State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review
Abstract
:1. Introduction
2. Methods
2.1. Planning
2.2. Execution
2.3. Summarization
3. Results
3.1. Bibliometric Indicators
3.2. The Biology of M. perniciosa and Its Hosts over Time
3.3. Interaction of Fungal Genes and Hosts
3.4. Molecular Markers in the Host’s Mechanism of Action
3.5. Protein Profile of M. perniciosa and Its Hosts
4. Discussion
4.1. Brazil Leads in Production of Knowledge about M. perniciosa
4.2. The Peculiar Battle of a Hemibiotrophic Fungus and Its Hosts
4.3. Structural Genomics of the Causal Agent of Witches’ Broom
4.4. The Hidden Biotechnological Potential of M. perniciosa Pathosystem Proteins
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zion Market Research Chocolate Market—Global Industry Analysis 2022. Available online: https://www.zionmarketresearch.com/report/chocolate-market (accessed on 13 November 2022).
- ICCO International Cocoa Organization (ICCO). Available online: https://www.icco.org/ (accessed on 30 January 2022).
- Pereira, J.L.; Ram, A.; Figueiredo, J.M.; Almeida, L.C.C. Primeira Ocorrência de Vassoura-de-Bruxa Na Principal Região Produtora de Cacau Do Brasil. Agrotrópica 1989, 1, 79–81. [Google Scholar]
- Santana, M.F.; de Araújo, E.F.; de Souza, J.T.; Mizubuti, E.S.G.; de Queiroz, M.V. Development of Molecular Markers Based on Retrotransposons for the Analysis of Genetic Variability in Moniliophthora perniciosa. Eur. J. Plant Pathol. 2012, 134, 497–507. [Google Scholar] [CrossRef]
- Auhing Arcos, J.A.; Cedeño Moreira, Á.V.; Saucedo Aguiar, S.; Vera Benites, L.F.; Macías Holguín, C.J.; Canchignia Martínez, H.F. Biodiversity of Ecotypes and Aggressivenss Ranges of Moniliophthora Perniciosa, in Theobroma cacao L. National of the Ecuadorian Coast. Sci. Agropecu. 2021, 12, 599–609. [Google Scholar] [CrossRef]
- Delgado, J.C.; Cook, A.A. Nuclear Condition of the Basidia, Basidiospores, and Mycelium of Marasmius perniciosus. Can. J. Bot. 1976, 54, 66–72. [Google Scholar] [CrossRef]
- Griffith, G.W.; Hedger, J.N. Dual Culture Of Crinipellis perniciosa and Potato callus. Eur. J. Plant Pathol. 1994, 100, 371–379. [Google Scholar] [CrossRef]
- Pereira, J.L.; de Almeida, L.C.C.; Santos, S.M. Witches’ Broom Disease of Cocoa in Bahia: Attempts at Eradication and Containment. Crop Prot. 1996, 15, 743–752. [Google Scholar] [CrossRef]
- Meinhardt, L.W.; Bellato, C.d.M.; Rincones, J.; Azevedo, R.A.; Cascardo, J.C.M.; Pereira, G.A.G. In Vitro Production of Biotrophic-Like Cultures of Crinipellis Perniciosa, the Causal Agent of Witches’ Broom Disease of Theobroma cacao. Curr. Microbiol. 2006, 52, 191–196. [Google Scholar] [CrossRef]
- Mondego, J.M.; Carazzolle, M.F.; Costa, G.G.; Formighieri, E.F.; Parizzi, L.P.; Rincones, J.; Cotomacci, C.; Carraro, D.M.; Cunha, A.F.; Carrer, H.; et al. A Genome Survey of Moniliophthora perniciosa Gives New Insights into Witches’ Broom Disease of Cacao. BMC Genom. 2008, 9, 548. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, P.J.P.L.; Thomazella, D.P.d.T.; Reis, O.; do Prado, P.F.V.; do Rio, M.C.S.; Fiorin, G.L.; José, J.; Costa, G.G.L.; Negri, V.A.; Mondego, J.M.C.; et al. High-Resolution Transcript Profiling of the Atypical Biotrophic Interaction between Theobroma Cacao and the Fungal Pathogen Moniliophthora perniciosa. Plant Cell 2014, 26, 4245–4269. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira Ceita, G.; Macêdo, J.N.A.; Santos, T.B.; Alemanno, L.; da Silva Gesteira, A.; Micheli, F.; Mariano, A.C.; Gramacho, K.P.; da Costa Silva, D.; Meinhardt, L.; et al. Involvement of Calcium Oxalate Degradation during Programmed Cell Death in Theobroma Cacao Tissues Triggered by the Hemibiotrophic Fungus Moniliophthora perniciosa. Plant Sci. 2007, 173, 106–117. [Google Scholar] [CrossRef]
- Alvim, F.C.; Mattos, E.M.; Pirovani, C.P.; Gramacho, K.; Pungartnik, C.; Brendel, M.; Cascardo, J.C.M.; Vincentz, M. Carbon Source-Induced Changes in the Physiology of the Cacao Pathogen Moniliophthora perniciosa (Basidiomycetes) Affect Mycelial Morphology and Secretion of Necrosis-Inducing Proteins. Genet. Mol. Res. 2009, 8, 1035–1050. [Google Scholar] [CrossRef] [PubMed]
- Pungartnik, C.; Melo, S.C.O.; Basso, T.S.; Macena, W.G.; Cascardo, J.C.M.; Brendel, M. Reactive Oxygen Species and Autophagy Play a Role in Survival and Differentiation of the Phytopathogen Moniliophthora perniciosa. Fungal Genet. Biol. 2009, 46, 461–472. [Google Scholar] [CrossRef]
- Thomazella, D.P.T.; Teixeira, P.J.P.L.; Oliveira, H.C.; Saviani, E.E.; Rincones, J.; Toni, I.M.; Reis, O.; Garcia, O.; Meinhardt, L.W.; Salgado, I.; et al. The Hemibiotrophic Cacao Pathogen Moniliophthora perniciosa Depends on a Mitochondrial Alternative Oxidase for Biotrophic Development. New Phytol. 2012, 194, 1025–1034. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Argôlo Santos Carvalho, H.; de Andrade Silva, E.M.; Carvalho Santos, S.; Micheli, F. Polygalacturonases from Moniliophthora perniciosa Are Regulated by Fermentable Carbon Sources and Possible Post-Translational Modifications. Fungal Genet. Biol. 2013, 60, 110–121. [Google Scholar] [CrossRef]
- Argout, X.; Salse, J.; Aury, J.-M.; Guiltinan, M.J.; Droc, G.; Gouzy, J.; Allegre, M.; Chaparro, C.; Legavre, T.; Maximova, S.N.; et al. The Genome of Theobroma cacao. Nat. Genet. 2011, 43, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Motamayor, J.C.; Mockaitis, K.; Schmutz, J.; Haiminen, N.; III, D.L.; Cornejo, O.; Findley, S.D.; Zheng, P.; Utro, F.; Royaert, S.; et al. The Genome Sequence of the Most Widely Cultivated Cacao Type and Its Use to Identify Candidate Genes Regulating Pod Color. Genome Biol. 2013, 14, r53. [Google Scholar] [CrossRef] [Green Version]
- Barau, J.; Grandis, A.; Carvalho, V.M.d.A.; Teixeira, G.S.; Zaparoli, G.H.A.; do Rio, M.C.S.; Rincones, J.; Buckeridge, M.S.; Pereira, G.A.G. Apoplastic and Intracellular Plant Sugars Regulate Developmental Transitions in Witches’ Broom Disease of Cacao. J. Exp. Bot. 2015, 66, 1325–1337. [Google Scholar] [CrossRef]
- Pierre, S.; Griffith, G.W.; Morphew, R.M.; Mur, L.A.J.; Scott, I.M. Saprotrophic Proteomes of Biotypes of the Witches’ Broom Pathogen Moniliophthora perniciosa. Fungal Biol. 2017, 121, 743–753. [Google Scholar] [CrossRef] [Green Version]
- Mares, J.H.; Gramacho, K.P.; Santos, E.C.; Da Silva Santiago, A.; Santana, J.O.; De Sousa, A.O.; Alvim, F.C.; Pirovani, C.P. Proteomic Analysis during of Spore Germination of Moniliophthora perniciosa, the Causal Agent of Witches’ Broom Disease in Cacao. BMC Microbiol. 2017, 17, 176. [Google Scholar] [CrossRef] [Green Version]
- Barbosa, C.S.; da Fonseca, R.R.; Batista, T.M.; Barreto, M.A.; Argolo, C.S.; de Carvalho, M.R.; do Amaral, D.O.J.; Silva, E.M.d.A.; Arévalo-Gardini, E.; Hidalgo, K.S.; et al. Genome Sequence and Effectorome of Moniliophthora perniciosa and Moniliophthora Roreri Subpopulations. BMC Genom. 2018, 19, 509. [Google Scholar] [CrossRef] [Green Version]
- Gomes, D.S.; de Andrade Silva, E.M.; de Andrade Rosa, E.C.; Silva Gualberto, N.G.; de Jesus Souza, M.Á.; Santos, G.; Pirovani, C.P.; Micheli, F. Identification of a Key Protein Set Involved in Moniliophthora perniciosa Necrotrophic Mycelium and Basidiocarp Development. Fungal Genet. Biol. 2021, 157, 103635. [Google Scholar] [CrossRef] [PubMed]
- Rincones, J.; Meinhardt, L.W.; Vidal, B.C.; Pereira, G.A.G. Electrophoretic Karyotype Analysis of Crinipellis Perniciosa, the Causal Agent of Witches’ Broom Disease of Theobroma cacao. Mycol. Res. 2003, 107, 452–458. [Google Scholar] [CrossRef] [PubMed]
- Rincones, J.; MazzottiI, G.D.; Griffith, G.W.; Pomela, A.; Figueira, A.; Leal, G.A.; Queiroz, M.V.; Pereira, J.F.; Azevedo, R.A.; Pereira, G.A.G.; et al. Genetic Variability and Chromosome-Length Polymorphisms of the Witches’ Broom Pathogen Crinipellis perniciosa from Various Plant Hosts in South America. Mycol. Res. 2006, 110, 821–832. [Google Scholar] [CrossRef]
- Formighieri, E.F.; Tiburcio, R.A.; Armas, E.D.; Medrano, F.J.; Shimo, H.; Carels, N.; Góes-Neto, A.; Cotomacci, C.; Carazzolle, M.F.; Sardinha-Pinto, N.; et al. The Mitochondrial Genome of the Phytopathogenic Basidiomycete Moniliophthora perniciosa Is 109kb in Size and Contains a Stable Integrated Plasmid. Mycol. Res. 2008, 112, 1136–1152. [Google Scholar] [CrossRef] [PubMed]
- Scarpari, L.M. Biochemical Changes during the Development of Witches’ Broom: The Most Important Disease of Cocoa in Brazil Caused by Crinipellis perniciosa. J. Exp. Bot. 2005, 56, 865–877. [Google Scholar] [CrossRef] [Green Version]
- Niella, G.R.; Castro, H.A.; Silva, L.H.C.P.; Carvalho, J.A. Aperfeiçoamento Da Metodologia de Produção Artificial de Basidiocarpos de Crinipellis perniciosa. Fitopatol. Bras. Brasília 1999, 24, 523–527. [Google Scholar]
- Gomes, D.S.; Lopes, M.A.; Menezes, S.P.; Ribeiro, L.F.; Dias, C.V.; Andrade, B.S.; de Jesus, R.M.; Pires, A.B.L.; Goes-Neto, A.; Micheli, F. Mycelial Development Preceding Basidioma Formation in Moniliophthora perniciosa Is Associated to Chitin, Sugar and Nutrient Metabolism Alterations Involving Autophagy. Fungal Genet. Biol. 2016, 86, 33–46. [Google Scholar] [CrossRef] [PubMed]
- Lima, J.O.; dos Santos, J.K.; Pereira, J.F.; de Resende, M.L.V.; de Araújo, E.F.; de Queiroz, M.V. Development of a Transformation System for Crinipellis perniciosa, the Causal Agent of Witches’ Broom in Cocoa Plants. Curr. Genet. 2003, 42, 236–240. [Google Scholar] [CrossRef]
- Filho, D.F.; Pungartnik, C.; Cascardo, J.C.M.; Brendel, M. Broken Hyphae of the Basidiomycete Crinipellis perniciosa Allow Quantitative Assay of Toxicity. Curr. Microbiol. 2006, 52, 407–412. [Google Scholar] [CrossRef]
- Gesteira, A.S.; Micheli, F.; Carels, N.; Da Silva, A.C.; Gramacho, K.P.; Schuster, I.; Macêdo, J.N.; Pereira, G.A.G.; Cascardo, J.C.M. Comparative Analysis of Expressed Genes from Cacao Meristems Infected by Moniliophthora perniciosa. Ann. Bot. 2007, 100, 129–140. [Google Scholar] [CrossRef] [Green Version]
- Garcia, O.; Macedo, J.A.N.; Tibúrcio, R.; Zaparoli, G.; Rincones, J.; Bittencourt, L.M.C.; Ceita, G.O.; Micheli, F.; Gesteira, A.; Mariano, A.C.; et al. Characterization of Necrosis and Ethylene-Inducing Proteins (NEP) in the Basidiomycete Moniliophthora perniciosa, the Causal Agent of Witches’ Broom in Theobroma Cacao. Mycol. Res. 2007, 111, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Silva, F.A.C.; Pirovani, C.P.; Menezes, S.; Pungartnik, C.; Santiago, A.S.; Costa, M.G.C.; Micheli, F.; Gesteira, A.S. Proteomic Response of Moniliophthora perniciosa Exposed to Pathogenesis-Related Protein-10 from Theobroma Cacao. Genet. Mol. Res. 2013, 12, 4855–4868. [Google Scholar] [CrossRef] [PubMed]
- Manchikanti, L. Evidence-Based Medicine, Systematic Reviews, and Guidelines in Interventional Pain Management, Part I: Introduction and General Considerations. Pain Physician 2008, 11, 161–186. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, P.H.; Bennett, T. Easy Guide to Conducting a Systematic Review. J. Paediatr. Child Health 2020, 56, 853–856. [Google Scholar] [CrossRef]
- Muka, T.; Glisic, M.; Milic, J.; Verhoog, S.; Bohlius, J.; Bramer, W.; Chowdhury, R.; Franco, O.H. A 24-Step Guide on How to Design, Conduct, and Successfully Publish a Systematic Review and Meta-Analysis in Medical Research. Eur. J. Epidemiol. 2020, 35, 49–60. [Google Scholar] [CrossRef]
- da Silva, A.R.; Pinto, K.N.S.; Maserti, B.E.; Santos-Filho, H.P.; Gesteira, A. da S. Corrigendum to: Systematic Review of Defense Responses against Phytophthora and Strategies to Manage Phytophthora Diseases in Citrus. Funct. Plant Biol. 2021, 48, 1086. [Google Scholar] [CrossRef]
- Soares, J.M.S.; Rocha, A.J.; Nascimento, F.S.; Santos, A.S.; Miller, R.N.G.; Ferreira, C.F.; Haddad, F.; Amorim, V.B.O.; Amorim, E.P. Genetic Improvement for Resistance to Black Sigatoka in Bananas: A Systematic Review. Front. Plant Sci. 2021, 12, 657916. [Google Scholar] [CrossRef]
- Santos, A.S.; Amorim, E.P.; Ferreira, C.F.; Pirovani, C.P. Water Stress in Musa spp.: A Systematic Review. PLoS ONE 2018, 13, e0208052. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, L.B.P.R.; Oliveira-Santos, N.; Fernandes, J.V.; Jaimes-Martinez, J.C.; De Souza, J.T.; Cruz-Magalhães, V.; Loguercio, L.L. Tolerance to and Alleviation of Abiotic Stresses in Plants Mediated by Trichoderma spp. In Advances in Trichoderma Biology for Agricultural Applications; Springer: Cham, Switzerland, 2022; pp. 321–359. [Google Scholar]
- Oliveira, B.R.M.; de Almeida, A.-A.F.; Santos, N.d.A.; Pirovani, C.P. Tolerance Strategies and Factors That Influence the Cadmium Uptake by Cacao Tree. Sci. Hortic. 2022, 293, 110733. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Santos, C.M.d.C.; Pimenta, C.A.d.M.; Nobre, M.R.C. The PICO Strategy for the Research Question Construction and Evidence Search. Rev. Lat. Am. Enferm. 2007, 15, 508–511. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wright, R.W.; Brand, R.A.; Dunn, W.; Spindler, K.P. How to Write a Systematic Review. Clin. Orthop. Relat. Res. 2007, 455, 23–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eck, V.N.J.; Waltman, L. Visualizing Bibliometric Networks. In Measuring Scholarly Impact; Springer International Publishing: Cham, Switzerland, 2014; pp. 285–320. [Google Scholar]
- Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; et al. STRING V11: Protein–Protein Association Networks with Increased Coverage, Supporting Functional Discovery in Genome-Wide Experimental Datasets. Nucleic Acids Res. 2019, 47, D607–D613. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shannon, P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res. 2003, 13, 2498–2504. [Google Scholar] [CrossRef]
- R CoreTeam. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020. [Google Scholar]
- Sena, K.; Alemanno, L.; Gramacho, K.P. The Infection Process of Moniliophthora perniciosa in Cacao. Plant Pathol. 2014, 63, 1272–1281. [Google Scholar] [CrossRef]
- Rio, M.C.S.D.; de Oliveira, B.V.; de Tomazella, D.P.T.; da Silva, J.A.F.; Pereira, G.A.G. Production of Calcium Oxalate Crystals by the Basidiomycete Moniliophthora perniciosa, the Causal Agent of Witches’ Broom Disease of Cacao. Curr. Microbiol. 2008, 56, 363–370. [Google Scholar] [CrossRef] [PubMed]
- Andrade, B.S.; Villela-Dias, C.; Gomes, D.S.; Micheli, F.; Góes-Neto, A. DNA and RNA Polymerase Activity in a Moniliophthora Perniciosa Mitochondrial Plasmid and Self-Defense against Oxidative Stress. Genet. Mol. Res. 2013, 12, 1944–1950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rincones, J.; Scarpari, L.M.; Carazzolle, M.F.; Mondego, J.M.C.; Formighieri, E.F.; Barau, J.G.; Costa, G.G.L.; Carraro, D.M.; Brentani, H.P.; Vilas-Boas, L.A.; et al. Differential Gene Expression Between the Biotrophic-Like and Saprotrophic Mycelia of the Witches’ Broom Pathogen Moniliophthora perniciosa. Mol. Plant-Microbe Interact. 2008, 21, 891–908. [Google Scholar] [CrossRef] [Green Version]
- de Oliveira, B.V.; Teixeira, G.S.; Reis, O.; Barau, J.G.; Teixeira, P.J.P.L.; do Rio, M.C.S.; Domingues, R.R.; Meinhardt, L.W.; Paes Leme, A.F.; Rincones, J.; et al. A Potential Role for an Extracellular Methanol Oxidase Secreted by Moniliophthora perniciosa in Witches’ Broom Disease in Cacao. Fungal Genet. Biol. 2012, 49, 922–932. [Google Scholar] [CrossRef] [Green Version]
- Fiorin, G.L.; Sanchéz-Vallet, A.; Thomazella, D.P.d.T.; do Prado, P.F.V.; do Nascimento, L.C.; Figueira, A.V.d.O.; Thomma, B.P.H.J.; Pereira, G.A.G.; Teixeira, P.J.P.L. Suppression of Plant Immunity by Fungal Chitinase-like Effectors. Curr. Biol. 2018, 28, 3023–3030.e5. [Google Scholar] [CrossRef] [Green Version]
- Dias, C.V.; Mendes, J.S.; dos Santos, A.C.; Pirovani, C.P.; da Silva Gesteira, A.; Micheli, F.; Gramacho, K.P.; Hammerstone, J.; Mazzafera, P.; de Mattos Cascardo, J.C. Hydrogen Peroxide Formation in Cacao Tissues Infected by the Hemibiotrophic Fungus Moniliophthora perniciosa. Plant Physiol. Biochem. 2011, 49, 917–922. [Google Scholar] [CrossRef] [PubMed]
- Camillo, L.R.; Filadelfo, C.R.; Monzani, P.S.; Corrêa, R.X.; Gramacho, K.P.; Micheli, F.; Pirovani, C.P. Tc-CAPX, a Cytosolic Ascorbate Peroxidase of Theobroma cacao L. Engaged in the Interaction with Moniliophthora perniciosa, the Causing Agent of Witches’ Broom Disease. Plant Physiol. Biochem. 2013, 73, 254–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilaru, A.; Bailey, B.A.; Hasenstein, K.H. Moniliophthora Perniciosa Produces Hormones and Alters Endogenous Auxin and Salicylic Acid in Infected Cocoa Leaves. FEMS Microbiol. Lett. 2007, 274, 238–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chaves, F.C.; Gianfagna, T.J. Necrotrophic Phase of Moniliophthora Perniciosa Causes Salicylic Acid Accumulation in Infected Stems of Cacao. Physiol. Mol. Plant Pathol. 2006, 69, 104–108. [Google Scholar] [CrossRef]
- de F. Poloni, J.; Feltes, B.C.; da Silva, F.R.; Bonatto, D. Biologiade Sistemas. In Bioinformática: Da Biologia à Flexibilidade Molecular; Verli, H., Ed.; Sociedade Brasileira de Bioquímica e Biologia Molecular-SBBq: São Paulo, Brazil, 2014. [Google Scholar]
- FAO. (Food and Agriculture Organization) Food and Agriculture Organization of the United Nations. 2020. Available online: https://www.fao.org/statistics/en/ (accessed on 30 January 2022).
- Barrios, M.; Borrego, A.; Vilaginés, A.; Ollé, C.; Somoza, M. A Bibliometric Study of Psychological Research on Tourism. Scientometrics 2008, 77, 453–467. [Google Scholar] [CrossRef]
- Aime, M.C.; Phillips-Mora, W. The Causal Agents of Witches’ Broom and Frosty Pod Rot of Cacao (Chocolate, Theobroma cacao) Form a New Lineage of Marasmiaceae. Mycologia 2005, 97, 1012–1022. [Google Scholar] [CrossRef] [Green Version]
- Münch, S.; Lingner, U.; Floss, D.S.; Ludwig, N.; Sauer, N.; Deising, H.B. The Hemibiotrophic Lifestyle of Colletotrichum Species. J. Plant Physiol. 2008, 165, 41–51. [Google Scholar] [CrossRef]
- Perfect, S.E.; Green, J.R. Infection Structures of Biotrophic and Hemibiotrophic Fungal Plant Pathogens. Mol. Plant Pathol. 2001, 2, 101–108. [Google Scholar] [CrossRef]
- Wei, Y.; Shen, W.; Dauk, M.; Wang, F.; Selvaraj, G.; Zou, J. Targeted Gene Disruption of Glycerol-3-Phosphate Dehydrogenase in Colletotrichum gloeosporioides Reveals Evidence That Glycerol Is a Significant Transferred Nutrient from Host Plant to Fungal Pathogen. J. Biol. Chem. 2004, 279, 429–435. [Google Scholar] [CrossRef] [Green Version]
- Purdy, L.; Schmidt, R. STATUS OF CACAO WITCHES’ BROOM: Biology, Epidemiology, and Management. Annu. Rev. Phytopathol. 1996, 34, 573–594. [Google Scholar] [CrossRef]
- Meinhardt, L.W.; Rincones, J.; Bailey, B.A.; Aime, M.C.; Griffith, G.W.; Zhang, D.; Pereira, G.A.G. Moniliophthora perniciosa, the Causal Agent of Witches’ Broom Disease of Cacao: What’s New from This Old Foe? Mol. Plant Pathol. 2008, 9, 577–588. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, P.J.P.L.; Thomazella, D.P.T.; Vidal, R.O.; do Prado, P.F.V.; Reis, O.; Baroni, R.M.; Franco, S.F.; Mieczkowski, P.; Pereira, G.A.G.; Mondego, J.M.C. The Fungal Pathogen Moniliophthora perniciosa Has Genes Similar to Plant PR-1 That Are Highly Expressed during Its Interaction with Cacao. PLoS ONE 2012, 7, e45929. [Google Scholar] [CrossRef] [PubMed]
- Ferraz dos Santos, L.; Moreira Fregapani, R.; Falcão, L.L.; Togawa, R.C.; Costa, M.M.d.C.; Lopes, U.V.; Peres Gramacho, K.; Alves, R.M.; Micheli, F.; Marcellino, L.H. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao. PLoS ONE 2016, 11, e0151074. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, J.S.; Schnell, R.J.; Motamayor, J.C.; Lopes, U.; Kuhn, D.N.; Borrone, J.W. Resistance Gene Mapping for Witches’ Broom Disease in Theobroma cacao L. in an F2 Population Using SSR Markers and Candidate Genes. J. Am. Soc. Hortic. Sci. 2005, 130, 366–373. [Google Scholar] [CrossRef] [Green Version]
- Faleiro, F.G.; Queiroz, V.T.; Lopes, U.V.; Guimarães, C.T.; Pires, J.L.; Yamada, M.M.; Araújo, I.S.; Pereira, M.G.; Schnell, R.; Filho, G.A.d.S.; et al. Mapping QTLs for Witches’ Broom (Crinipellis perniciosa) Resistance in Cacao (Theobroma cacao L.). Euphytica 2006, 149, 227–235. [Google Scholar] [CrossRef]
- Santos, R.M.F.; Lopes, U.V.; Bahia, R.d.C.; Machado, R.C.R.; Ahnert, D.; Corrêa, R.X. Marcadores Microssatélites Relacionados Com a Resistência à Vassoura-de-Bruxa Do Cacaueiro. Pesqui. Agropecuária Bras. 2007, 42, 1137–1142. [Google Scholar] [CrossRef] [Green Version]
- Lima, L.S.; Gramacho, K.P.; Gesteira, A.S.; Lopes, U.V.; Gaiotto, F.A.; Zaidan, H.A.; Pires, J.L.; Cascardo, J.C.M.; Micheli, F. Characterization of Microsatellites from Cacao–Moniliophthora perniciosa Interaction Expressed Sequence Tags. Mol. Breed. 2008, 22, 315–318. [Google Scholar] [CrossRef]
- Lima, L.S.; Gramacho, K.P.; Pires, J.L.; Clement, D.; Lopes, U.V.; Carels, N.; da Silva Gesteira, A.; Gaiotto, F.A.; de Mattos Cascardo, J.C.; Micheli, F. Development, Characterization, Validation, and Mapping of SSRs Derived from Theobroma cacao L.–Moniliophthora perniciosa Interaction ESTs. Tree Genet. Genomes 2010, 6, 663–676. [Google Scholar] [CrossRef]
- Lima, E.M.; Pereira, N.E.; Pires, J.L.; Barbosa, A.M.M.; Corrêa, R.X. Genetic Molecular Diversity, Production and Resistance to Witches’ Broom in Cacao Clones. Crop Breed. Appl. Biotechnol. 2013, 13, 127–135. [Google Scholar] [CrossRef] [Green Version]
- Fouet, O.; Allegre, M.; Argout, X.; Jeanneau, M.; Lemainque, A.; Pavek, S.; Boland, A.; Risterucci, A.M.; Loor, G.; Tahi, M.; et al. Structural Characterization and Mapping of Functional EST-SSR Markers in Theobroma cacao. Tree Genet. Genomes 2011, 7, 799–817. [Google Scholar] [CrossRef]
- Motilal, L.A.; Zhang, D.; Mischke, S.; Meinhardt, L.W.; Boccara, M.; Fouet, O.; Lanaud, C.; Umaharan, P. Association Mapping of Seed and Disease Resistance Traits in Theobroma cacao L. Planta 2016, 244, 1265–1276. [Google Scholar] [CrossRef] [PubMed]
- Collard, B.C..; Mackill, D.J. Marker-Assisted Selection: An Approach for Precision Plant Breeding in the Twenty-First Century. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 557–572. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Elroy, M.S.; Navarro, A.J.R.; Mustiga, G.; Stack, C.; Gezan, S.; Peña, G.; Sarabia, W.; Saquicela, D.; Sotomayor, I.; Douglas, G.M.; et al. Prediction of Cacao (Theobroma cacao) Resistance to Moniliophthora spp. Diseases via Genome-Wide Association Analysis and Genomic Selection. Front. Plant Sci. 2018, 9, 343. [Google Scholar] [CrossRef] [Green Version]
- Osorio-Guarín, J.A.; Berdugo-Cely, J.A.; Coronado-Silva, R.A.; Baez, E.; Jaimes, Y.; Yockteng, R. Genome-Wide Association Study Reveals Novel Candidate Genes Associated with Productivity and Disease Resistance to Moniliophthora Spp. in Cacao ( Theobroma cacao L.). G3 Genes|Genomes|Genetics 2020, 10, 1713–1725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gupta, P.K.; Rustgi, S.; Mir, R.R. Array-Based High-Throughput DNA Markers for Crop Improvement. Heredity 2008, 101, 5–18. [Google Scholar] [CrossRef] [Green Version]
- Davey, J.W.; Hohenlohe, P.A.; Etter, P.D.; Boone, J.Q.; Catchen, J.M.; Blaxter, M.L. Genome-Wide Genetic Marker Discovery and Genotyping Using next-Generation Sequencing. Nat. Rev. Genet. 2011, 12, 499–510. [Google Scholar] [CrossRef]
- Gramacho, K.P.; Risterucci, A.M.; Lanaud, C.; Lima, L.S.; Lopes, U.V. Characterization of Microsatellites in the Fungal Plant Pathogen Crinipellis perniciosa. Mol. Ecol. Notes 2006, 7, 153–155. [Google Scholar] [CrossRef]
- Silva, J.R.Q.; Figueira, A.; Pereira, G.A.G.; Albuquerque, P. Development of Novel Microsatellites from Moniliophthora perniciosa, Causal Agent of the Witches’ Broom Disease of Theobroma cacao. Mol. Ecol. Resour. 2008, 8, 783–785. [Google Scholar] [CrossRef]
- Andebrhan, T.; Furtek, D.B. Random Amplified Polymorphic DNA (RAPD) Analysis of Crinipellis perniciosa Isolates from Different Hosts. Plant Pathol. 1994, 43, 1020–1027. [Google Scholar] [CrossRef]
- Argout, X.; Martin, G.; Droc, G.; Fouet, O.; Labadie, K.; Rivals, E.; Aury, J.M.; Lanaud, C. The Cacao Criollo Genome v2.0: An Improved Version of the Genome for Genetic and Functional Genomic Studies. BMC Genom. 2017, 18, 730. [Google Scholar] [CrossRef]
- de Wit, P.J.G.M.; van der Burgt, A.; Ökmen, B.; Stergiopoulos, I.; Abd-Elsalam, K.A.; Aerts, A.L.; Bahkali, A.H.; Beenen, H.G.; Chettri, P.; Cox, M.P.; et al. The Genomes of the Fungal Plant Pathogens Cladosporium Fulvum and Dothistroma Septosporum Reveal Adaptation to Different Hosts and Lifestyles But Also Signatures of Common Ancestry. PLoS Genet. 2012, 8, e1003088. [Google Scholar] [CrossRef] [PubMed]
- Guimarães, R.L.; Stotz, H.U. Oxalate Production by Sclerotinia sclerotiorum Deregulates Guard Cells during Infection. Plant Physiol. 2004, 136, 3703–3711. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Apel, K.; Hirt, H. Reactive Oxygen Species: Metabolism, Oxidative Stress, and Signal Transduction. Annu. Rev. Plant Biol. 2004, 55, 373–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meraz-Pérez, I.M.; Carvalho, M.R.; Sena, K.F.; Soares, Y.J.B.; Estrela Junior, A.S.; Lopes, U.V.; dos Santos Filho, L.P.; Araújo, S.A.; Soares, V.L.F.; Pirovani, C.P.; et al. The Moniliophthora perniciosa—Cacao Pod Pathosystem: Structural and Activated Defense Strategies against Disease Establishment. Physiol. Mol. Plant Pathol. 2021, 115, 101656. [Google Scholar] [CrossRef]
- Darwiche, R.; El Atab, O.; Baroni, R.M.; Teixeira, P.J.P.L.; Mondego, J.M.C.; Pereira, G.A.G.; Schneiter, R. Plant Pathogenesis–Related Proteins of the Cacao Fungal Pathogen Moniliophthora perniciosa Differ in Their Lipid-Binding Specificities. J. Biol. Chem. 2017, 292, 20558–20569. [Google Scholar] [CrossRef] [Green Version]
- Lanver, D.; Müller, A.N.; Happel, P.; Schweizer, G.; Haas, F.B.; Franitza, M.; Pellegrin, C.; Reissmann, S.; Altmüller, J.; Rensing, S.A.; et al. The Biotrophic Development of Ustilago maydis Studied by RNA-Seq Analysis. Plant Cell 2018, 30, 300–323. [Google Scholar] [CrossRef] [Green Version]
- Basse, C.W.; Stumpferl, S.; Kahmann, R. Characterization of a Ustilago maydis Gene Specifically Induced during the Biotrophic Phase: Evidence for Negative as Well as Positive Regulation. Mol. Cell. Biol. 2000, 20, 329–339. [Google Scholar] [CrossRef] [Green Version]
- Bailey, B.A. Purification of a Protein from Culture Filtrates of Fusarium Oxysporum That Induces Ethylene and Necrosis in Leaves of Erythroxylum Coca. Phytopathology 1995, 85, 1250. [Google Scholar] [CrossRef]
- Verica, J.A.; Maximova, S.N.; Strem, M.D.; Carlson, J.E.; Bailey, B.A.; Guiltinan, M.J. Isolation of ESTs from Cacao (Theobroma cacao L.) Leaves Treated with Inducers of the Defense Response. Plant Cell Rep. 2004, 23, 404–413. [Google Scholar] [CrossRef]
- Bailey, B.A.; Bae, H.; Strem, M.D.; Antúnez de Mayolo, G.; Guiltinan, M.J.; Verica, J.A.; Maximova, S.N.; Bowers, J.H. Developmental Expression of Stress Response Genes in Theobroma cacao Leaves and Their Response to Nep1 Treatment and a Compatible Infection by Phytophthora Megakarya. Plant Physiol. Biochem. 2005, 43, 611–622. [Google Scholar] [CrossRef]
- Arazoe, T.; Miyoshi, K.; Yamato, T.; Ogawa, T.; Ohsato, S.; Arie, T.; Kuwata, S. Tailor-Made CRISPR/Cas System for Highly Efficient Targeted Gene Replacement in the Rice Blast Fungus. Biotechnol. Bioeng. 2015, 112, 2543–2549. [Google Scholar] [CrossRef] [PubMed]
- Matsu-ura, T.; Baek, M.; Kwon, J.; Hong, C. Efficient Gene Editing in Neurospora crassa with CRISPR Technology. Fungal Biol. Biotechnol. 2015, 2, 4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, R.; Chen, L.; Jiang, Y.; Zhou, Z.; Zou, G. Efficient Genome Editing in Filamentous Fungus Trichoderma Reesei Using the CRISPR/Cas9 System. Cell Discov. 2015, 1, 15007. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schuster, M.; Schweizer, G.; Reissmann, S.; Kahmann, R. Genome Editing in Ustilago maydis Using the CRISPR–Cas System. Fungal Genet. Biol. 2016, 89, 3–9. [Google Scholar] [CrossRef]
- Liu, M.; Kang, H.; Xu, Y.; Peng, Y.; Wang, D.; Gao, L.; Wang, X.; Ning, Y.; Wu, J.; Liu, W.; et al. Genome-wide Association Study Identifies an NLR Gene That Confers Partial Resistance to Magnaporthe oryzae in Rice. Plant Biotechnol. J. 2020, 18, 1376–1383. [Google Scholar] [CrossRef] [Green Version]
- Neves, D.M.; Almeida, L.A.d.H.; Santana-Vieira, D.D.S.; Freschi, L.; Ferreira, C.F.; Soares Filho, W.d.S.; Costa, M.G.C.; Micheli, F.; Coelho Filho, M.A.; Gesteira, A.d.S. Recurrent Water Deficit Causes Epigenetic and Hormonal Changes in Citrus Plants. Sci. Rep. 2017, 7, 13684. [Google Scholar] [CrossRef] [Green Version]
- Santos, A.S.; Neves, D.M.; Santana-Vieira, D.D.S.; Almeida, L.A.H.; Costa, M.G.C.; Soares Filho, W.S.; Pirovani, C.P.; Coelho Filho, M.A.; Ferreira, C.F.; Gesteira, A.S. Citrus Scion and Rootstock Combinations Show Changes in DNA Methylation Profiles and ABA Insensitivity under Recurrent Drought Conditions. Sci. Hortic. 2020, 267, 109313. [Google Scholar] [CrossRef]
- Rodrigues da Silva, A.; da Costa Silva, D.; dos Santos Pinto, K.N.; Santos Filho, H.P.; Coelho Filho, M.A.; dos Santos Soares Filho, W.; Ferreira, C.F.; da Silva Gesteira, A. Epigenetic Responses to Phytophthora citrophthora Gummosis in Citrus. Plant Sci. 2021, 313, 111082. [Google Scholar] [CrossRef]
- Martínez-Soto, D.; González-Prieto, J.M.; Ruiz-Herrera, J. Transcriptomic Analysis of the GCN5 Gene Reveals Mechanisms of the Epigenetic Regulation of Virulence and Morphogenesis in Ustilago maydis. FEMS Yeast Res. 2015, 15, fov055. [Google Scholar] [CrossRef] [Green Version]
- Mehta, A.; Brasileiro, A.C.M.; Souza, D.S.L.; Romano, E.; Campos, M.A.; Grossi-De-Sá, M.F.; Silva, M.S.; Franco, O.L.; Fragoso, R.R.; Bevitori, R.; et al. Plant-Pathogen Interactions: What Is Proteomics Telling Us? FEBS J. 2008, 275, 3731–3746. [Google Scholar] [CrossRef] [Green Version]
- Yang, Z.; Li, M.; Sun, Q. RHON1 Co-Transcriptionally Resolves R-Loops for Arabidopsis Chloroplast Genome Maintenance. Cell Rep. 2020, 30, 243–256.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de O. Barsottini, M.R.; de Oliveira, J.F.; Adamoski, D.; Teixeira, P.J.P.L.; do Prado, P.F.V.; Tiezzi, H.O.; Sforça, M.L.; Cassago, A.; Portugal, R.V.; de Oliveira, P.S.L.; et al. Functional Diversification of Cerato-Platanins in Moniliophthora perniciosa as Seen by Differential Expression and Protein Function Specialization. Mol. Plant-Microbe Interact. 2013, 26, 1281–1293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zaparoli, G.; Cabrera, O.G.; Medrano, F.J.; Tiburcio, R.; Lacerda, G.; Pereira, G.G. Identification of a Second Family of Genes in Moniliophthora Perniciosa, the Causal Agent of Witches’ Broom Disease in Cacao, Encoding Necrosis-Inducing Proteins Similar to Cerato-Platanins. Mycol. Res. 2009, 113, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Monzani, P.S.; Pereira, H.M.; Melo, F.A.; Meirelles, F.V.; Oliva, G.; Cascardo, J.C.M. A New Topology of ACBP from Moniliophthora perniciosa. Biochim. Biophys. Acta-Proteins Proteom. 2010, 1804, 115–123. [Google Scholar] [CrossRef]
- Villela-Dias, C.; Camillo, L.R.; de Oliveira, G.A.P.; Sena, J.A.L.; Santiago, A.S.; de Sousa, S.T.P.; Mendes, J.S.; Pirovani, C.P.; Alvim, F.C.; Costa, M.G.C. Nep1-like Protein from Moniliophthora perniciosa Induces a Rapid Proteome and Metabolome Reprogramming in Cells of Nicotiana benthamiana. Physiol. Plant. 2014, 150, 1–17. [Google Scholar] [CrossRef]
- Mares, J.H.; Gramacho, K.P.; Dos Santos, E.C.; Santiago, A.D.S.; Silva, E.M.D.A.; Alvim, F.C.; Pirovani, C.P. Protein Profile and Protein Interaction Network of Moniliophthora Perniciosa Basidiospores. BMC Microbiol. 2016, 16, 120. [Google Scholar] [CrossRef] [Green Version]
- Mares, J.H.; Gramacho, K.P.; Santana, J.O.; Oliveira de Souza, A.; Alvim, F.C.; Pirovani, C.P. Hydrosoluble Phylloplane Components of Theobroma cacao Modulate the Metabolism of Moniliophthora perniciosa Spores during Germination. Fungal Biol. 2020, 124, 73–81. [Google Scholar] [CrossRef]
- Birner, R.; Bürgermeister, M.; Schneiter, R.; Daum, G. Roles of Phosphatidylethanolamine and of Its Several Biosynthetic Pathways in Saccharomyces cerevisiae. Mol. Biol. Cell 2001, 12, 997–1007. [Google Scholar] [CrossRef] [Green Version]
- Gsell, M.; Mascher, G.; Schuiki, I.; Ploier, B.; Hrastnik, C.; Daum, G. Transcriptional Response to Deletion of the Phosphatidylserine Decarboxylase Psd1p in the Yeast Saccharomyces cerevisiae. PLoS ONE 2013, 8, e77380. [Google Scholar] [CrossRef] [Green Version]
- Pirovani, C.P.; da Silva Santiago, A.; dos Santos, L.S.; Micheli, F.; Margis, R.; da Silva Gesteira, A.; Alvim, F.C.; Pereira, G.A.G.; de Mattos Cascardo, J.C. Theobroma cacao Cystatins Impair Moniliophthora perniciosa Mycelial Growth and Are Involved in Postponing Cell Death Symptoms. Planta 2010, 232, 1485–1497. [Google Scholar] [CrossRef]
- Menezes, S.P.; Santos, J.L.; Cardoso, T.H.S.; Pirovani, C.P.; Micheli, F.; Noronha, F.S.M.; Alves, A.C.; Faria, A.M.C.; da Silva Gesteira, A. Evaluation of the Allergenicity Potential of TcPR-10 Protein from Theobroma cacao. PLoS ONE 2012, 7, e37969. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Britto, D.S.; Pirovani, C.P.; Andrade, B.S.; dos Santos, T.P.; Pungartnik, C.; Cascardo, J.C.M.; Micheli, F.; Gesteira, A.S. Recombinant β-1,3-1,4-Glucanase from Theobroma cacao Impairs Moniliophthora perniciosa Mycelial Growth. Mol. Biol. Rep. 2013, 40, 5417–5427. [Google Scholar] [CrossRef] [PubMed]
- Pereira Menezes, S.; de Andrade Silva, E.M.; Matos Lima, E.; Oliveira de Sousa, A.; Silva Andrade, B.; Santos Lima Lemos, L.; Peres Gramacho, K.; da Silva Gesteira, A.; Pirovani, C.P.; Micheli, F. The Pathogenesis-Related Protein PR-4b from Theobroma cacao Presents RNase Activity, Ca2+ and Mg2+ Dependent-DNase Activity and Antifungal Action on Moniliophthora perniciosa. BMC Plant Biol. 2014, 14, 161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falcao, L.L.; Silva-Werneck, J.O.; Ramos, A.d.R.; Martins, N.F.; Bresso, E.; Rodrigues, M.A.; Bemquerer, M.P.; Marcellino, L.H. Antimicrobial Properties of Two Novel Peptides Derived from Theobroma cacao Osmotin. Peptides 2016, 79, 75–82. [Google Scholar] [CrossRef]
- Cardoso, T.H.S.; Freitas, A.C.O.; Andrade, B.S.; de Sousa, A.O.; Santiago, A.d.S.; Koop, D.M.; Gramacho, K.P.; Alvim, F.C.; Micheli, F.; Pirovani, C.P. TcCYPR04, a Cacao Papain-Like Cysteine-Protease Detected in Senescent and Necrotic Tissues Interacts with a Cystatin TcCYS4. PLoS ONE 2015, 10, e0144440. [Google Scholar] [CrossRef] [Green Version]
- do Amaral, M.; Freitas, A.C.O.; Santos, A.S.; dos Santos, E.C.; Ferreira, M.M.; da Silva Gesteira, A.; Gramacho, K.P.; Marinho-Prado, J.S.; Pirovani, C.P. TcTI, a Kunitz-Type Trypsin Inhibitor from Cocoa Associated with Defense against Pathogens. Sci. Rep. 2022, 12, 698. [Google Scholar] [CrossRef]
- Almeida, D.S.M.; Gramacho, K.P.; Cardoso, T.H.S.; Micheli, F.; Alvim, F.C.; Pirovani, C.P. Cacao Phylloplane: The First Battlefield against Moniliophthora perniciosa, Which Causes Witches’ Broom Disease. Phytopathology 2017, 107, 864–871. [Google Scholar] [CrossRef] [Green Version]
- Freire, L.; Santana, J.O.; Oliveira de Sousa, A.; Bispo dos Santos, J.; Barbosa de Oliveira, I.; Alvim, F.C.; Gramacho, K.P.; Costa, M.G.C.; Pirovani, C.P. Tc PHYLL, a Cacao Phylloplanin Expressed in Young Tissues and Glandular Trichomes. Physiol. Mol. Plant Pathol. 2017, 100, 126–135. [Google Scholar] [CrossRef]
- dos Santos, E.C.; Pirovani, C.P.; Correa, S.C.; Micheli, F.; Gramacho, K.P. The Pathogen Moniliophthora perniciosa Promotes Differential Proteomic Modulation of Cacao Genotypes with Contrasting Resistance to Witches´ Broom Disease. BMC Plant Biol. 2020, 20, 1. [Google Scholar] [CrossRef] [Green Version]
Questions |
---|
1. What are the main research groups studying witches’ broom disease caused by M. perniciosa? |
2. In which countries is research conducted involving witches’ broom disease caused by M. perniciosa? |
3. What are the areas of knowledge of publications on witches’ broom disease caused by M. perniciosa? |
4. What are the hosts of the fungus M. perniciosa and the frequency of publications by host? |
5. What are the molecular mechanisms induced in the fungus M. perniciosa in the infection process or in its development? |
6. What are the molecular mechanisms induced in the hosts in the infection process caused by M. perniciosa? |
7. What are the genes related to resistance (or susceptibility) in the interaction between M. perniciosa and its hosts? |
8. What are the epigenetic mechanisms involved in host resistance or susceptibility? |
9. Which genes are involved in the pathogenicity (virulence) of the fungus? |
10. What are the molecular markers associated with host resistance? |
11. What sources of resistance have been identified or developed against the fungus M. perniciosa? |
12. What morphological changes does the fungus M. perniciosa undergo in order to succeed in the infection process? |
13. Which morphological changes do the hosts undergo in the process of infection caused by the fungus M. perniciosa? |
14. Which genes and proteins are involved in the M. perniciosa x host molecular battle? |
Acronym | Definition | Components of the Question |
---|---|---|
P | Population | M. perniciosa causing witches’ broom disease and its hosts |
I | Intervention or Interest | To describe the state of the art of the molecular biology of the witches’ broom disease caused by M. perniciosa |
C | Comparison | The molecular biology of fungus-induced infection and the molecular biology induced by hosts when infected. |
O | Outcome | Description of the molecular biology of the interaction between M. perniciosa and its hosts, as well as the molecular mechanisms that confer resistance or tolerance to M. perniciosa. |
S | Type of Study | Review of experimental scientific studies. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, A.S.; Mora-Ocampo, I.Y.; de Novais, D.P.S.; Aguiar, E.R.G.R.; Pirovani, C.P. State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. Int. J. Mol. Sci. 2023, 24, 5684. https://doi.org/10.3390/ijms24065684
Santos AS, Mora-Ocampo IY, de Novais DPS, Aguiar ERGR, Pirovani CP. State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. International Journal of Molecular Sciences. 2023; 24(6):5684. https://doi.org/10.3390/ijms24065684
Chicago/Turabian StyleSantos, Ariana Silva, Irma Yuliana Mora-Ocampo, Diogo Pereira Silva de Novais, Eric Roberto Guimarães Rocha Aguiar, and Carlos Priminho Pirovani. 2023. "State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review" International Journal of Molecular Sciences 24, no. 6: 5684. https://doi.org/10.3390/ijms24065684
APA StyleSantos, A. S., Mora-Ocampo, I. Y., de Novais, D. P. S., Aguiar, E. R. G. R., & Pirovani, C. P. (2023). State of the Art of the Molecular Biology of the Interaction between Cocoa and Witches’ Broom Disease: A Systematic Review. International Journal of Molecular Sciences, 24(6), 5684. https://doi.org/10.3390/ijms24065684