Aquatic Bacteria Rheinheimera tangshanensis New Ability for Mercury Pollution Removal
Abstract
:1. Introduction
2. Results and Discussion
2.1. Bacteria Identification and Hg Removal Ability
2.2. Hg Reduction Mediated by Mer Operon
2.3. Hg Adsorption Mediated by Extracellular Polymeric Substances (EPSs)
2.4. Hg Adsorption Mediated by Dead Bacterial Biomass (DBB)
2.5. Adsorption Kinetics
2.6. Hg Pollution Repair Mechanisms by RTS-4
2.7. Verification of Hg Removal Effect
2.8. Research Prospects
3. Methods and Materials
3.1. Sampling and Purification
3.2. Identification
3.3. Optimal Growth Conditions
3.4. Removal Rate
3.5. Growth Curve
3.6. RT-qPCR
3.7. Extracellular Polymeric Substances (EPSs)
3.8. Analysis by Fourier Transform Infrared (FTIR) Spectroscopy
3.9. Dead Bacterial Biomass (DBB)
3.10. Adsorption Kinetics Experiment
3.11. Verification by Bio-Indicator
3.12. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malvandi, H.; Alahabadi, A. Evaluation of potential human health risk due to the exposure to mercury via fish consumption of Alosa spp. from the southern Caspian Sea. Mar. Pollut. Bull. 2019, 143, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Dórea, J.G. Neurodevelopment and exposure to neurotoxic metal(loid)s in environments polluted by mining, metal scrapping and smelters, and e-waste recycling in low and middle-income countries. Environ. Res. 2021, 197, 111124. [Google Scholar] [CrossRef]
- Tiodar, E.D.; Văcar, C.L.; Podar, D. Phytoremediation and microorganisms-assisted phytoremediation of hg-contaminated soils: Challenges and perspectives. Int. J. Environ. Res. Public Health 2021, 18, 2435. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.H.; Chen, H.Q.; Zhu, N.L.; Zhang, J.; Li, Y.F.; Xu, D.D.; Gao, Y.X.; Zhao, J.T. Detection and remediation of Hg contaminated environment by nanotechnology: Progress and challenges. Environ. Pollut. 2022, 293, 118557. [Google Scholar] [CrossRef]
- Wang, J.; Feng, X.; Anderson, C.W.N. Remediation of mercury contaminated sites—A review. J. Hazard. Mater. 2012, 221, 1–18. [Google Scholar] [CrossRef]
- Peng, H.; Guo, J. Removal of chromium from wastewater by membrane filtration, chemical precipitation, ion exchange, adsorption electrocoagulation, electrochemical reduction, electrodialysis, electrodeionization, photocatalysis and nanotechnology: A review. Environ. Chem. Lett. 2020, 18, 2055–2068. [Google Scholar] [CrossRef]
- Al-Ansari, M.M. Biodetoxification Hg by using a marine bacterium Marinomonas sp. RS3 and its merA gene expression under Hg stress. Environ. Res. 2022, 205, 112452. [Google Scholar] [CrossRef]
- Chai, W.S.; Cheun, J.Y.; Kumar, P.S.; Mubashir, M.; Show, P.L. A review on conventional and novel materials towards heavy metal adsorption in wastewater treatment application. J. Clean. Prod. 2021, 296, 126589. [Google Scholar] [CrossRef]
- Jariyal, M.; Yadav, M.; Singh, N.K.; Yadav, S.; Sharma, I.; Dahiya, S.; Thanki, A. Microbial remediation progress and future prospects. In Bioremediation of Pollutants; Elsevier: Amsterdam, The Netherlands, 2020; pp. 187–214. [Google Scholar] [CrossRef]
- Liu, J.L.; Liu, Y.P.; Duan, D.D.; Peng, G.G.; Li, P.; Lei, P.; Zhong, H.; Tsui, M.T.; Pan, K. Effects and mechanisms of organic matter regulating the methylmercury dynamics in mangrove sediments. J. Hazard. Mater. 2022, 432, 128690. [Google Scholar] [CrossRef]
- Yan, X.T.; Huang, J.F.; Xiao, X.; Ma, C.B.; Zhang, J.; Zhur, O.; Zhou, M.Y.; He, H.L.; Wu, C.L. A new method for determination of polysaccharides in adsorption of Hg2+. Microchem. J. 2022, 183, 107962. [Google Scholar] [CrossRef]
- Hu, L.; Liu, B.; Li, S.Z.; Zhong, H.; He, Z.Z. Study on the oxidative stress and transcriptional level in Cr(VI) and Hg(II) reducing strain Acinetobacter indicus yy-1 isolated from chromium-contaminated soil. Chemosphere 2021, 269, 128741. [Google Scholar] [CrossRef] [PubMed]
- Li, D.B.; Li, X.J.; Tao, Y.; Yan, Z.N.; Ao, Y.S. Deciphering the bacterial microbiome in response to long-term mercury contaminated soil. Ecotoxicol. Environ. Saf. 2022, 229, 113062. [Google Scholar] [CrossRef] [PubMed]
- Qi, R.; Xue, N.N.; Wang, S.Z.; Zhou, X.B.; Zhao, L.; Song, W.J.; Yang, Y.Y. Heavy metal(loid)s shape the soil bacterial community and functional genes of desert grassland in a gold mining area in the semi-arid region. Environ. Res. 2022, 214, 113749. [Google Scholar] [CrossRef] [PubMed]
- Yu, Z.S.; Li, J.; Li, Y.B.; Wang, Q.; Zhai, X.P.; Wu, G.F.; Liu, P.; Li, X.K. A mer operon confers mercury reduction in a staphylococcus epidermidis strain isolated from lanzhou reach of the yellow river. Int. Biodeterior. Biodegrad. 2014, 90, 57–63. [Google Scholar] [CrossRef]
- Wang, X.N.; He, Z.F.; Luo, H.W.; Zhang, M.; Zhang, D.Y.; Pan, X.L.; Dadd, G.M. Multiple-pathway remediation of mercury contamination by a versatile selenite-reducing bacterium. Sci. Total. Environ. 2018, 615, 615–623. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.M.; Kou, J.B.; Chen, Y.P.; Xue, L.G.; Wang, S.M. Bioremediation of wastewater containing mercury using three newly isolated bacterial strains. J. Clean. Prod. 2021, 299, 126869. [Google Scholar] [CrossRef]
- Yan, J.Y.; Li, R.L.; Ali, M.U.; Wang, C.; Wang, B.; Jin, X.G.; Shao, M.Y.; Li, P.; Zhang, L.M.; Feng, X.B. Hg migration to surface water from remediated mine waste and impacts of rainfall in a karst area—Evidence from Hg isotopes. Water Res. 2023, 203, 119592. [Google Scholar] [CrossRef]
- Kardena, E. Application of mercury resistant bacteria isolated from artisanal small-scale gold tailings in biotransformation of mercury (II)—Contaminated soil. Int. J. GEOMATE 2020, 19, 106–114. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, S.; Cheng, Y.; Ding, L.; He, S. Rheinheimera mangrovi sp. nov. a bacterium isolated from mangrove sediment. Int. J. Syst. Evol. Micr. 2020, 70, 6188–6194. [Google Scholar] [CrossRef]
- Cardinale, M.; Viola, M.; Miceli, E.; Faddetta, T.; Papini, A. The cypsela (achene) of Echinacea purpurea as a diffusion unit of a community of microorganisms. Appl. Microbiol. Biot. 2021, 105, 2951–2965. [Google Scholar] [CrossRef]
- Sharma, N.; Sahoo, D.; Rai, A.K.; Singh, S.P. A highly alkaline pectate lyase from the Himalayan hot spring metagenome and its bioscouring applications. Process Biochem. 2022, 115, 100–109. [Google Scholar] [CrossRef]
- Kamino, L.N.; Gulden, R.H. The effect of crop species on DNase-producing bacteria in two soils. Ann. Microbiol. 2021, 71, 14. [Google Scholar] [CrossRef]
- Abu-Dieyeh, M.H.; Alduroobi, H.M.; Al-Ghouti, M.A. Potential of mercury-tolerant bacteria for bio-uptake of mercury leached from discarded fluorescent lamps. J. Environ. Manag. 2019, 237, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X. Rheinheimera tangshanensis sp. nov, a rice root-associated bacterium. Int. J. Syst. Evol. Microbiol. 2008, 58, 2420–2424. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Sun, Y.W.; Liu, J.; Zhang, D.C. Rheinheimera marina sp. nov, isolated from a deep-sea seamount. Int. J. Syst. Evol. Microbiol. 2018, 68, 266–270. [Google Scholar] [CrossRef]
- Al-Ghouti, M.A.; Abuqaoud, R.H.; Abu-Dieyeh, M.H. Detoxification of mercury pollutant leached from spent fluorescent lamps using bacterial strains. Waste. Manag. 2016, 49, 238–244. [Google Scholar] [CrossRef]
- Gasong, B.T.; Abrian, S.; Setyabudi, F.S. Methylmercury biosorption activity by methylmercury-resistant lactic acid bacteria isolated from West Sekotong, Indonesia. Hayati. J. Biosci. 2017, 24, 182–186. [Google Scholar] [CrossRef]
- Dash, H.R.; Das, S. Bioremediation of mercury and the importance of bacterial mer genes. Internat. Biodeter. Biodegr. 2012, 75, 207–213. [Google Scholar] [CrossRef]
- Giovanella, P.; Cabral, L.; Costa, A.P.; Anastacio, D.O.C.F.; Gianello, C.; Bento, F.M. Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol. Environ. Saf. 2017, 140, 162–169. [Google Scholar] [CrossRef]
- Hamlett, N.V.; Landale, E.C.; Davis, B.H.; Summers, A.O. Roles of the Tn21 merT, merP, and merC gene products in mercury resistance and mercury binding. J. Bacteriol. 1992, 174, 6377–6385. [Google Scholar] [CrossRef] [Green Version]
- Song, W.J.; Pan, X.L.; Mu, S.Y.; Zhang, D.Y.; Yang, X.; Lee, D.J. Biosorption of Hg(II) onto goethite with extracellular polymeric substances. Bioresour. Technol. 2014, 160, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Francois, F.; Lombard, C.; Guigner, J.M.; Soreau, P.; Brian-Jaisson, F.; Martino, G.; Vandervennet, M.; Garcia, D.; Molinier, A.L.; Pignol, D.; et al. Isolation and characterization of environmental bacteria capable of extracellular biosorption of mercury. Appl. Environ. Microb. 2012, 78, 1097–1106. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- FrLund, B.; Palmgren, R.; Keiding, K.; Nielsen, H.P. Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water. Res. 1996, 30, 1749–1758. [Google Scholar] [CrossRef]
- Oyetibo, G.O.; Miyauchi, K.; Suzuki, H.; Ishikawa, S.; Endo, G. Extracellular mercury sequestration by exopolymeric substances produced by Yarrowia spp.: Thermodynamics, equilibria, and kinetics studies. J. Biosci. Bioeng. 2016, 122, 701–707. [Google Scholar] [CrossRef]
- Patiño-Ruiz, D.; Bonfante, H.; De Ávila, G.; Herrera, A. Adsorption kinetics, isotherms and desorption studies of mercury from aqueous solution at different temperatures on magnetic sodium alginate-thiourea microbeads. Environ. Nanotechnol. Monit. Manag. 2019, 12, 100243. [Google Scholar] [CrossRef]
- Goswami, L.; Manikandan, N.A.; Pakshirajan, K.; Pugazhenthi, G. Simultaneous heavy metal removal and anthracene biodegradation by the oleaginous bacteria Rhodococcus opacus. 3 Biotech 2017, 7, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Bhasney, S.M.; Bhagabati, P.; Kumar, A.; Katiyar, V. Morphology and crystalline characteristics of polylactic acid [PLA]/linear low density polyethylene [LLDPE]/ microcrystalline cellulose [MCC] fiber composite. Compos. Sci. Technol. 2019, 171, 54–61. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, V.; Gupta, P.; Ray, M.; Kumar, A. The synergy of mercury biosorption through Brevundimonas sp. IITISM22: Kinetics, isotherm, and thermodynamic modeling. J. Hazard. Mater. 2021, 415, 125653. [Google Scholar] [CrossRef]
- Chen, F.; Ren, C.G.; Zhou, T.; Wei, Y.J.; Dai, C.C. A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea. Sci. Rep. 2016, 6, 34735. [Google Scholar] [CrossRef] [Green Version]
- Yu, R.Q.; Yu, X.C.; Xue, B.N.; Liao, J.Q.; Zhu, W.T.; Tian, S.Y. Adsorption of chlortetracycline from aquaculture wastewater using modified zeolites. J. Environ. Sci. Health A 2020, 55, 573–584. [Google Scholar] [CrossRef]
- Naser, G.F.; Dakhil, I.H.; Ali, A.H.; Taha, A.H. Methylene violet dye adsorption using onion skins: Kinetics and isotherm studies. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2021; Volume 1090, p. 012047. [Google Scholar] [CrossRef]
- Zhang, C.; Ren, H.X.; Zhong, C.Q.; Wu, D. Biosorption of Cr (VI) by immobilized waste biomass from polyglutamic acid production. Sci. Rep. 2020, 10, 3705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamri, N.I.I.; Zulmajdi, S.L.N.; Daud, N.Z.A.; Mahadi, A.H.; Kusrini, E.; Usman, A. Insight into the adsorption kinetics, mechanism, and thermodynamics of methylene blue from aqueous solution onto pectin-alginate-titania composite microparticles. SN Appl. Sci. 2021, 3, 222. [Google Scholar] [CrossRef]
- Kumar, M.; Singh, A.K.; Sikandar, M. Biosorption of Hg (II) from aqueous solution using algal biomass: Kinetics and isotherm studies. Heliyon 2020, 6, e03321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haris, S.A.; Altowayti, W.A.H.; Ibrahim, Z.; Shahir, S. Arsenic biosorption using pretreated biomass of psychrotolerant Yersinia sp. strain SOM-12D3 isolated from Svalbard, Arctic. Environ. Sci. Pollut. Res. Int. 2018, 25, 27959–27970. [Google Scholar] [CrossRef]
- Duan, J.B.; Zhang, Y.; Zhao, N.; Yin, G.; Xiao, X.; Li, F.; Liu, W. Joint toxicity of multi-heavy-metal to Chlorella Pyrenoidosa based on 24 factorial design. Atmos. Environ. 2015, 10, 376–385. [Google Scholar] [CrossRef]
- Zhao, M.M.; Chen, Y.P.; Xue, L.G.; Fan, T.T.; Emaneghemi, B. Greater health risk in wet season than in dry season in the Yellow River of the Lanzhou region. Sci. Total Environ. 2018, 644, 873–883. [Google Scholar] [CrossRef]
- Peker, N.; Garcia-Croes, S.; Dijkhuizen, B.; Wiersma, H.H.; Zanten, E.V.; Wisselink, G.; Friedrich, A.W.; Kooistra-Smid, M.; Sinha, B.; Rossen, J.W.A. A comparison of three different bioinformatics analyses of the 16S-23S rRNA encoding region for bacterial identification. Front. Microbiol. 2019, 10, 620. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar] [CrossRef]
- Al-Ansari, M.M.; Benabdelkamel, H.; AlMalki, R.H.; Rahman, A.M.A.; Alnahmi, E.; Masood, A.; Ilavenil, S.; Choi, K.C. Effective removal of heavy metals from industrial effluent wastewater by a multi metal and drug resistant Pseudomonas aeruginosa strain RA-14 using integrated sequencing batch reactor. Environ. Res. 2021, 199, 111240. [Google Scholar] [CrossRef]
- Beni, E.D.; Giurlani, W.; Fabbri, L.; Emanuele, R.; Santini, S.; Sarti, C.; Martellini, T.; Piciollo, E.; Cincinelli, A.; Innocenti, M. Graphene-based nanomaterials in the electroplating industry: A suitable choice for heavy metal removal from wastewater. Chemosphere 2022, 292, 133448. [Google Scholar] [CrossRef]
- Li, Q.G.; Liu, G.H.; Qi, L.; Wang, H.C.; Ye, Z.F.; Zhao, Q.L. Heavy metal-contained wastewater in China: Discharge, management and treatment. Sci. Total Environ. 2022, 808, 152091. [Google Scholar] [CrossRef] [PubMed]
- Rani, M.J.; Hemambika, B.; Hemapriya, J.; Kannan, V.R. Comparative assessment of heavy metal removal by immobilized and dead bacterial cells: A biosorption approach. Afr. J. Environ. Sci. Technol. 2010, 4, 77–83. [Google Scholar]
- Ma, M.; Gong, Y.; Hu, Q. Identification and feeding characteristics of the mixotrophic flagellate, Poterioochromonas malhamensis, a microalgal mredator isolated from outdoor massive Chlorella culture. Algal. Res. 2017, 29, 142–153. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, M.; Zheng, G.; Kang, X.; Zhang, X.; Guo, J.; Wang, S.; Chen, Y.; Xue, L. Aquatic Bacteria Rheinheimera tangshanensis New Ability for Mercury Pollution Removal. Int. J. Mol. Sci. 2023, 24, 5009. https://doi.org/10.3390/ijms24055009
Zhao M, Zheng G, Kang X, Zhang X, Guo J, Wang S, Chen Y, Xue L. Aquatic Bacteria Rheinheimera tangshanensis New Ability for Mercury Pollution Removal. International Journal of Molecular Sciences. 2023; 24(5):5009. https://doi.org/10.3390/ijms24055009
Chicago/Turabian StyleZhao, Mengmeng, Gege Zheng, Xiuyun Kang, Xiaoyan Zhang, Junming Guo, Shaomei Wang, Yiping Chen, and Lingui Xue. 2023. "Aquatic Bacteria Rheinheimera tangshanensis New Ability for Mercury Pollution Removal" International Journal of Molecular Sciences 24, no. 5: 5009. https://doi.org/10.3390/ijms24055009
APA StyleZhao, M., Zheng, G., Kang, X., Zhang, X., Guo, J., Wang, S., Chen, Y., & Xue, L. (2023). Aquatic Bacteria Rheinheimera tangshanensis New Ability for Mercury Pollution Removal. International Journal of Molecular Sciences, 24(5), 5009. https://doi.org/10.3390/ijms24055009