Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers
Abstract
:1. Introduction
2. Results
2.1. mRNA Expression
2.2. Protein Abundance
2.3. Genotyping
3. Discussion
4. Materials and Methods
4.1. Liver Samples
4.2. mRNA Isolation and Quantitative Real-Time RT-PCR
4.3. Genotyping
4.4. Protein Quantification by LC−MC/MS
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Esposito, I.; Trinks, J.; Soriano, V. Hepatitis C virus resistance to the new direct-acting antivirals. Expert Opin. Drug. Metab. Toxicol. 2016, 12, 1197–1209. [Google Scholar] [CrossRef]
- Drozdzik, M.; Busch, D.; Lapczuk, J.; Müller, J.; Ostrowski, M.; Kurzawski, M.; Oswald, S. Protein Abundance of Clinically Relevant Drug-Metabolizing Enzymes in the Human Liver and Intestine: A Comparative Analysis in Paired Tissue Specimens. Clin. Pharmacol. Ther. 2018, 104, 515–524. [Google Scholar] [CrossRef]
- Smolders, E.J.; de Kanter, C.; van Hoek, B.; Arends, J.; Drenth, J.; Burger, D.M. Pharmacokinetics, Efficacy, and Safety of Hepatitis C Virus Drugs in Patients with Liver and/or Renal Impairment. Drug Saf. 2016, 39, 589–611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smolders, E.J.; Jansen, A.; Ter Horst, P.; Rockstroh, J.; Back, D.J.; Burger, D.M. Viral Hepatitis C Therapy: Pharmacokinetic and Pharmacodynamic Considerations: A 2019 Update. Clin. Pharmacokinet. 2019, 58, 1237–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- European Medicines Agency 2005. Guideline on the Evaluation of the Pharmacokinetics of Medicinal Products in Patients with Impaired Hepatic Function. February 2005 [Online]. Available online: https://www.ema.europa.eu/documents/scientific-guideline/guideline-evaluation-pharmacokinetics-medicinal-products-patients-impaired-hepatic-function_en.pdf (accessed on 4 December 2022).
- FDA. Guidance for Industry Pharmacokinetics in Patients with Impaired Hepatic Function: Study, Design, Data Analysis, and Impact on Dosing and Labeling. 2003. Available online: https://www.fda.gov/media/71311/download (accessed on 4 December 2022).
- Drozdzik, M.; Lapczuk-Romanska, J.; Wenzel, C.; Szelag-Pieniek, S.; Post, M.; Skalski, Ł.; Kurzawski, M.; Oswald, S. Gene Expression and Protein Abundance of Hepatic Drug Metabolizing Enzymes in Liver Pathology. Pharmaceutics 2021, 13, 1334. [Google Scholar] [CrossRef] [PubMed]
- Droździk, M.; Lapczuk-Romanska, J.; Wenzel, C.; Skalski, Ł.; Szeląg-Pieniek, S.; Post, M.; Syczewska, M.; Kurzawski, M.; Oswald, S. Protein Abundance of Drug Transporters in Human Hepatitis C Livers. Int. J. Mol. Sci. 2022, 23, 7947. [Google Scholar] [CrossRef]
- Prasad, B.; Bhatt, D.K.; Johnson, K.; Chapa, R.; Chu, X.; Salphati, L.; Xiao, G.; Lee, C.; Hop, C.; Mathias, A.; et al. Abundance of Phase 1 and 2 Drug-Metabolizing Enzymes in Alcoholic and Hepatitis C Cirrhotic Livers: A Quantitative Targeted Proteomics Study. Drug Metab. Dispos. 2018, 46, 943–952. [Google Scholar] [CrossRef]
- Frye, R.F.; Zgheib, N.K.; Matzke, G.R.; Chaves-Gnecco, D.; Rabinovitz, M.; Shaikh, O.S.; Branch, R.A. Liver disease selectively modulates cytochrome P450-mediated metabolism. Clin. Pharmacol. Ther. 2006, 80, 235–245. [Google Scholar] [CrossRef]
- Pentikäinen, P.J.; Välisalmi, L.; Himberg, J.L.; Crevoisier, C. Pharmacokinetics of midazolam following intravenous and oral administration in patients with chronic liver disease and in healthy subjects. J. Clin. Pharmacol. 1989, 29, 272–277. [Google Scholar] [CrossRef]
- Adedoyin, A.; Arns, P.A.; Richards, W.O.; Wilkinson, G.R.; Branch, R.A. Selective effect of liver disease on the activities of specific metabolizing enzymes: Investigation of cytochromes P450 2C19 and 2D6. Clin. Pharmacol. Ther. 1998, 64, 8–17. [Google Scholar] [CrossRef]
- Congiu, M.; Mashford, M.L.; Slavin, J.L.K.; Desmond, P.V. UDP Glucuronosyltransferase mRNA Levels in Human Liver Disease. Drug Metab. Dispos. 2002, 30, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Verbeeck, R.K. Pharmacokinetics and dosage adjustment in patients with hepatic dysfunction. Eur. J. Clin. Pharmacol. 2008, 64, 1147–1161. [Google Scholar] [CrossRef]
- Crotty, B.; Watson, K.J.; Desmond, P.V.; Mashford, M.L.; Wood, L.J.; Colman, J.; Dudley, F.J. Hepatic extraction of morphine is impaired in cirrhosis. Eur. J. Clin. Pharmacol. 1989, 36, 501–506. [Google Scholar] [CrossRef] [PubMed]
- Marcellin, P.; de Bony, F.; Garret, C.; Altman, C.; Boige, V.; Castelnau, C.; Laurent-Puig, C.; Trinchet, J.C.; Rolan, P.; Chen, C.; et al. Influence of cirrhosis on lamotrigine pharmacokinetics. Br. J. Clin. Pharmacol. 2001, 51, 410–414. [Google Scholar] [CrossRef] [Green Version]
- Taburet, A.M.; Naveau, S.; Zorza, G.; Colin, J.N.; Delfraissy, J.F.; Chaput, J.C.; Singlas, E. Pharmacokinetics of zidovudine in patients with liver cirrhosis. Clin. Pharmacol. Ther. 1990, 47, 731–739. [Google Scholar] [CrossRef] [PubMed]
- Parker, G.; Bullingham, R.; Kamm, B.; Hale, M. Pharmacokinetics of oral mycophenolate mofetil in volunteer subjects with varying degrees of hepatic oxidative impairment. J. Clin. Pharmacol. 1996, 36, 332–344. [Google Scholar] [CrossRef]
- Sonne, J.; Boesgaard, S.; Poulsen, H.E.; Loft, S.; Hansen, J.M.; Døssing, M.; Andreasen, F. Pharmacokinetics and pharmacodynamics of oxazepam and metabolism of paracetamol in severe hypothyroidism. Br. J. Clin. Pharmacol. 1990, 30, 737–742. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kurzawski, M.; Szeląg-Pieniek, S.; Łapczuk-Romańska, J.; Wrzesiński, M.; Oswald, S.; Droździk, M. The reference liver-CYP450 and UGT enzymes in healthy donor and metastatic livers: The impact of genotype. Pharmacol. Rep. 2022, 74, 204–215. [Google Scholar] [CrossRef]
- Michaels, S.; Wang, M.Z. The revised human liver cytochrome P450 “Pie”: Absolute protein quantification of CYP4F and CYP3A enzymes using targeted quantitative proteomics. Drug Metab. Dispos. 2014, 42, 1241–1251. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Palmfeldt, J.; Pedersen, K.W.; Funder, A.D.; Frost, L.; Hasselstrøm, J.B.; Jornil, J.R. Postmortem protein stability investigations of the human hepatic drug-metabolizing cytochrome P450 enzymes CYP1A2 and CYP3A4 using mass spectrometry. J. Proteom. 2019, 194, 125–131. [Google Scholar] [CrossRef] [PubMed]
- Meyer, J.G.; Schilling, B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev. Proteom. 2017, 14, 419–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wegler, C.; Gaugaz, F.Z.; Andersson, T.B.; Wiśniewski, J.R.; Busch, D.; Gröer, C.; Oswald, S.; Norén, A.; Weiss, F.; Hammer, H.S.; et al. Variability in Mass Spectrometry-based Quantification of Clinically Relevant Drug Transporters and Drug Metabolizing Enzymes. Mol. Pharm. 2017, 14, 3142–3151. [Google Scholar] [CrossRef] [Green Version]
- Vasilogianni, A.M.; Al-Majdoub, Z.M.; Achour, B.; Peters, S.A.; Rostami-Hodjegan, A.; Barber, J. Proteomics of colorectal cancer liver metastasis: A quantitative focus on drug elimination and pharmacodynamics effects. Br. J. Clin. Pharmacol. 2022, 88, 1811–1823. [Google Scholar] [CrossRef] [PubMed]
- Couto, N.; Al-Majdoub, Z.M.; Achour, B.; Wright, P.C.; Rostami-Hodjegan, A.; Barber, J. Quantification of Proteins Involved in Drug Metabolism and Disposition in the Human Liver Using Label-Free Global Proteomics. Mol. Pharm. 2019, 16, 632–647. [Google Scholar] [CrossRef] [Green Version]
- Olafuyi, O.; Parekh, N.; Wright, J.; Koenig, J. Inter-ethnic differences in pharmacokinetics-is there more that unites than divides? Pharmacol. Res. Perspect. 2021, 9, e00890. [Google Scholar] [CrossRef]
- Mohamed, M.E.; Schladt, D.P.; Guan, W.; Wu, B.; van Setten, J.; Keating, B.J.; Iklé, D.; Remmel, R.P.; Dorr, C.R.; Mannon, R.B.; et al. Tacrolimus troughs and genetic determinants of metabolism in kidney transplant recipients: A comparison of four ancestry groups. Am. J. Transplant. 2019, 19, 2795–2804. [Google Scholar] [CrossRef]
- Naidoo, P.; Chetty, V.V.; Chetty, M. Impact of CYP polymorphisms, ethnicity and sex differences in metabolism on dosing strategies: The case of efavirenz. Eur. J. Clin. Pharmacol. 2014, 70, 379–389. [Google Scholar] [CrossRef]
- Kile, D.A.; MaWhinney, S.; Aquilante, C.L.; Rower, J.E.; Castillo-Mancilla, J.R.; Anderson, P.L. A population pharmacokinetic-pharmacogenetic analysis of atazanavir. AIDS Res Hum. Retrovir. 2012, 28, 1227–1234. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cui, J.Y.; Lu, Y.F.; Corton, J.C.; Klaassen, C.D. Sex-, Age-, and Race/Ethnicity-Dependent Variations in Drug-Processing and NRF2-Regulated Genes in Human Livers. Drug Metab. Dispos. 2021, 49, 111–119. [Google Scholar] [CrossRef]
- van Groen, B.D.; Nicolaï, J.; Kuik, A.C.; Van Cruchten, S.; van Peer, E.; Smits, A.; Schmidt, S.; de Wildt, S.N.; Allegaert, K.; De Schaepdrijver, L.; et al. Ontogeny of Hepatic Transporters and Drug-Metabolizing Enzymes in Humans and in Nonclinical Species. Pharmacol. Rev. 2021, 73, 597–678. [Google Scholar] [CrossRef] [PubMed]
- Achour, B.; Barber, J.; Rostami-Hodjegan, A. Expression of hepatic drug-metabolizing cytochrome p450 enzymes and their intercorrelations: A meta-analysis. Drug Metab. Dispos. 2014, 42, 1349–1356. [Google Scholar] [CrossRef] [Green Version]
- Hsia, C.Y.; Huo, T.I.; Chiang, S.Y.; Lu, M.F.; Sun, C.L.; Wu, J.C.; Lee, P.C.; Chi, C.W.; Lui, W.Y.; Lee, S.D. Evaluation of interleukin-6, interleukin-10 and human hepatocyte growth factor as tumor markers for hepatocellular carcinoma. Eur. J. Surg. Oncol. 2007, 33, 208–212. [Google Scholar] [CrossRef]
- Bertoletti, A.; D’Elios, M.M.; Boni, C.; De Carli, M.; Zignego, A.L.; Durazzo, M.; Missale, G.; Penna, A.; Fiaccadori, F.; Del Prete, G.; et al. Different cytokine profiles of intraphepatic T cells in chronic hepatitis B and hepatitis C virus infections. Gastroenterology 1997, 112, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Sakurai, T.; He, G.; Matsuzawa, A.; Yu, G.Y.; Maeda, S.; Hardiman, G.; Karin, M. Hepatocyte necrosis induced by oxidative stress and IL-1α release mediate carcinogen-induced compensatory proliferation and liver tumorigenesis. Cancer Cell 2008, 14, 156–165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shrivastava, S.; Mukherjee, A.; Ray, R.; Ray, R.B. Hepatitis C virus induces interleukin-1β (IL-1β)/IL-18 in circulatory and resident liver macrophages. J. Virol. 2013, 87, 12284–12290. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dickmann, L.J.; Patel, S.K.; Wienkers, L.C.; Slatter, J.G. Effects of interleukin 1β (IL-1β) and IL-1β/interleukin 6 (IL-6) combinations on drug metabolizing enzymes in human hepatocyte culture. Curr. Drug Metab. 2012, 13, 930–937. [Google Scholar] [CrossRef]
- Rubin, K.; Janefeldt, A.; Andersson, L.; Berke, Z.; Grime, K.; Andersson, T.B. HepaRG cells as human-relevant in vitro model to study the effects of inflammatory stimuli on cytochrome P450 isoenzymes. Drug Metab. Dispos. 2015, 43, 119–125. [Google Scholar] [CrossRef]
- Ke, S.; Rabson, A.B.; Germino, J.F.; Gallo, M.A.; Tian, Y. Mechanism of suppression of cytochrome P-450 1A1 expression by tumor necrosis factor-alpha and lipopolysaccharide. J. Biol. Chem. 2001, 276, 39638–39644. [Google Scholar] [CrossRef] [Green Version]
- Donato, M.T.; Guillén, M.I.; Jover, R.; Castell, J.V.; Gómez-Lechón, M.J. Nitric oxide-mediated inhibition of cytochrome P450 by interferon-gamma in human hepatocytes. J. Pharmacol. Exp. Ther. 1997, 281, 484–490. [Google Scholar]
- Beigneux, A.P.; Moser, A.H.; Shigenaga, J.K.; Grunfeld, C.; Feingold, K.R. Reduction in cytochrome P-450 enzyme expression is associated with repression of CAR (constitutive androstane receptor) and PXR (pregnane X receptor) in mouse liver during the acute phase response. Biochem. Biophys. Res. Commun. 2002, 293, 145–149. [Google Scholar] [CrossRef]
- Wang, X.; Rao, J.; Tan, Z.; Xun, T.; Zhao, J.; Yang, X. Inflammatory signaling on cytochrome P450-mediated drug metabolism in hepatocytes. Front. Pharmacol. 2022, 13, 1043836. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Hao, C.; Yang, D.; Shi, D.; Song, X.; Luan, X.; Hu, G.; Yan, B. Pregnane X receptor is required for interleukin-6-mediated down-regulation of cytochrome P450 3A4 in human hepatocytes. Toxicol. Lett. 2010, 197, 219–226. [Google Scholar] [CrossRef] [Green Version]
- Tirona, R.G.; Lee, W.; Leake, B.F.; Lan, L.B.; Cline, C.B.; Lamba, V.; Parviz, F.; Duncan, S.A.; Inoue, Y.; Gonzalez, F.J.; et al. The orphan nuclear receptor HNF4alpha determines PXR- and CAR-mediated xenobiotic induction of CYP3A4. Nat. Med. 2003, 9, 220–224. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.M.; Ong, S.S.; Chai, S.C.; Chen, T. Role of CAR and PXR in xenobiotic sensing and metabolism. Expert Opin. Drug Metab. Toxicol. 2012, 8, 803–817. [Google Scholar] [CrossRef] [Green Version]
- Kosloski, M.P.; Wang, H.; Pugatch, D.; Mensa, F.J.; Gane, E.; Lawitz, E.; Marbury, T.C.; Preston, R.A.; Kort, J.; Liu, W. Pharmacokinetics and safety of glecaprevir and pibrentasvir in HCV-negative subjects with hepatic impairment. Eur. J. Clin. Pharmacol. 2019, 75, 217–226. [Google Scholar] [CrossRef]
- Mogalian, E.; Mathias, A.; Brainard, D.; McNally, J.; Moorehead, L.; Hernandez, M.; Robson, R.A.; Ries, D.K.; Lasseter, K.; Marbury, T. The pharmacokinetics of GS-5816, a pangenotype HCV NS5A inhibitor, in HCV-uninfected subject with moderate and severe hepatic impairment [abstract no. P742]. J. Hepatol. 2014, 60 (Suppl. 1), S317. [Google Scholar] [CrossRef]
- Khatri, A.; Menon, R.; Marbury, T.C.; Lawitz, E.; Podsadecki, T.J.; Mullally, V.; Ding, B.; Awni, W.M.; Bernstein, B.M.; Dutta, S. Pharmacokinetics and safety of coadministered paritaprevir plus ritonavir (paritaprevir/r), ombitasvir, and dasabuvir in hepatic impairment. J. Hepatol. 2015, 63, 805–812. [Google Scholar] [CrossRef]
- Sekar, V.; Simion, A.; Peeters, M.; Spittaels, K.; Lawitz, E.; Marbury, T.C.; De Smedt, G. Pharmacokinetics of TMC435 in subjects with moderate hepatic impairment [abstract no. 472]. J. Hepatol. 2011, 54 (Suppl. 1), S193. [Google Scholar] [CrossRef]
- Ouwerkerk-Mahadevan, S.; Simion, A.; Spittaels, K.; Beumont-Mauviel, M. Pharmacokinetics of simeprevir (TMC435) in volunteers with moderate or severe hepatic impairment [abstract no. 887]. J. Hepatol. 2013, 58 (Suppl. 1), S229. [Google Scholar] [CrossRef]
- EMA. Olysio Product Information. 2014. Available online: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Product_Information/human/002777/WC500167867.pdf (accessed on 29 September 2015).
- Marshall, W.L.; Feng, H.P.; Wenning, L.; Garrett, G.; Huang, X.; Liu, F.; Panebianco, D.; Caro, L.; Fandozzi, C.; Lasseter, K.C.; et al. Pharmacokinetics, safety, and tolerability of single-dose elbasvir in participants with hepatic impairment. Eur. J. Drug Metab. Pharmacokinet. 2018, 43, 321–329. [Google Scholar] [CrossRef]
- Jacobson, I.M.; Poordad, F.; Firpi-Morell, R.; Everson, G.T.; Verna, E.C.; Bhanja, S. Efficacy and safety of grazoprevir and elbasvir in hepatitis C genotype 1-infected patients with child–pugh class B cirrhosis (C-salt part A) [abstract no. O008]. J. Hepatol. 2015, 62 (Suppl. 2), S193–S194. [Google Scholar] [CrossRef]
- Wiśniewski, J.R.; Zougman, A.; Nagaraj, N.; Mann, M. Universal sample preparation method for proteome analysis. Nat. Methods 2009, 6, 359–362. [Google Scholar] [CrossRef] [PubMed]
- Wenzel, C.; Drozdzik, M.; Oswald, S. Mass spectrometry-based targeted proteomics method for the quantification of clinically relevant drug metabolizing enzymes in human specimens. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2021, 1180, 122891. [Google Scholar] [CrossRef] [PubMed]
mRNA vs. Protein Correlation Coefficient | |||||
---|---|---|---|---|---|
Protein | Controls n = 20 a | HCV n = 58 b | Child–Pugh Class A n = 30 c | Child–Pugh Class B n = 21 d | Child–Pugh Class C n = 7 e |
CYP1A1 | 0.664 *** | 0.584 *** | 0.638 *** | 0.505 * | 0.414 |
CYP1A2 | 0.824 *** | 0.652 *** | 0.517 ** | 0.642 ** | 0.571 |
CYP2B6 | 0.612 ** | 0.332 ** | 0.426 * | −0.003 | 0.786 * |
CYP2C8 | 0.645 ** | 0.025 | −0.078 | −0.177 | 0.571 |
CYP2C9 | 0.620 ** | 0.202 | 0.238 | −0.203 | 0.679 |
CYP2C19 | 0.325 | −0.044 | −0.010 | −0.180 | 0.715 |
CYP2D6 | 0.586 ** | 0.357 ** | 0.468 * | 0.389 | −0.321 |
CYP2E1 | 0.352 | 0.118 | 0.321 | −0.091 | 0.000 |
CYP3A4 | 0.889 *** | 0.466 *** | 0.400 * | 0.348 | 0.714 |
UGT1A1 | 0.675 ** | 0.280 * | 0.378 * | 0.073 | 0.536 |
UGT1A3 | 0.699 *** | 0.306 * | 0.092 | 0.348 | 0.857 * |
UGT2B7 | 0.800 *** | 0.235 | 0.051 | 0.094 | −0.214 |
UGT2B15 | 0.725 *** | 0.317 * | 0.295 | −0.019 | 0.679 |
Parameter/Disease | Control n = 20 | HCV n = 58 | Ch-P A n = 30 | Ch-P B n = 21 | Ch-P C n = 7 |
---|---|---|---|---|---|
Sex [male/female] | 11/9 | 30/28 | 16/14 | 11/10 | 3/4 |
Age [years] | 63 ± 10 | 56 ± 7 | 57 ± 7 | 55 ± 8 | 52 ± 9 |
Total bilirubin [mg/dL] | 0.59 ± 0.25 | 1.75 ± 1.26 | 1.03 ± 0.57 | 2.05 ± 0.84 | 3.62 ± 1.78 |
Albumin [g/dL] | 3.89 ± 0.38 | 3.38 ± 0.57 | 3.67 ± 0.49 | 3.23 ± 0.45 | 2.71 ± 0.40 |
INR | 1.14 ± 0.21 | 1.30 ± 0.28 | 1.20 ± 0.22 | 1.29 ± 0.17 | 1.71 ± 0.36 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drozdzik, M.; Lapczuk-Romanska, J.; Wenzel, C.; Skalski, L.; Szeląg-Pieniek, S.; Post, M.; Parus, A.; Syczewska, M.; Kurzawski, M.; Oswald, S. Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. Int. J. Mol. Sci. 2023, 24, 4543. https://doi.org/10.3390/ijms24054543
Drozdzik M, Lapczuk-Romanska J, Wenzel C, Skalski L, Szeląg-Pieniek S, Post M, Parus A, Syczewska M, Kurzawski M, Oswald S. Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. International Journal of Molecular Sciences. 2023; 24(5):4543. https://doi.org/10.3390/ijms24054543
Chicago/Turabian StyleDrozdzik, Marek, Joanna Lapczuk-Romanska, Christoph Wenzel, Lukasz Skalski, Sylwia Szeląg-Pieniek, Mariola Post, Arkadiusz Parus, Marta Syczewska, Mateusz Kurzawski, and Stefan Oswald. 2023. "Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers" International Journal of Molecular Sciences 24, no. 5: 4543. https://doi.org/10.3390/ijms24054543
APA StyleDrozdzik, M., Lapczuk-Romanska, J., Wenzel, C., Skalski, L., Szeląg-Pieniek, S., Post, M., Parus, A., Syczewska, M., Kurzawski, M., & Oswald, S. (2023). Protein Abundance of Drug Metabolizing Enzymes in Human Hepatitis C Livers. International Journal of Molecular Sciences, 24(5), 4543. https://doi.org/10.3390/ijms24054543