Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum
Abstract
:1. Introduction
2. Results
2.1. Growth Rate and Chlorophyll Pigment Content under Different Phosphorus Concentrations
2.2. Differentially Expressed Gene Analysis
2.3. Gene Ontology Analysis of DEGs
2.4. KEGG Enrichment Analysis of DEGs
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. RNA Extraction and Library Construction
4.3. Transcriptome Sequencing, Assembly and Annotation
4.4. Differentially Expressed Genes and Enrichment Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Harrison, J.A.; Beusen, A.H.W.; Fink, G.; Tang, T.; Strokal, M.; Bouwman, A.F.; Metson, G.S.; Vilmin, L. Modeling phosphorus in rivers at the global scale: Recent successes, remaining challenges, and near-term opportunities. Curr. Opin. Environ. Sustain. 2019, 36, 68–77. [Google Scholar] [CrossRef]
- Luo, P.; Liu, F.; Zhang, S.; Li, H.; Chen, X.; Wu, L.; Jiang, Q.; Xiao, R.; Wu, J. Evaluating organics removal performance from lagoon-pretreated swine wastewater in pilot-scale three-stage surface flow constructed wetlands. Chemosphere 2018, 211, 286–293. [Google Scholar] [CrossRef] [PubMed]
- Luo, P.; Liu, F.; Zhang, S.; Li, H.; Yao, R.; Jiang, Q.; Xiao, R.; Wu, J. Nitrogen removal and recovery from lagoon-pretreated swine wastewater by constructed wetlands under sustainable plant harvesting management. Bioresour. Technol. 2018, 258, 247–254. [Google Scholar] [CrossRef] [PubMed]
- Moore, M.T.; Locke, M.A.; Kroger, R. Using aquatic vegetation to remediate nitrate, ammonium, and soluble reactive phosphorus in simulated runoff. Chemosphere 2016, 160, 149–154. [Google Scholar] [CrossRef] [Green Version]
- Ha, S.; Tran, L.S. Understanding plant responses to phosphorus starvation for improvement of plant tolerance to phosphorus deficiency by biotechnological approaches. Crit. Rev. Biotechnol. 2014, 34, 16–30. [Google Scholar] [CrossRef]
- Nsenga Kumwimba, M.; Zhu, B.; Wang, T.; Dzakpasu, M.; Li, X. Nutrient dynamics and retention in a vegetated drainage ditch receiving nutrient-rich sewage at low temperatures. Sci. Total Environ. 2020, 741, 140268. [Google Scholar] [CrossRef]
- Buhan, E. Investigating phosphorus and turbidity removal efficiencies of main aquatic vegetation (AV) species in the Lower Kelkit Basin of Turkey. Turk. J. Bot. 2013, 37, 744–752. [Google Scholar] [CrossRef]
- Cui, J.; Wang, W.; Li, J.; Du, J.; Chang, Y.; Liu, X.; Hu, C.; Cui, J.; Liu, C.; Yao, D. Removal effects of Myriophyllum aquaticum on combined pollutants of nutrients and heavy metals in simulated swine wastewater in summer. Ecotoxicol. Environ. Saf. 2021, 213, 112032. [Google Scholar] [CrossRef]
- Sun, H.; Liu, F.; Xu, S.; Wu, S.; Zhuang, G.; Deng, Y.; Wu, J.; Zhuang, X. Myriophyllum aquaticum Constructed Wetland Effectively Removes Nitrogen in Swine Wastewater. Front. Microbiol. 2017, 8, 1932. [Google Scholar] [CrossRef]
- Wang, L.; He, Z. Enhanced nitrogen removal and quantitative molecular mechanisms in a pilot-scale multistage constructed wetlands planted with Myriophyllum aquaticum treating lagoon swine wastewater. Ecol. Eng. 2022, 174, 106433. [Google Scholar] [CrossRef]
- Liu, F.; Xiao, R.; Wang, Y.; Li, Y.; Zhang, S.; Luo, Q.; Wu, J. Effect of a novel constructed drainage ditch on the phosphorus sorption capacity of ditch soils in an agricultural headwater catchment in subtropical central China. Ecol. Eng. 2013, 58, 69–76. [Google Scholar] [CrossRef]
- Luo, P.; Liu, F.; Liu, X.; Wu, X.; Yao, R.; Chen, L.; Li, X.; Xiao, R.; Wu, J. Phosphorus removal from lagoon-pretreated swine wastewater by pilot-scale surface flow constructed wetlands planted with Myriophyllum aquaticum. Sci. Total Environ. 2017, 576, 490–497. [Google Scholar] [CrossRef] [PubMed]
- Sytsma, M.D.; Anderson, L.W.J. Criteria for Assessing Nitrogen and Phosphorus Deficiency in Myriophyllum aquaticum. J. Freshw. Ecol. 1993, 8, 155–163. [Google Scholar] [CrossRef]
- Wang, R.; Xu, S.; Jiang, C.; Sun, H.; Feng, S.; Zhou, S.; Zhuang, G.; Bai, Z.; Zhuang, X. Transcriptomic Sequencing and Co-Expression Network Analysis on Key Genes and Pathways Regulating Nitrogen Use Efficiency in Myriophyllum aquaticum. Int. J. Mol. Sci. 2019, 20, 1587. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.; Xu, S.; Sun, H.; Feng, S.; Jiang, C.; Zhou, S.; Wu, S.; Zhuang, G.; Chen, B.; Bai, Z.; et al. Complex regulatory network allows Myriophyllum aquaticum to thrive under high-concentration ammonia toxicity. Sci. Rep. 2019, 9, 4801. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Li, B.; Liu, F.; Luo, P.; Wang, Y.; Liu, D.; Wu, X.; Zhang, Z.; Wu, J. Transcriptomic and physiological analysis revealed the ammonium tolerance mechanisms of Myriophyllum aquaticum. Environ. Exp. Bot. 2021, 187, 104462. [Google Scholar] [CrossRef]
- Suriyagoda, L.D.B.; Ryan, M.H.; Renton, M.; Lambers, H. Plant Responses to Limited Moisture and Phosphorus Availability. Adv. Agron. 2014, 124, 143–200. [Google Scholar]
- Xiong, R.; Tang, H.; Xu, M.; Zeng, C.-B.; Peng, Y.; He, R.; Yan, Z.; Qi, Z.; Cheng, Y. Transcriptomic Analysis of Banana in Response to Phosphorus Starvation Stress. Agronomy 2018, 8, 141. [Google Scholar] [CrossRef] [Green Version]
- Nord, E.A.; Lynch, J.P. Delayed reproduction in Arabidopsis thaliana improves fitness in soil with suboptimal phosphorus availability. Plant Cell Environ. 2008, 31, 1432–1441. [Google Scholar] [CrossRef]
- Solis-Guzman, M.G.; Arguello-Astorga, G.; Lopez-Bucio, J.; Ruiz-Herrera, L.F.; Lopez-Meza, J.E.; Sanchez-Calderon, L.; Carreon-Abud, Y.; Martinez-Trujillo, M. Arabidopsis thaliana sucrose phosphate synthase (sps) genes are expressed differentially in organs and tissues, and their transcription is regulated by osmotic stress. Gene Expr. Patterns 2017, 25–26, 92–101. [Google Scholar] [CrossRef]
- Zhu, J.K. Abiotic Stress Signaling and Responses in Plants. Cell 2016, 167, 313–324. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Liu, L.; Ma, N.; Yang, J.; Dong, Z.; Zhang, J.; Zhang, J.; Cai, M. Effect of ammonia stress on carbon metabolism in tolerant aquatic plant-Myriophyllum aquaticum. Environ. Pollut. 2020, 263, 114412. [Google Scholar] [CrossRef]
- Thouvenot, L.; Deleu, C.; Berardocco, S.; Haury, J.; Thiebaut, G. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach. J. Plant Physiol. 2015, 175, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Ren, P.; Zhou, Q.; Zhang, J. Comparative studies of the response of sensitive and tolerant submerged macrophytes to high ammonium concentration stress. Aquat. Toxicol. 2019, 211, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Wasaki, J.; Yonetani, R.; Kuroda, S.; Shinano, T.; Yazaki, J.; Fujii, F.; Shimbo, K.; Yamamoto, K.; Sakata, K.; Sasaki, T.; et al. Transcriptomic analysis of metabolic changes by phosphorus stress in rice plant roots. Plant Cell Environ. 2003, 26, 1515–1523. [Google Scholar] [CrossRef]
- Wang, H.; Jiang, C.; Wang, X.; Xu, S.; Zhuang, X. Application of Internal Carbon Source from Sewage Sludge: A Vital Measure to Improve Nitrogen Removal Efficiency of Low C/N Wastewater. Water 2021, 13, 2338. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Wang, H.; Xu, S.; Zhang, W.; Meng, Q.; Zhuang, X. Achieving Partial Nitritation by Treating Sludge with Free Nitrous Acid: The Potential Role of Quorum Sensing. Front. Microbiol. 2022, 13, 897566. [Google Scholar] [CrossRef]
- Sun, H.; Wu, S.; Feng, S.; Jiang, C.; Wang, R.; Xu, S.; Cui, L.; Zhuang, X. Impact of influent strengths on nitrous oxide emission and its molecular mechanism in constructed wetlands treating swine wastewater. Environ. Res. 2022, 210, 112957. [Google Scholar] [CrossRef]
- Sun, T.; Zhang, J.; Zhang, Q.; Li, X.; Li, M.; Yang, Y.; Zhou, J.; Wei, Q.; Zhou, B. Transcriptome and metabolome analyses revealed the response mechanism of apple to different phosphorus stresses. Plant Physiol. Biochem. 2021, 167, 639–650. [Google Scholar] [CrossRef]
- Reymond, M.; Svistoonoff, S.; Loudet, O.; Nussaume, L.; Desnos, T. Identification of QTL controlling root growth response to phosphate starvation in Arabidopsis thaliana. Plant Cell Environ. 2006, 29, 115–125. [Google Scholar] [CrossRef]
- Feng, S.; Xu, S.; Zhang, X.; Wang, R.; Ma, X.; Zhao, Z.; Zhuang, G.; Bai, Z.; Zhuang, X. Myriophyllum aquaticum-Based Surface Flow Constructed Wetlands for Enhanced Eutrophic Nutrient Removal—A Case Study from Laboratory-Scale up to Pilot-Scale Constructed Wetland. Water 2018, 10, 1391. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Li, Y.; Zhong, H.; Li, P.; Zhao, T.; Zhang, C. A wastewater treatment system combining Myriophyllum aquaticum and activated sludge: Optimization of construction conditions and evaluation of wastewater treatment performance. J. Environ. Manag. 2019, 235, 105–111. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhang, S.; Wang, Y.; Li, Y.; Xiao, R.; Li, H.; He, Y.; Zhang, M.; Wang, D.; Li, X.; et al. Nitrogen removal and mass balance in newly-formed Myriophyllum aquaticum mesocosm during a single 28-day incubation with swine wastewater treatment. J. Environ. Manag. 2016, 166, 596–604. [Google Scholar] [CrossRef] [PubMed]
- Sytsma, M.D.; Anderson, L.W.J. Nutrient Limitation in Myriophyllum aquaticum. J. Freshw. Ecol. 1993, 8, 165–176. [Google Scholar] [CrossRef]
- Bourque, L.; Lacroix, C. Lobe-generating centres in the simple leaves of Myriophyllum aquaticum: Evidence for KN1-like activity. Ann. Bot. 2011, 107, 639–651. [Google Scholar] [CrossRef] [Green Version]
- Apel, K.; Hirt, H. Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Qin, Q.; Pan, J.; Sun, L.; Sun, Y.; Xue, Y.; Song, K. Transcriptome analysis in roots and leaves of wheat seedlings in response to low-phosphorus stress. Sci. Rep. 2019, 9, 19802. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Lysoe, E.; Armarego-Marriott, T.; Erban, A.; Paruch, L.; Van Eerde, A.; Bock, R.; Liu-Clarke, J. Transcriptome and metabolome analyses provide insights into root and root-released organic anion responses to phosphorus deficiency in oat. J. Exp. Bot. 2018, 69, 3759–3771. [Google Scholar] [CrossRef] [Green Version]
- Guo, X.; Liu, M.; Zhong, H.; Li, P.; Zhang, C.; Wei, D.; Zhao, T. Responses of the growth and physiological characteristics of Myriophyllum aquaticum to coexisting tetracyclines and copper in constructed wetland microcosms. Environ. Pollut. 2020, 261, 114204. [Google Scholar] [CrossRef]
- Tan, B.-C.; He, H.; Gu, J.; Li, K.-Y. Effects of nutrient levels and light intensity on aquatic macrophyte (Myriophyllum aquaticum) grown in floating-bed platform. Ecol. Eng. 2019, 128, 27–32. [Google Scholar] [CrossRef]
- Zhang, Z.-F.; Li, Y.-Y.; Xiao, B.-Z. Comparative transcriptome analysis highlights the crucial roles of photosynthetic system in drought stress adaptation in upland rice. Sci. Rep. 2016, 6, 19349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, H.; Han, R. He-Ne laser treatment improves the photosynthetic efficiency of wheat exposed to enhanced UV-B radiation. Laser Phys. 2014, 24, 105602. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Qiu, X.; Li, X.; Wang, S.; Zhang, Q.; Lian, X. Transcriptomic analysis of rice responses to low phosphorus stress. Chin. Sci. Bull. 2010, 55, 251–258. [Google Scholar] [CrossRef]
- Hernandez, G.; Ramirez, M.; Valdes-Lopez, O.; Tesfaye, M.; Graham, M.A.; Czechowski, T.; Schlereth, A.; Wandrey, M.; Erban, A.; Cheung, F.; et al. Phosphorus stress in common bean: Root transcript and metabolic responses. Plant Physiol. 2007, 144, 752–767. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.; Ding, D.; Li, J.; He, L.; Xu, X.; Zhao, Y.; Yan, B.; Li, Z.; Xu, J. Characterisation of genes involved in galactolipids and sulfolipids metabolism in maize and Arabidopsis and their differential responses to phosphate deficiency. Funct. Plant Biol. 2020, 47, 279–292. [Google Scholar] [CrossRef]
- Alexova, R.; Nelson, C.J.; Millar, A.H. Temporal development of the barley leaf metabolic response to P-i limitation. Plant Cell Environ. 2017, 40, 645–657. [Google Scholar] [CrossRef]
- Byrne, S.L.; Foito, A.; Hedley, P.E.; Morris, J.A.; Stewart, D.; Barth, S. Early response mechanisms of perennial ryegrass (Lolium perenne) to phosphorus deficiency. Ann. Bot. 2011, 107, 243–254. [Google Scholar] [CrossRef] [Green Version]
- Harke, M.J.; Gobler, C.J. Global Transcriptional Responses of the Toxic Cyanobacterium, Microcystis aeruginosa, to Nitrogen Stress, Phosphorus Stress, and Growth on Organic Matter. PLoS ONE 2013, 8, e69834. [Google Scholar] [CrossRef] [Green Version]
- Kerrigan, R.W.; Challen, M.P.; Burton, K.S. Agaricus bisporus genome sequence: A commentary. Fungal Genet. Biol. 2013, 55, 2–5. [Google Scholar] [CrossRef]
- Long, L.; Ma, X.; Ye, L.; Zeng, J.; Chen, G.; Zhang, G. Root plasticity and Pi recycling within plants contribute to low-P tolerance in Tibetan wild barley. BMC Plant Biol. 2019, 19, 341. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Ji, H.; Yu, J.; Zhang, Z. Effect of Cold and Heat Shock Treatment on the Color Development of Mature Green Tomatoes and the Roles of Their Antioxidant Enzymes. Food Bioprocess Technol. 2018, 11, 705–709. [Google Scholar] [CrossRef]
- Wang, J.; Song, K.; Sun, L.; Qin, Q.; Sun, Y.; Pan, J.; Xue, Y. Morphological and Transcriptome Analysis of Wheat Seedlings Response to Low Nitrogen Stress. Plants 2019, 8, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kou, X.; Chai, L.; Yang, S.; He, Y.; Wu, C.E.; Liu, Y.; Zhou, J.; Xue, Z.; Wang, Z. Physiological and metabolic analysis of winter jujube after postharvest treatment with calcium chloride and a composite film. J. Sci. Food Agric. 2021, 101, 703–717. [Google Scholar] [CrossRef]
- Deng, Q.-W.; Luo, X.-D.; Chen, Y.-L.; Zhou, Y.; Zhang, F.-T.; Hu, B.-L.; Xie, J.-K. Transcriptome analysis of phosphorus stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). Biol. Res. 2018, 51, 7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Epie, K.E.; Etesami, M.; Ondoua, R.N. Characterization and selection for phosphorus deficiency tolerance in 99 spring wheat genotypes in Montana. J. Plant Nutr. 2019, 42, 595–603. [Google Scholar] [CrossRef]
- Gao, H.; Mao, H.; Ullah, I. Analysis of Metabolomic Changes in Lettuce Leaves under Low Nitrogen and Phosphorus Deficiencies Stresses. Agriculture 2020, 10, 406. [Google Scholar] [CrossRef]
- Hermans, C.; Hammond, J.P.; White, P.J.; Verbruggen, N. How do plants respond to nutrient shortage by biomass allocation? Trends Plant Sci. 2006, 11, 610–617. [Google Scholar] [CrossRef]
- Li, K.; Xu, C.; Li, Z.; Zhang, K.; Yang, A.; Zhang, J. Comparative proteome analyses of phosphorus responses in maize (Zea mays L.) roots of wild-type and a low-P-tolerant mutant reveal root characteristics associated with phosphorus efficiency. Plant J. 2008, 55, 927–939. [Google Scholar] [CrossRef]
- Lizbeth Lopez-Arredondo, D.; Antonio Leyva-Gonzalez, M.; Isabel Gonzalez-Morales, S.; Lopez-Bucio, J.; Herrera-Estrella, L. Phosphate Nutrition: Improving Low-Phosphate Tolerance in Crops. Annu. Rev. Plant Biol. 2014, 65, 95–123. [Google Scholar] [CrossRef]
- Wellburn, A.R. The Spectral Determination of Chlorophylls a and b, as well as Total Carotenoids, Using Various Solvents with Spectrophotometers of Different Resolution. J. Plant Physiol. 1994, 144, 307–313. [Google Scholar] [CrossRef]
- Zarco-Tejada, P.J.; Berjón, A.; López-Lozano, R.; Miller, J.R.; Martín, P.; Cachorro, V.; González, M.R.; de Frutos, A. Assessing vineyard condition with hyperspectral indices: Leaf and canopy reflectance simulation in a row-structured discontinuous canopy. Remote Sens. Environ. 2005, 99, 271–287. [Google Scholar] [CrossRef]
- Mortazavi, A.; Williams, B.A.; McCue, K.; Schaeffer, L.; Wold, B. Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat. Methods 2008, 5, 621–628. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, C.; Xu, S.; Wang, R.; Sun, Q.; Zuo, J.; Zhuang, X. Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum. Int. J. Mol. Sci. 2023, 24, 4874. https://doi.org/10.3390/ijms24054874
Jiang C, Xu S, Wang R, Sun Q, Zuo J, Zhuang X. Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum. International Journal of Molecular Sciences. 2023; 24(5):4874. https://doi.org/10.3390/ijms24054874
Chicago/Turabian StyleJiang, Cancan, Shengjun Xu, Rui Wang, Qian Sun, Jialiang Zuo, and Xuliang Zhuang. 2023. "Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum" International Journal of Molecular Sciences 24, no. 5: 4874. https://doi.org/10.3390/ijms24054874
APA StyleJiang, C., Xu, S., Wang, R., Sun, Q., Zuo, J., & Zhuang, X. (2023). Transcriptomics Insights into Phosphorus Stress Response of Myriophyllum aquaticum. International Journal of Molecular Sciences, 24(5), 4874. https://doi.org/10.3390/ijms24054874