D.; Pressel, D.M. Electrophysiology of stimulus-secretion coupling in human beta-cells. Diabetes 1992, 41, 1221–1228. [Google Scholar] [CrossRef]
- Gregg, T.; Poudel, C.; Schmidt, B.A.; Dhillon, R.S.; Sdao, S.M.; Truchan, N.A.; Baar, E.L.; Fernandez, L.A.; Denu, J.M.; Eliceiri, K.W.; et al. Pancreatic beta-Cells From Mice Offset Age-Associated Mitochondrial Deficiency With Reduced K-ATP Channel Activity. Diabetes 2016, 65, 2700–2710. [Google Scholar] [CrossRef]
- Venkatachalam, K.; Montell, C. TRP channels. Ann. Rev. Biochem. 2007, 76, 387–417. [Google Scholar] [CrossRef]
- Calcraft, P.J.; Ruas, M.; Pan, Z.; Cheng, X.; Arredouani, A.; Hao, X.; Tang, J.; Rietdorf, K.; Teboul, L.; Chuang, K.-T.; et al. NAADP mobilizes calcium from acidic organelles through two-pore channels. Nature 2009, 459, 596–600. [Google Scholar] [CrossRef]
- Rorsman, P.; Eliasson, L.; Kanno, T.; Zhang, Q.; Gopel, S. Electrophysiology of pancreatic beta-cells in intact mouse islets of Langerhans. Prog. Biophys. Mol. Biol. 2011, 107, 224–235. [Google Scholar] [CrossRef]
- Braun, M.; Ramracheya, R.; Bengtsson, M.; Zhang, Q.; Karanauskaite, J.; Partridge, C.; Johnson, P.; Rorsman, P. Voltage-gated ion channels in human pancreatic beta-cells: Electrophysiological characterization and role in insulin secretion. Diabetes 2008, 57, 1618–1628. [Google Scholar] [CrossRef]
- Maechler, P. Mitochondrial function and insulin secretion. Mol. Cell. Endocrinol. 2013, 379, 12–18. [Google Scholar] [CrossRef]
- Henquin, J.C.; Ravier, M.A.; Nenquin, M.; Jonas, J.C.; Gilon, P. Hierarchy of the beta-cell signals controlling insulin secretion. Eur. J. Clin. Investig. 2003, 33, 742–750. [Google Scholar] [CrossRef]
- Henquin, J.C.; Meissner, H.P. Effects of amino acids on membrane potential and 86Rb+ fluxes in pancreatic beta-cells. Am. J. Physiol. 1981, 240, E245–E252. [Google Scholar] [CrossRef]
- Klemen, M.S.; Dolensek, J.; Rupnik, M.S.; Stozer, A. The triggering pathway to insulin secretion: Functional similarities and differences between the human and the mouse cells and their translational relevance. Islets 2017, 9, 109–139. [Google Scholar] [CrossRef]
- Ravier, M.A.; Daro, D.; Roma, L.P.; Jonas, J.-C.; Cheng-Xue, R.; Schuit, F.C.; Gilon, P. Mechanisms of Control of the Free Ca2+ Concentration in the Endoplasmic Reticulum of Mouse Pancreatic beta-Cells Interplay With Cell Metabolism and Ca2+ (c) and Role of SERCA2b and SERCA3. Diabetes 2011, 60, 2533–2545. [Google Scholar] [CrossRef]
- Kerkhofs, M.; Vervloessem, T.; Luyten, T.; Stopa, K.B.; Chen, J.; Vangheluwe, P.; Bultynck, G.; Vervliet, T. The alkalinizing, lysosomotropic agent ML-9 induces a pH-dependent depletion of ER Ca2+ stores in cellulo. Biochim. Biophys. Acta Mol. Cell Res. 2022, 1869, 119308. [Google Scholar] [CrossRef] [PubMed]
- Westacott, M.J.; Farnsworth, N.L.; St Clair, J.R.; Poffenberger, G.; Heintz, A.; Ludin, N.W.; Hart, N.J.; Powers, A.C.; Benninger, R.K.P. Age-Dependent Decline in the Coordinated [Ca(2+)] and Insulin Secretory Dynamics in Human Pancreatic Islets. Diabetes 2017, 66, 2436–2445. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, K.; Bian, J.; Xiao, Y.; Wang, D.; Han, L.; He, C.; Gong, L.; Wang, M. Changes in Pancreatic Senescence Mediate Pancreatic Diseases. Int. J. Mol. Sci. 2023, 24, 3513. https://doi.org/10.3390/ijms24043513
Li K, Bian J, Xiao Y, Wang D, Han L, He C, Gong L, Wang M. Changes in Pancreatic Senescence Mediate Pancreatic Diseases. International Journal of Molecular Sciences. 2023; 24(4):3513. https://doi.org/10.3390/ijms24043513
Chicago/Turabian StyleLi, Kailin, Ji Bian, Yao Xiao, Da Wang, Lin Han, Caian He, Lan Gong, and Min Wang. 2023. "Changes in Pancreatic Senescence Mediate Pancreatic Diseases" International Journal of Molecular Sciences 24, no. 4: 3513. https://doi.org/10.3390/ijms24043513