Second Generation of Antiepileptic Drugs and Oxidative Stress
Abstract
:1. Introduction
2. Newer Antiepileptic Drugs
2.1. Vigabatrin (VGB)
2.2. Lamotrigine (LTG)
2.3. Tiagabine (TGB)
2.4. Gabapentin (GBP)
2.5. Oxcarbazepine (OXC)
2.6. Topiramate (TPM)
2.7. Felbamate (FBM)
2.8. Levetiracetam (LEV)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chang, B.S.; Lowenstein, D.H. Epilepsy. N. Engl. J. Med. 2003, 349, 1257–1266. [Google Scholar] [CrossRef] [PubMed]
- Löscher, W.; Potschka, H.; Sisodiya, S.M.; Vezzani, A. Drug resistance in epilepsy: Clinical impact, potential mechanisms, and new innovative treatment options. Pharmacol. Rev. 2020, 72, 606–638. [Google Scholar] [CrossRef] [PubMed]
- Magiorkinis, E.; Sidiropoulou, K.; Diamantis, A. Hallmarks in the history of epilepsy: Epilepsy in antiquity. Epilepsy Behav. 2010, 17, 103–108. [Google Scholar] [CrossRef] [PubMed]
- de Boer, H. Epilepsy stigma: Moving from a global problem to global solutions. Seizure 2010, 19, 630–636. [Google Scholar] [CrossRef] [Green Version]
- Scheffer, I.E.; Berkovic, S.; Capovilla, G.; Connolly, M.B.; French, J.; Guilhoto, L.; Hirsch, E.; Jain, S.; Mathern, G.W.; Moshé, S.L.; et al. ILAE classification of the epilepsies: Position paper of the ILAE Commission for Classification and Terminology. Epilepsia 2017, 58, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Scharfman, H. The neurobiology of epilepsy. Curr. Neurol. Neurosci. Rep. 2007, 7, 348–354. [Google Scholar] [CrossRef]
- Ogaki, A.; Ikegaya, Y.; Koyama, R. Vascular abnormalities and the role of vascular endothelial growth factor in the epileptic brain. Front. Pharmacol. 2020, 11, 20. [Google Scholar] [CrossRef] [Green Version]
- LaRoche, S.M.; Helmers, S.L. The new antiepileptic drugs: Scientific review. JAMA 2004, 291, 605–614. [Google Scholar] [CrossRef] [Green Version]
- Borowicz-Reutt, K.K.; Czuczwar, S.J. Role of oxidative stress in epileptogenesis and potential implications for therapy. Pharmacol. Rep. 2020, 72, 1218–1226. [Google Scholar] [CrossRef]
- Pitkänen, A.; Lukasiuk, K.; Dudek, F.; Staley, K. Epileptogenesis. Cold Spring Harb. Perspect. Med. 2015, 5, a022822. [Google Scholar] [CrossRef]
- James Willmore, L.; Abelson, M.; Ben-Menachem, E.; Pellock, J.; Donald Shields, W. Vigabatrin: 2008 Update. Epilepsia 2009, 50, 163–173. [Google Scholar] [CrossRef]
- Grant, S.; Heel, R. Vigabatrin. Drugs 1991, 41, 889–926. [Google Scholar] [CrossRef]
- Cengiz, M.; Yüksel, A.; Özaydın, A.; Özkılıç, A.; Çetinel, Ü.; Seven, M. The Effects of Vigabatrin on rat liver antioxidant status. Drug. Metab. Drug. Interact. 2005, 21, 109–116. [Google Scholar] [CrossRef]
- Lakhani, R.; Vogel, K.R.; Till, A.; Liu, J.; Burnett, S.F.; Gibson, K.M.; Subramani, S. Defects in GABA metabolism affect selective autophagy pathways and are alleviated by m TOR inhibition. EMBO Mol. Med. 2014, 6, 551–566. [Google Scholar] [CrossRef]
- Vogel, K.; Ainslie, G.; Jansen, E.; Salomons, G.; Gibson, K. Torin 1 partially corrects vigabatrin-induced mitochondrial increase in mouse. Ann. Clin. Transl. Neurol. 2015, 2, 699–706. [Google Scholar] [CrossRef]
- Braat, S.; d’Hulst, C.; Heulens, I.; De Rubeis, S.; Mientjes, E.; Nelson, D.L.; Willemsen, R.; Bagni, C.; Van Dam, D.; De Deyn, P.P.; et al. The GABAA receptor is an FMRP target with therapeutic potential in fragile X syndrome. Cell Cycle 2015, 14, 2985–2995. [Google Scholar] [CrossRef] [Green Version]
- Schaefer, T.L.; Davenport, M.H.; Grainger, L.M.; Robinson, C.K.; Earnheart, A.T.; Stegman, M.S.; Lang, A.L.; Ashworth, A.A.; Molinaro, G.; Huber, K.M.; et al. Acamprosate in a mouse model of fragile X syndrome: Modulation of spontaneous cortical activity, ERK1/2 activation, locomotor behavior, and anxiety. J. Neurodev. Disord. 2017, 9, 6. [Google Scholar] [CrossRef] [Green Version]
- Ligsay, A.; Van Dijck, A.; Nguyen, D.V.; Lozano, R.; Chen, Y.; Bickel, E.S.; Hessl, D.; Schneider, A.; Angkustsiri, K.; Tassone, F.; et al. A randomized double-blind, placebo-controlled trial of ganaxolone in children and adolescents with fragile X syndrome. J. Neurodev. Disord. 2017, 9, 26. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Kwak, S.; Kim, J.; Ho Won, M.; Kang, T. The co-treatments of vigabatrin and P2X receptor antagonists protect ischemic neuronal cell death in the gerbil hippocampus. Brain Res. 2006, 1120, 151–160. [Google Scholar] [CrossRef]
- Costa, C.; Leone, G.; Saulle, E.; Pisani, F.; Bernardi, G.; Calabresi, P. Coactivation of GABA A and GABA B receptor results in neuroprotection during in vitro ischemia. Stroke 2004, 35, 596–600. [Google Scholar] [CrossRef]
- Kubová, H.; Mareš, P. Hypoxia-induced changes of seizure susceptibility in immature rats are modified by vigabatrin. Epileptic Disord. 2007, 9, 36–43. [Google Scholar]
- Calabresi, P.; Cupini, L.; Centonze, D.; Pisani, F.; Bernardi, G. Antiepileptic drugs as a possible neuroprotective strategy in brain ischemia. Ann. Neurol. 2003, 53, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Simon, R.; Swan, J.; Griffiths, T.; Meldrum, B. Blockade of N-methyl-D-aspartate receptors may protect against ischemic damage in the brain. Science 1984, 226, 850–852. [Google Scholar] [CrossRef] [PubMed]
- Durdag, E.; Yildirim, Z.; Unlu, N.; Kale, A.; Ceviker, N. Neuroprotective effects of vigabatrin on spinal cord ischemia-reperfusion injury. World Neurosurg. 2018, 120, e33–e41. [Google Scholar] [CrossRef] [PubMed]
- Goldshmit, Y.; Jona, G.; Schmukler, E.; Solomon, S.; Pinkas-Kramarski, R.; Ruban, A. Blood glutamate scavenger as a novel neuroprotective treatment in spinal cord injury. J. Neurotrauma 2018, 35, 2581–2590. [Google Scholar] [CrossRef]
- Biton, V. Pharmacokinetics, toxicology and safety of lamotrigine in epilepsy. Expert. Opin. Drug Metab. Toxicol. 2006, 2, 1009–1018. [Google Scholar] [CrossRef]
- Lasoń, W.; Dudra-Jastrzębska, M.; Rejdak, K.; Czuczwar, S.J. Basic mechanisms of antiepileptic drugs and their pharmacokinetic/pharmacodynamic interactions: An update. Pharmacol. Rep. 2011, 63, 271–292. [Google Scholar] [CrossRef]
- Błaszczyk, B.; Czuczwar, S.J. Efficacy, safety, and potential of extended-release lamotrigine in the treatment of epileptic patients. Neuropsychiatr. Dis. Treat. 2010, 6, 145–150. [Google Scholar]
- Arora, T.; Mehta, A.K.; Sharma, K.K.; Mediratta, P.K.; Banerjee, B.D.; Garg, G.R.; Sharma, A.K. Effect of carbamazepine and lamotrigine on cognitive function and oxidative stress in brain during chemical epileptogenesis in rats. Basic Clin. Pharmacol. Toxicol. 2009, 106, 372–377. [Google Scholar] [CrossRef]
- Haggag, B.; Hasanin, A.; Raafat, M.; Abdel Kawy, H. Lamotrigine decreased hippocampal damage and improved vascular risk markers in a rat model of pentylenetetrazole induced kindling seizure. Korean J. Physiol. Pharmacol. 2014, 18, 269. [Google Scholar] [CrossRef] [Green Version]
- Morimoto, M.; Hashimoto, T.; Kitaoka, T.; Kyotani, S. Impact of oxidative stress and newer antiepileptic drugs on the albumin and cortisol value in severe motor and intellectual disabilities with epilepsy. J. Clin. Med. Res. 2018, 10, 137–145. [Google Scholar] [CrossRef] [Green Version]
- Leppik, I. Tiagabine: The Safety Landscape. Epilepsia 1995, 36 (Suppl. 6), S10–S13. [Google Scholar] [CrossRef]
- Borlongan, C.V.; Koutouzis, T.K.; Sanberg, P.R. 3-Nitropropionic acid animal model and Huntington’s disease. Neurosci. Biobehav. Rev. 1997, 21, 289–293. [Google Scholar] [CrossRef]
- Dhir, A.; Akula, K.K.; Kulkarni, S.K. Tiagabine, a GABA uptake inhibitor, attenuates 3-nitropropionic acid-induced alterations in various behavioral and biochemical parameters in rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 2008, 32, 835–843. [Google Scholar] [CrossRef]
- Cardile, V.; Pavone, A.; Renis, M.; Russo, A.; Perciavalle, V. Biological effects of tiagabine on primary cortical astrocyte cultures of rat. Neurosci. Lett. 2000, 288, 49–52. [Google Scholar] [CrossRef]
- Cardile, V.; Palumbo, M.; Renis, M.; Pavone, A.; Maci, T.; Perciavalle, V. Tiagabine treatment and DNA damage in rat astrocytes: An in vitro study by comet assay. Neurosci. Lett. 2001, 306, 17–20. [Google Scholar] [CrossRef]
- van Hooft, J.A.; Dougherty, J.J.; Endeman, D.; Nichols, R.A.; Wadman, W.J. Gabapentin inhibits presynaptic Ca2+ influx and synaptic transmission in rat hippocampus and neocortex. Eur. J. Pharmacol. 2002, 449, 221–228. [Google Scholar] [CrossRef]
- Petroff, O.A.; Hyder, F.; Rothman, D.L.; Mattson, R.H. Effects of gabapentin on brain GABA, homocarnosine, and pyrrolidinone in epilepsy patients. Epilepsia 2000, 41, 675–680. [Google Scholar] [CrossRef]
- Larsen Burns, M.; Kinge, E.; Stokke Opdal, M.; Johannessen, S.; Johannessen Landmark, C. Therapeutic drug monitoring of gabapentin in various indications. Acta Neurol. Scand. 2019, 139, 446–454. [Google Scholar] [CrossRef]
- Wong, I.C.; Lhatoo, S.D. Adverse reactions to new anticonvulsant drugs. Drug Saf. 2000, 23, 35–56. [Google Scholar] [CrossRef]
- Baydas, G.; Sonkaya, E.; Tuzcu, M.; Yasar, A.; Donder, E. Novel role for gabapentin in neuroprotection of central nervous system in streptozotocine-induced diabetic rats. Acta Pharmacol. Sin. 2005, 26, 417–422. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baydas, G.; Reiter, R.J.; Yasar, A.; Tuzcu, M.; Akdemir, I.; Nedzvetskii, V.S. Melatonin reduces glial reactivity in the hippocampus, cortex, and cerebellum of streptozotocin-induced diabetic rats. Free Radic. Biol. Med. 2003, 35, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Guyot, L.L.; Diaz, F.G.; O’Regan, M.H.; Song, D.; Phillis, J.W. The effect of topical insulin on the release of excitotoxic and other amino acids from the rat cerebral cortex during streptozotocin-induced hyperglycemic ischemia. Brain Res. 2000, 872, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Shimoyama, M.; Shimoyama, N.; Hori, Y. Gabapentin affects glutamatergic excitatory neurotransmission in the rat dorsal horn. Pain 2000, 85, 405–414. [Google Scholar] [CrossRef]
- Gupta, M.; Singh, J.; Sood, S.; Arora, B. Mechanism of antinociceptive effect of nimodipine in experimental diabetic neuropathic pain. Methods Find. Exp. Clin. Pharmacol. 2003, 25, 49–52. [Google Scholar] [CrossRef]
- Baydas, G.; Nedzvetskii, V.S.; Tuzcu, M.; Yasar, A.; Kirichenko, S.V. Increase of glial fibrillary acidic protein and S-100B in hippocampus and cortex of diabetic rats: Effects of vitamin E. Eur. J. Pharmacol. 2003, 462, 67–71. [Google Scholar] [CrossRef]
- Barber, A.J.; Lieth, E.; Khin, S.A.; Antonetti, D.A.; Buchanan, A.G.; Gardner, T.W. Neural apoptosis in the retina during experimental and human diabetes. Early onset and effect of insulin. J. Clin. Investig. 1998, 102, 783–791. [Google Scholar] [CrossRef] [Green Version]
- Ola, M.S.; Alhomida, A.S.; LaNoue, K.F. Gabapentin attenuates oxidative stress and apoptosis in the diabetic rat retina. Neurotox. Res. 2019, 36, 81–90. [Google Scholar] [CrossRef]
- Crowley, L.C.; Waterhouse, N.J. Detecting cleaved caspase-3 in apoptotic cells by flow cytometry. Cold Spring Harb. Protoc. 2016, 2016, 10. [Google Scholar] [CrossRef]
- Bonfoco, E.; Zhivotovsky, B.; Rossi, A.D.; Aguilar-Santelises, M.; Orrenius, S.; Lipton, S.A.; Nicotera, P. BCL-2 delay apoptosis and PARP cleavage induced by NO donors in GT1-7 cells. Neuroreport 1996, 8, 273–276. [Google Scholar] [CrossRef]
- Kumar, A.; Goyal, R. Gabapentin attenuates acute hypoxic stress-induced behavioral alterations and oxidative damage in mice: Possible involvement of GABAergic mechanism. Indian J. Exp. Biol. 2008, 46, 159–163. [Google Scholar]
- Kumar, A.; Goyal, R. Possible involvement of GABAergic modulation in the protective effect of gabapentin against immobilization stress-induced behavior alterations and oxidative damage in mice. Fundam. Clin. Pharmacol. 2007, 21, 575–581. [Google Scholar] [CrossRef]
- Kumar, P.; Kalonia, H.; Kumar, A. Possible GABAergic mechanism in the neuroprotective effect of gabapentin and lamotrigine against 3-nitropropionic acid induced neurotoxicity. Eur. J. Pharmacol. 2012, 674, 265–274. [Google Scholar] [CrossRef]
- Vega Rasgado, L.A.; Ceballos Reyes, G.M.; Vega-Diaz, M.F. Anticonvulsant drugs, oxidative stress and nitric oxide. Proc. West. Pharmacol. Soc. 2011, 54, 41–48. [Google Scholar]
- Kumar, A.; Lalitha, S.; Mishra, J. Hesperidin potentiates the neuroprotective effects of diazepam and gabapentin against pentylenetetrazole-induced convulsions in mice: Possible behavioral, biochemical and mitochondrial alterations. Indian J. Pharmacol. 2014, 46, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Goel, R.; Tyagi, N. Potential contribution of antioxidant mechanism in the defensive effect of lycopene against partial sciatic nerve ligation induced behavioral, biochemical and histopathological modification in wistar rats. Drug Res. 2016, 66, 633–638. [Google Scholar] [CrossRef]
- Dias, J.M.; de Brito, T.V.; Magalhães, D.D.A.; Santos, P.W.D.S.; Batista, J.A.; Dias, E.G.D.N.; Fernandes, H.D.B.; Damasceno, S.R.B.; Silva, R.O.; Aragão, K.S.; et al. Gabapentin, a synthetic analogue of gamma aminobutyric acid, reverses systemic acute inflammation and oxidative stress in mice. Inflammation 2014, 37, 1826–1836. [Google Scholar] [CrossRef]
- Yan, B.C.; Wang, J.; Rui, Y.; Cao, J.; Xu, P.; Jiang, D.; Zhu, X.; Won, M.-H.; Bo, P.; Su, P. Neuroprotective effects of gabapentin against cerebral ischemia reperfusion-induced neuronal autophagic injury via regulation of the PI3K/Akt/mTOR signaling pathways. J. Neuropathol. Exp. Neurol. 2018, 78, 157–171. [Google Scholar] [CrossRef] [Green Version]
- Shen, M.; Wang, S.; Wen, X.; Han, X.R.; Wang, Y.J.; Zhou, X.M.; Zhang, M.H.; Wu, D.M.; Lu, J.; Zheng, Y.L. Dexmedetomidine exerts neuroprotective effect via the activation of the PI3K/Akt/mTOR signaling pathway in rats with traumatic brain injury. Biomed. Pharmacother. 2017, 95, 885–893. [Google Scholar] [CrossRef]
- Abdel-Salam, O.M.; Khadrawy, Y.A.; Mohammed, N.A.; Youness, E.R. The effect of gabapentin on oxidative stress in a model of toxic demyelination in rat brain. J. Basic Clin. Physiol. Pharmacol. 2012, 23, 61–68. [Google Scholar] [CrossRef]
- da Cunha Leal, P.; Moura, E.C.R.; Cossetti, R.J.D.; do Nascimento, J.R.; Bogéa Serra, I.C.P.; de Paulo Ribeiro, B.; Álvares Marques Vale, A.; de Azevedo dos Santos, A.P.S.; do Nascimento, F.R.F.; Sakata, R.K. High dose gabapentin does not alter tumor growth in mice but reduces arginase activity and increases superoxide dismutase, IL-6 and MCP-1 levels in Ehrlich ascites. BMC Res. Notes 2019, 12, 59. [Google Scholar] [CrossRef] [PubMed]
- Griess, B.; Tom, E.; Domann, F.; Teoh-Fitzgerald, M. Extracellular superoxide dismutase and its role in cancer. Free Radic. Biol. Med. 2017, 112, 464–479. [Google Scholar] [CrossRef] [PubMed]
- Pavone, A.; Cardile, V. An in vitro study of new antiepileptic drugs and astrocytes. Epilepsia 2003, 44, 34–39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lie, M.E.K.; Gowing, E.K.; Clausen, R.P.; Wellendorph, P.; Clarkson, A.N. Inhibition of GABA Transporters Fails to Afford Significant Protection Following Focal Cerebral Ischemia. J. Cereb. Blood Flow Metab. 2018, 38, 166. [Google Scholar] [CrossRef]
- Demchenko, I.; Zhilyaev, S.; Moskvin, A.; Krivchenko, A.; Piantadosi, C.; Allen, B. Antiepileptic drugs prevent seizures in hyperbaric oxygen: A novel model of epileptiform activity. Brain Res. 2017, 1657, 347–354. [Google Scholar] [CrossRef] [Green Version]
- D’Agostino, D.; Putnam, R.; Dean, J. Superoxide (·O2−) Production in CA1 Neurons of rat hippocampal slices exposed to graded levels of oxygen. J. Neurophysiol. 2007, 98, 1030–1041. [Google Scholar] [CrossRef] [Green Version]
- Demchenko, I.T.; Piantadosi, C.A. Nitric oxide amplifies the excitatory to inhibitory neurotransmitter imbalance accelerating oxygen seizures. Undersea Hyperb. Med. 2006, 33, 169–174. [Google Scholar]
- Sugiyama, I.; Murayama, N.; Kuroki, A.; Kota, J.; Iwano, S.; Yamazaki, H.; Hirota, T. Evaluation of cytochrome P450 inductions by anti-epileptic drug oxcarbazepine, 10-hydroxyoxcarbazepine, and carbamazepine using human hepatocytes and HepaRG cells. Xenobiotica 2015, 46, 765–774. [Google Scholar] [CrossRef]
- Dam, M.; Ekberg, R.; Løyning, Y.; Waltimo, O.; Jakobsen, K. A double-blind study comparing oxcarbazepine and carbamazepine in patients with newly diagnosed, previously untreated epilepsy. Epilepsy Res. 1989, 3, 70–76. [Google Scholar]
- Bolayir, E.; Celik, K.; Tas, A.; Topaktas, S.; Bakir, S. The effects of oxcarbazepine on oxidative stress in epileptic patients. Methods Find. Exp. Clin. Pharmacol. 2004, 26, 345–348. [Google Scholar] [CrossRef]
- Agarwal, N.B.; Agarwal, N.K.; Mediratta, P.K.; Sharma, K.K. Effect of lamotrigine, oxcarbazepine and topiramate on cognitive functions and oxidative stress in PTZ-kindled mice. Seizure 2011, 20, 257–262. [Google Scholar] [CrossRef]
- Price, T.O.; Farr, S.A.; Niehoff, M.L.; Ercal, N.; Morley, J.E.; Shah, G.N. Protective effect of topiramate on hyperglycemia-induced cerebral oxidative stress, Pericyte loss and learning behavior in diabetic mice. Int. Libr. Diabetes Metab. 2015, 1, 6–12. [Google Scholar]
- Cárdenas-Rodríguez, N.; Coballase-Urrutia, E.; Rivera-Espinosa, L.; Romero-Toledo, A.; Sampieri, A.I.; Ortega-Cuellar, D.; Montesinos-Correa, H.; Floriano-Sánchez, E.; Carmona-Aparicio, L. Modulation of antioxidant enzymatic activities by certain antiepileptic drugs (valproic acid, oxcarbazepine, and topiramate): Evidence in humans and experimental models. Oxid. Med. Cell. Longev. 2013, 2013, 598493. [Google Scholar] [CrossRef] [Green Version]
- Muriach, M.; López-Pedrajas, R.; Barcia, J.M.; Sanchez-Villarejo, M.V.; Almansa, I.; Romero, F.J. Cocaine causes memory and learning impairments in rats: Involvement of nuclear factor kappa B and oxidative stress, and prevention by topiramate. J. Neurochem. 2010, 114, 675–684. [Google Scholar] [CrossRef]
- Pennell, P.B.; Ogaily, M.S.; Macdonald, R.L. Aplastic anemia in a patient receiving felbamate for complex partial seizures. Neurology 1995, 45 Pt 1, 456–460. [Google Scholar] [CrossRef]
- Pellock, J.M.; Faught, E.; Leppik, I.E.; Shinnar, S.; Zupanc, M.L. Felbamate: Consensus of current clinical experience. Epilepsy Res. 2006, 71, 89–101. [Google Scholar] [CrossRef]
- Mazhar, F.; Malhi, S.M.; Simjee, S.U. Comparative studies on the effects of clinically used anticonvulsants on the oxidative stress biomarkers in pentylenetetrazole-induced kindling model of epileptogenesis in mice. J. Basic Clin. Physiol. Pharmacol. 2017, 28, 31–42. [Google Scholar] [CrossRef]
- Lynch, B.A.; Lambeng, N.; Nocka, K.; Kensel-Hammes, P.; Bajjalieh, S.M.; Matagne, A.; Fuks, B. The synaptic vesicle protein SV2A is the binding site for the antiepileptic drug levetiracetam. Proc. Natl. Acad. Sci. USA 2004, 101, 9861–9866. [Google Scholar] [CrossRef] [Green Version]
- Chang, W.P.; Südhof, T.C. SV2 renders primed synaptic vesicles competent for Ca2+-induced exocytosis. J. Neurosci. 2009, 29, 883–897. [Google Scholar] [CrossRef] [Green Version]
- Vogl, C.; Mochida, S.; Wolff, C.; Whalley, B.J.; Stephens, G.J. The synaptic vesicle glycoprotein 2A ligand levetiracetam inhibits presynaptic Ca2+ channels through an intracellular pathway. Mol. Pharmacol. 2012, 82, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Sills, G.J.; Rogawski, M.A. Mechanisms of action of currently used antiseizure drugs. Neuropharmacology 2020, 168, 107966. [Google Scholar] [CrossRef] [PubMed]
- Pichardo Macías, L.A.; Ramírez Mendiola, B.A.; Contreras García, I.J.; Zamudio Hernández, S.R.; Chávez Pacheco, J.L.; Sánchez Huerta, K.B.; Torreblanca, J.G. Effect of levetiracetam on extracellular amino acid levels in the dorsal hippocampus of rats with temporal lobe epilepsy. Epilepsy Res. 2018, 140, 111–119, Corrigendum in Epilepsy Res. 2019, 149, 124. [Google Scholar] [PubMed]
- Tokudome, K.; Okumura, T.; Terada, R.; Shimizu, S.; Kunisawa, N.; Mashimo, T.; Serikawa, T.; Sasa, M.; Ohno, Y. A Missense Mutation of the Gene Encoding Synaptic Vesicle Glycoprotein 2A (SV2A) Confers Seizure Susceptibility by Disrupting Amygdalar Synaptic GABA Release. Front. Pharmacol. 2016, 7, 210. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carunchio, I.; Pieri, M.; Ciotti, M.T.; Albo, F.; Zona, C. Modulation of AMPA receptors in cultured cortical neurons induced by the antiepileptic drug levetiracetam. Epilepsia 2007, 48, 654–662. [Google Scholar] [CrossRef]
- Abou-Khalil, B. Levetiracetam in the treatment of epilepsy. Neuropsychiatr. Dis. Treat. 2008, 4, 507–523. [Google Scholar] [CrossRef] [Green Version]
- Klitgaard, H.; Matagne, A.; Gobert, J.; Wülfert, E. Evidence for a unique profile of levetiracetam in rodent models of seizures and epilepsy. Eur. J. Pharmacol. 1998, 353, 191–206. [Google Scholar] [CrossRef]
- Howard, P.; Remi, J.; Remi, C.; Charlesworth, S.; Whalley, H.; Bhatia, R.; Hitchens, M.; Mihalyo, M.; Wilcock, A. Levetiracetam. J. Pain Symptom Manag. 2018, 56, 645–649. [Google Scholar] [CrossRef]
- Sarangi, S.C.; Kakkar, A.K.; Kumar, R.; Gupta, Y.K. Effect of lamotrigine, levetiracetam & topiramate on neurobehavioural parameters & oxidative stress in comparison with valproate in rats. Indian J. Med. Res. 2016, 144, 104–111. [Google Scholar]
- Haznedar, P.; Doğan, Ö.; Albayrak, P.; Tunçer, G.Ö.; Teber, S.; Deda, G.; Eminoglu, F.T. Effects of levetiracetam and valproic acid treatment on liver function tests, plasma free carnitine and lipid peroxidation in childhood epilepsies. Epilepsy Res. 2019, 153, 7–13. [Google Scholar] [CrossRef]
- Niizuma, K.; Endo, H.; Chan, P. Oxidative stress and mitochondrial dysfunction as determinants of ischemic neuronal death and survival. J. Neurochem. 2009, 109, 133–138. [Google Scholar] [CrossRef] [Green Version]
- Waldbaum, S.; Patel, M. Mitochondria, oxidative stress, and temporal lobe epilepsy. Epilepsy Res. 2010, 88, 23–45. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Li, X.; Jia, D.; Zhang, W.; Zhang, T.; Yu, Y.; Xu, Y.; Zhang, Y. A transcriptomics-based analysis of the toxicity mechanisms of gabapentin to zebrafish embryos at realistic environmental concentrations. Environ. Pollut. 2019, 251, 746–755. [Google Scholar] [CrossRef]
- Li, X.; Zhou, S.; Qian, Y.; Xu, Z.; Yu, Y.; Xu, Y.; He, Y.; Zhang, Y. The assessment of the eco-toxicological effect of gabapentin on early development of zebrafish and its antioxidant system. RSC Adv. 2018, 8, 22777–22784. [Google Scholar] [CrossRef] [Green Version]
- Sarnowska, A.; Beresewicz, M.; Zabłocka, B.; Domańska-Janik, K. Diazepam neuroprotection in excitotoxic and oxidative stress involves a mitochondrial mechanism additional to the GABAAR and hypothermic effects. Neurochem. Int. 2009, 55, 164–173. [Google Scholar] [CrossRef]
- Jorda, E.G.; Jimenez, A.; Verdaguer, E.; Canudas, A.M.; Folch, J.; Sureda, F.X.; Camins, A.; Pallas, M. Evidence in favour of a role for peripheral-type benzodiazepine receptor ligands in amplification of neuronal apoptosis. Apoptosis 2005, 10, 91–104. [Google Scholar] [CrossRef]
AED | Inhibitory Transmission | Excitatory Transmission | Concentration of Oxidants under Normal Conditions (Preclinical Studies) | Concentration of Oxidants during Oxidative Stress (Preclinical Studies) | Concentration of Oxidants during Oxidative Stress (Clinical Studies) | Comments | References |
---|---|---|---|---|---|---|---|
VGB | ↑↑↑ | — | ↑↑↑ | ↓↓↓ | No data available | Animal studies have shown efficacy in FXS or in spinal cord injury. Clinical trials are needed. | [11,13,15,24] |
LTG | — | ↓↓↓ | No data available | ↓↓↓ | ↓↓↓ as compared to conventional AEDs | LTG effectively reduces oxidant levels, which may result in a reduction of cardiovascular risk and an increase in serum albumin concentration in patients with epilepsy. | [26,27,29,30,31] |
TGB | ↑↑↑ | — | ↑↑↑ when administered in high doses | ↓↓↓ | No data available | Results obtained in an animal model of HD indicate the possibility of using TGB in the treatment of HD. Clinical trials are required. | [32,33,35] |
GBP | ↑↑↑ | ↓↓↓ | ↑↑↑ when administered in high doses | ↓↓↓ | No data available | There are prospects of using GBP in treatment of HD, diabetic neuropathy, spinal cord injury. | [37,38,40,48,51,52,53,54,55,56,57,58,60,61,63] |
OXC | — | — | No data available | ↑ | ↑ in epileptic patients | Further research is needed due to conflicting data. | [7,27,71] |
TPM | ↑↑↑ | ↓↓↓ | ↑↑↑ | ↓↓↓ [72,73] ↑↑↑ [71] | No data available | Further research is needed due to conflicting data. | [27,71,72,73] |
FBM | ↑↑↑ | ↓↓↓ | No data available | ↓↓↓ | No data available | [75,77] | |
LEV | ↓ in healthy tissue [90] ↑ in post-epileptic tissue [91] | ↓ | ↑ | ↑ [88] ↓ [77] | ↑ | [81,82,83,84,88,89] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kośmider, K.; Kamieniak, M.; Czuczwar, S.J.; Miziak, B. Second Generation of Antiepileptic Drugs and Oxidative Stress. Int. J. Mol. Sci. 2023, 24, 3873. https://doi.org/10.3390/ijms24043873
Kośmider K, Kamieniak M, Czuczwar SJ, Miziak B. Second Generation of Antiepileptic Drugs and Oxidative Stress. International Journal of Molecular Sciences. 2023; 24(4):3873. https://doi.org/10.3390/ijms24043873
Chicago/Turabian StyleKośmider, Kamil, Maciej Kamieniak, Stanisław J. Czuczwar, and Barbara Miziak. 2023. "Second Generation of Antiepileptic Drugs and Oxidative Stress" International Journal of Molecular Sciences 24, no. 4: 3873. https://doi.org/10.3390/ijms24043873
APA StyleKośmider, K., Kamieniak, M., Czuczwar, S. J., & Miziak, B. (2023). Second Generation of Antiepileptic Drugs and Oxidative Stress. International Journal of Molecular Sciences, 24(4), 3873. https://doi.org/10.3390/ijms24043873