Fabrication of Polyurethane Elastomer/Hindered Phenol Composites with Tunable Damping Property
Abstract
:1. Introduction
2. Results and Discussion
2.1. Preparation of Raw MPU Rubber
2.2. Preparation and Molding of MPU/AO-80 Composites
2.3. SEM of MPU/AO-80 Composites
2.4. TGA and DSC of MPU/AO-80 Composites
2.5. Static and Dynamic Mechanical Properties of MPU/AO-80 Composites
3. Materials and Methods
3.1. Materials
3.2. Preparation of MPU and MPU/AO-80 Composites
3.3. Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Knoller, A.; Kilper, S.; Diem, A.M.; Widenmeyer, M.; Runcevski, T.; Dinnebier, R.E.; Bill, J.; Burghard, Z. Ultrahigh Damping Capacities in Lightweight Structural Materials. Nano Lett. 2018, 18, 2519–2524. [Google Scholar] [CrossRef]
- Lee, K.S.; Choi, J.I.; Kim, S.K.; Lee, B.K.; Hwang, J.S.; Lee, B.Y. Damping and mechanical properties of composite composed of polyurethane matrix and preplaced aggregates. Constr. Build. Mater. 2017, 145, 68–75. [Google Scholar] [CrossRef]
- Jayakumari, V.G.; Shamsudeen, R.K.; Rajeswari, R.; Mukundan, T. Viscoelastic and acoustic characterization of polyurethane-based acoustic absorber panels for underwater applications. J. Appl. Polym. Sci. 2019, 136, 47165. [Google Scholar] [CrossRef]
- Sobczak, M.; Kedra, K. Biomedical Polyurethanes for Anti-Cancer Drug Delivery Systems: A Brief, Comprehensive Review. Int. J. Mol. Sci. 2022, 23, 8181. [Google Scholar] [CrossRef] [PubMed]
- Kordovan, M.A.; Hegedus, C.; Czifrak, K.; Lakatos, C.; Kalman-Szabo, I.; Daroczi, L.; Zsuga, M.; Keki, S. Novel Polyurethane Scaffolds Containing Sucrose Crosslinker for Dental Application. Int. J. Mol. Sci. 2022, 23, 7904. [Google Scholar] [CrossRef]
- Koyama, A.; Suetsugu, D.; Fukubayashi, Y.; Mitabe, H. Experimental study on the dynamic properties of rigid polyurethane foam in stress-controlled cyclic uniaxial tests. Constr. Build. Mater. 2022, 321, 126377. [Google Scholar] [CrossRef]
- Baek, S.H.; Kim, J.H. Polyurethane composite foams including silicone-acrylic particles for enhanced sound absorption via increased damping and frictions of sound waves. Compos. Sci. Technol. 2020, 198, 108325. [Google Scholar] [CrossRef]
- Geethamma, V.G.; Asaletha, R.; Kalarikkal, N.; Thomas, S. Vibration and sound damping in polymers. Resonance 2014, 19, 821–833. [Google Scholar] [CrossRef]
- Zhao, Y.; Shou, T.; Fu, S.; Qin, X.; Hu, S.; Zhao, X.; Zhang, L. Controllable Design and Preparation of Hydroxyl-Terminated Solution-Polymerized Styrene Butadiene for Polyurethane Elastomers with High-Damping Properties. Macromol. Rapid Commun. 2022, 43, 2100692. [Google Scholar] [CrossRef]
- Murniati, R.; Rahmayanti, H.D.; Utami, F.D.; Cifriadi, A.; Iskandar, F.; Abdullah, M. Effects of magnetically modified natural zeolite addition on the crosslink density, mechanical, morphological, and damping properties of SIR 20 natural rubber reinforced with nanosilica compounds. J. Polym. Res. 2020, 27, 37. [Google Scholar] [CrossRef]
- Kluczyk, M.; Grzadziela, A.; Pajak, M.; Muslewski, L.; Szelezinski, A. The Fatigue Wear Process of Rubber-Metal Shock Absorbers. Polymers 2022, 14, 1186. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Shou, T.; Liang, R.; Hu, S.; Yu, P.; Zhang, L. Bio-based thermoplastic polyurethane derived from polylactic acid with high-damping performance. Ind. Crops Prod. 2020, 154, 112619. [Google Scholar] [CrossRef]
- Arevalo Alquichire, S.; Morales Gonzalez, M.; Navas Gomez, K.; Diaz, L.E.; Gomez Tejedor, J.A.; Serrano, M.A.; Valero, M.F. Influence of Polyol/Crosslinker Blend Composition on Phase Separation and Thermo-Mechanical Properties of Polyurethane Thin Films. Polymers 2020, 12, 666. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodrigues, J.D.O.; Andrade, C.K.Z.; Quirino, R.L.; Sales, M.J.A. Non-isocyanate poly(acyl-urethane) obtained from urea and castor (Ricinus communis L.) oil. Prog. Org. Coat. 2022, 162, 106557. [Google Scholar] [CrossRef]
- Hu, S.K.; Chen, S.; Zhao, X.Y.; Guo, M.M.; Zhang, L.Q. The Shape-Memory Effect of Hindered Phenol (AO-80)/Acrylic Rubber (ACM) Composites with Tunable Transition Temperature. Materials 2018, 11, 2461. [Google Scholar] [CrossRef] [Green Version]
- Zemla, M.; Prociak, A.; Michalowski, S.; Cabulis, U.; Kirpluks, M.; Simakovs, K. Thermal Insulating Rigid Polyurethane Foams with Bio-Polyol from Rapeseed Oil Modified by Phosphorus Additive and Reactive Flame Retardants. Int. J. Mol. Sci. 2022, 23, 12386. [Google Scholar] [CrossRef]
- Mester, E.; Pecsmany, D.; Jalics, K.; Filep, A.; Varga, M.; Graczer, K.; Viskolcz, B.; Fiser, B. Exploring the Potential to Repurpose Flexible Moulded Polyurethane Foams as Acoustic Insulators. Polymers 2021, 14, 163. [Google Scholar] [CrossRef]
- Baghban, S.A.; Khorasani, M.; Sadeghi, G.M.M. Acoustic damping flexible polyurethane foams: Effect of isocyanate index and water content on the soundproofing. J. Appl. Polym. Sci. 2019, 136, 47363. [Google Scholar] [CrossRef]
- Wang, W.; Bai, X.; Sun, S.; Gao, Y.; Li, F.; Hu, S. Polysiloxane-Based Polyurethanes with High Strength and Recyclability. Int. J. Mol. Sci. 2022, 23, 12613. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, H.; Miao, Y.; Qiao, L.; Wang, X.; Wang, F. UV-curable waterborne polyurethane from CO2-polyol with high hydrolysis resistance. Polymer 2016, 100, 219–226. [Google Scholar] [CrossRef]
- Kojio, K.; Furukawa, M.; Nonaka, Y.; Nakamura, S. Control of Mechanical Properties of Thermoplastic Polyurethane Elastomers by Restriction of Crystallization of Soft Segment. Materials 2010, 3, 5097–5110. [Google Scholar] [CrossRef] [PubMed]
- Hu, S.; He, S.; Wang, Y.; Wu, Y.; Shou, T.; Yin, D.; Mu, G.; Zhao, X.; Gao, Y.; Liu, J.; et al. Self-repairable, recyclable and heat-resistant polyurethane for high-performance automobile tires. Nano Energy 2022, 95, 107012. [Google Scholar] [CrossRef]
- Kojio, K.; Nakamura, S.; Furukawa, M. Effect of side methyl groups of polymer glycol on elongation-induced crystallization behavior of polyurethane elastomers. Polymer 2004, 45, 8147–8152. [Google Scholar] [CrossRef]
- Dhawan, A.; Jindal, P. Mechanical behavior of carboxylic functionalized graphene reinforced polyurethane nanocomposites under static and dynamic loading. Polym. Compos. 2021, 42, 4911–4922. [Google Scholar] [CrossRef]
- Hasani Baferani, A.; Katbab, A.A.; Ohadi, A.R. Study the effects of functionality of carbon nanotubes upon acoustic wave absorption coefficient, microstructure, and viscoelastic behavior of polyurethane/CNT nanocomposite foam. J. Polym. Res. 2022, 29, 227. [Google Scholar] [CrossRef]
- Murali, A.; Jaisankar, S.N. Viscoelastic behavior of carbon nanotubes impregnated polyurethane: A detailed study of Structural, Mechanical, thermal and hydrophobic properties. Mater. Lett. 2022, 312, 131722. [Google Scholar] [CrossRef]
- Azammi, A.M.N.; Sapuan, S.M.; Ishak, M.R.; Sultan, M.T.H. Physical and damping properties of kenaf fibre filled natural rubber/thermoplastic polyurethane composites. Def. Technol. 2020, 16, 29–34. [Google Scholar] [CrossRef]
- Sharifi, M.J.; Ghalehkhondabi, V.; Fazlali, A. Investigation of the underwater sound absorption and damping properties of polyurethane elastomer. J. Therm. Anal. Calorim. 2021, 147, 4113–4118. [Google Scholar] [CrossRef]
- Turri, S.; Levi, M.; Cristini, M.; Sanguineti, A. Rheological properties and thermal transitions in millable polyurethane fluoroelastomers. Polym. Int. 2005, 54, 698–704. [Google Scholar] [CrossRef]
- Praveen, S.; Bahadur, J.; Yadav, R.; Billa, S.; Umasankar Patro, T.; Rath, S.K.; Ratna, D.; Patri, M. Tunable viscoelastic and vibration damping properties of a segmented polyurethane synergistically reinforced with carbon black and anisotropic additives. Appl. Acoust. 2020, 170, 107535. [Google Scholar] [CrossRef]
- Zhao, X.; Fu, G.; Wang, Y.; Wu, Y.; Shou, T.; Yin, D.; Li, X.; Hu, S.; Zhang, L. Bio-based polyurethane/hindered phenol AO-80 composites for room temperature high damping properties. Compos. Part B Eng. 2022, 243, 110118. [Google Scholar] [CrossRef]
- Peng, F.; Yang, X.; Zhu, Y.; Wang, G. Effect of the symmetry of polyether glycols on structure-morphology-property behavior of polyurethane elastomers. Polymer 2022, 239, 124429. [Google Scholar] [CrossRef]
- Chang, M.C.O.; Thomas, D.A.; Sperling, L.H. Group contribution analysis of the damping behavior of homopolymers, statistical copolymers, and interpenetrating polymer networks based on acrylic, vinyl, and styrenic mers. J. Polym. Sci. 1988, 26, 1627–1640. [Google Scholar] [CrossRef]
- Hou, X.; Sun, L.; Wei, W.; Taylor, D.K.; Su, S.; Yu, H. Structure and performance control of high-damping bio-based thermoplastic polyurethane. J. Appl. Polym. Sci. 2021, 139, 52059. [Google Scholar] [CrossRef]
- Hu, S.; Wu, Y.; Fu, G.; Shou, T.; Zhai, M.; Yin, D.; Zhao, X. Bio-Based Polyurethane and Its Composites towards High Damping Properties. Int. J. Mol. Sci. 2022, 23, 6618. [Google Scholar] [CrossRef] [PubMed]
- Kuriyagawa, M.; Kawamura, T.; Hayashi, S.; Nitta, K.-H. Reinforcement of polyurethane-based shape memory polymer by hindered phenol compounds and silica particles. J. Appl. Polym. Sci. 2010, 117, 1695–1702. [Google Scholar] [CrossRef]
- Le Guen, M.J.; Newman, R.H.; Fernyhough, A.; Staiger, M.P. Tailoring the vibration damping behaviour of flax fibre-reinforced epoxy composite laminates via polyol additions. Compos. Part A Appl. Sci. Manuf. 2014, 67, 37–43. [Google Scholar] [CrossRef]
- Rahimzadeh, A.; Rutsch, M.; Kupnik, M.; Klitzing, R.V. Visualization of Acoustic Energy Absorption in Confined Aqueous Solutions by PNIPAM Microgels: Effects of Bulk Viscosity. Langmuir 2021, 37, 5854–5863. [Google Scholar] [CrossRef]
- Wittmer, A.; Brinkmann, A.; Stenzel, V.; Koschek, K. Stimuli-responsive polyurethane-urea polymer for protective coatings and dampening material. J. Coat. Technol. Res. 2018, 16, 189–197. [Google Scholar] [CrossRef]
- Hu, Q.; Wang, J.; Xu, K.; Zhou, H.; Huang, Y.; Chen, J. Effects of chain polarity of hindered phenol on the damping properties of polymer-based hybrid materials: Insights into the molecular mechanism. J. Polym. Eng. 2020, 40, 394–402. [Google Scholar] [CrossRef]
- Hu, S.; Shou, T.; Chen, S.; Zhao, X.; Lu, Y.; Zhang, L. High shape-memory effect of hindered phenol/nitrile–butadiene rubber composites by forming hydrogen bonding. J. Appl. Polym. Sci. 2020, 137, 48911. [Google Scholar] [CrossRef]
- Song, M.Y.; Kwak, Y.J. Determination of the Activation Energy for Hydride Decomposition Using a Sieverts-Type Apparatus and the Kissinger Equation. Metals 2022, 12, 265. [Google Scholar] [CrossRef]
- Wellen, R.M.R.; Canedo, E.L. On the Kissinger equation and the estimate of activation energies for non-isothermal cold crystallization of PET. Polym. Test. 2014, 40, 33–38. [Google Scholar] [CrossRef] [Green Version]
- Cao, Y.; Li, Q.; Zhang, L.; Wu, G.; Wu, C. Viscoelasticity of a vitrified hindered phenol compound during thermal annealing. J. Non-Cryst. Solids 2007, 353, 4232–4235. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, X.; Chan, T.; Zhang, L.; Wu, S. Investigation of the damping properties of hindered phenol AO-80/polyacrylate hybrids using molecular dynamics simulations in combination with experimental methods. J. Mater. Sci. 2016, 51, 5760–5774. [Google Scholar] [CrossRef]
- Xu, Y.; Han, Y.; Chen, M.; Li, J.; Li, J.; Luo, J.; Gao, Q. A soy protein-based film by mixed covalent cross-linking and flexibilizing networks. Ind. Crops Prod. 2022, 183, 114952. [Google Scholar] [CrossRef]
Samples | Heating Rate β (K/min) | Peak Temperature Tp (°C) | Peak Temperature Tp (K) | 1/Tp | ln(β/Tp2) |
---|---|---|---|---|---|
3MCPG-0 | 10 | 186.67 | 459.82 | 0.002175 | −9.9425 |
15 | 194.50 | 467.65 | 0.002138 | −9.5644 | |
20 | 198.33 | 471.48 | 0.002121 | −9.2967 | |
25 | 202.08 | 475.23 | 0.002104 | −9.0830 | |
3MCPG-32 | 10 | 182.88 | 456.03 | 0.002193 | −9.9591 |
15 | 189.15 | 462.30 | 0.002163 | −9.5874 | |
20 | 193.80 | 466.95 | 0.002142 | −9.3160 | |
25 | 196.00 | 469.15 | 0.002132 | −9.1087 |
Sample | Weight Loss (%) | Residual Mass (%) | Initial Decomposition Temperature (T5%; °C) | |
---|---|---|---|---|
Phase 1 | Phase 2 | |||
3MCPG-0 | 65.8 | 31.6 | 2.6 | 267.0 |
3MCPG-8 | 65.7 | 31.6 | 2.7 | 270.0 |
3MCPG-16 | 64.5 | 32.7 | 2.8 | 271.8 |
3MCPG-24 | 64.1 | 33.0 | 2.9 | 275.0 |
3MCPG-32 | 63.7 | 33.4 | 2.9 | 278.5 |
Samples | Tg/°C | tan δMax | tan δ ≥ 0.3 | Stan δ≥0.3 | ||
---|---|---|---|---|---|---|
T1/°C | T2/°C | ΔT/°C | ||||
3MCPG-0 | −10.3 | 0.86 | −29.4 | 6.7 | 36.1 | 11.35 |
3MCPG-8 | −8.5 | 0.89 | −27.5 | 11.0 | 38.5 | 12.95 |
3MCPG-16 | −8.3 | 1.09 | −25.2 | 10.1 | 35.3 | 14.59 |
3MCPG-24 | −4.6 | 1.30 | −24.4 | 12.3 | 36.7 | 19.43 |
3MCPG-32 | −0.6 | 1.56 | −22.6 | 18.1 | 40.7 | 26.70 |
Samples | HS Content (%) | MPU (phr) | Stearic Acid (phr) | Dibenzothiazole Disulfide-Zinc Chloride Complex (phr) | Dibenzothiazole Disulfide (phr) | 2-Mercaptobenzothiazole (phr) | Sulfur (phr) | AO-80 (phr) |
---|---|---|---|---|---|---|---|---|
3MCPG-0 | 33 | 100 | 0.5 | 1 | 3 | 1.5 | 1.5 | 0 |
3MCPG-8 | 33 | 100 | 0.5 | 1 | 3 | 1.5 | 1.5 | 8 |
3MCPG-16 | 33 | 100 | 0.5 | 1 | 3 | 1.5 | 1.5 | 16 |
3MCPG-24 | 33 | 100 | 0.5 | 1 | 3 | 1.5 | 1.5 | 24 |
3MCPG-32 | 33 | 100 | 0.5 | 1 | 3 | 1.5 | 1.5 | 32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, X.; Jin, R.; Niu, Z.; Gao, Y.; Hu, S. Fabrication of Polyurethane Elastomer/Hindered Phenol Composites with Tunable Damping Property. Int. J. Mol. Sci. 2023, 24, 4662. https://doi.org/10.3390/ijms24054662
Zhao X, Jin R, Niu Z, Gao Y, Hu S. Fabrication of Polyurethane Elastomer/Hindered Phenol Composites with Tunable Damping Property. International Journal of Molecular Sciences. 2023; 24(5):4662. https://doi.org/10.3390/ijms24054662
Chicago/Turabian StyleZhao, Xiuying, Ruiheng Jin, Zhihao Niu, Yangyang Gao, and Shikai Hu. 2023. "Fabrication of Polyurethane Elastomer/Hindered Phenol Composites with Tunable Damping Property" International Journal of Molecular Sciences 24, no. 5: 4662. https://doi.org/10.3390/ijms24054662
APA StyleZhao, X., Jin, R., Niu, Z., Gao, Y., & Hu, S. (2023). Fabrication of Polyurethane Elastomer/Hindered Phenol Composites with Tunable Damping Property. International Journal of Molecular Sciences, 24(5), 4662. https://doi.org/10.3390/ijms24054662