Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds
Abstract
:1. Introduction
2. Reverse Transcriptase Inhibitors
HIV-2 Resistance to NRTIs
3. Protease Inhibitors
HIV-2 Resistance to PIs
4. Integrase Strand Transfer Inhibitors
HIV-2 Resistance to INSTIs
5. Entry Inhibitors
6. Lenacapavir
7. Spiro-β-Lactams Are Potent Inhibitors of HIV-2 Infection
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Faria, N.R.; Esbjörnsson, J.; Lemey, P. Phylogeographic Insights into the Origins and Epidemic History of the Human Immunodeficiency Virus Type 2. In Encyclopedia of AIDS; Springer Science: New York, NY, USA, 2013. [Google Scholar]
- van Tienen, C.; van der Loeff, M.S. Epidemiology of HIV-2 Infection in West Africa. In Encyclopedia of AIDS; Hope, T.J., Stevenson, M., Richman, D., Eds.; Springer: New York, NY, USA, 2016; pp. 1–11. [Google Scholar]
- UNAIDS. Fact Sheet—Latest Statistics on the Status of the AIDS Epidemic; UNAIDS: Geneve, Switzerland, 2016. [Google Scholar]
- Visseaux, B.; Bertine, M.; Le Hingrat, Q.; Ferre, V.; Charpentier, C.; Collin, F.; Damond, F.; Matheron, S.; Hue, S.; Descamps, D. HIV-2 diversity displays two clades within group A with distinct geographical distribution and evolution. Virus Evol. 2021, 7, veab024. [Google Scholar] [CrossRef]
- Visseaux, B.; Damond, F.; Matheron, S.; Descamps, D.; Charpentier, C. Hiv-2 molecular epidemiology. Infect. Genet. Evol. 2016, 46, 233–240. [Google Scholar] [CrossRef]
- Azevedo-Pereira, J.M.; Santos-Costa, Q. HIV Interaction With Human Host: HIV-2 As a Model of a Less Virulent Infection. AIDS Rev. 2016, 18, 44–53. [Google Scholar]
- Ceccarelli, G.; Giovanetti, M.; Sagnelli, C.; Ciccozzi, A.; d’Ettorre, G.; Angeletti, S.; Borsetti, A.; Ciccozzi, M. Human Immunodeficiency Virus Type 2: The Neglected Threat. Pathogens. 2021, 10, 1377. [Google Scholar] [CrossRef]
- Popper, S.J.; Sarr, A.D.; Gueye-Ndiaye, A.; Mboup, S.; Essex, M.E.; Kanki, P.J. Low plasma human immunodeficiency virus type 2 viral load is independent of proviral load: Low virus production in vivo. J. Virol. 2000, 74, 1554–1557. [Google Scholar] [CrossRef] [Green Version]
- Gomes, P.; Taveira, N.C.; Pereira, J.M.; Antunes, F.; Ferreira, M.O.; Lourenco, M.H. Quantitation of human immunodeficiency virus type 2 DNA in peripheral blood mononuclear cells by using a quantitative-competitive PCR assay. J. Clin. Microbiol. 1999, 37, 453–456. [Google Scholar] [CrossRef] [Green Version]
- Soares, R.S.; Tendeiro, R.; Foxall, R.B.; Baptista, A.P.; Cavaleiro, R.; Gomes, P.; Camacho, R.; Valadas, E.; Doroana, M.; Lucas, M.; et al. Cell-associated viral burden provides evidence of ongoing viral replication in aviremic HIV-2-infected patients. J. Virol. 2011, 85, 2429–2438. [Google Scholar] [CrossRef] [Green Version]
- Esbjornsson, J.; Mansson, F.; Kvist, A.; da Silva, Z.J.; Andersson, S.; Fenyo, E.M.; Isberg, P.E.; Biague, A.J.; Lindman, J.; Palm, A.A.; et al. Long-term follow-up of HIV-2-related AIDS and mortality in Guinea-Bissau: A prospective open cohort study. Lancet HIV 2018. [Google Scholar] [CrossRef]
- Matheron, S.; Pueyo, S.; Damond, F.; Simon, F.; Lepretre, A.; Campa, P.; Salamon, R.; Chene, G.; Brun-Vezinet, F. Factors associated with clinical progression in HIV-2 infected-patients: The French ANRS cohort. AIDS 2003, 17, 2593–2601. [Google Scholar] [CrossRef]
- Adolescents, P. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents. In Services; Department of Health and Human Services, Ed.; NIH: Washington, DC, USA, 2016. [Google Scholar]
- Berzow, D.; Descamps, D.; Obermeier, M.; Charpentier, C.; Kaiser, R.; Guertler, L.; Eberle, J.; Wensing, A.; Sierra, S.; Ruelle, J.; et al. Human Immunodeficiency Virus-2 (HIV-2): A Summary of the Present Standard of Care and Treatment Options for Individuals Living with HIV-2 in Western Europe. Clin. Infect. Dis. 2021, 72, 503–509. [Google Scholar] [CrossRef]
- Tie, Y.; Wang, Y.F.; Boross, P.I.; Chiu, T.Y.; Ghosh, A.K.; Tozser, J.; Louis, J.M.; Harrison, R.W.; Weber, I.T. Critical differences in HIV-1 and HIV-2 protease specificity for clinical inhibitors. Protein. Sci. 2012, 21, 339–350. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Bird, L.E.; Chamberlain, P.P.; Stewart-Jones, G.B.; Stuart, D.I.; Stammers, D.K. Structure of HIV-2 reverse transcriptase at 2.35-A resolution and the mechanism of resistance to non-nucleoside inhibitors. Proc. Natl. Acad. Sci. USA 2002, 99, 14410–14415. [Google Scholar] [CrossRef] [Green Version]
- de Mendoza, C.; Requena, S.; Caballero, E.; Cabezas, T.; Penaranda, M.; Amengual, M.J.; Saez, A.; Lozano, A.B.; Ramos, J.M.; Soriano, V. Antiretroviral treatment of HIV-2 infection. Future Virol. 2017, 12, 461–472. [Google Scholar] [CrossRef]
- Lin, P.F.; Blair, W.; Wang, T.; Spicer, T.; Guo, Q.; Zhou, N.; Gong, Y.F.; Wang, H.G.; Rose, R.; Yamanaka, G.; et al. A small molecule HIV-1 inhibitor that targets the HIV-1 envelope and inhibits CD4 receptor binding. Proc. Natl. Acad. Sci. USA 2003, 100, 11013–11018. [Google Scholar] [CrossRef] [Green Version]
- Meanwell, N.A.; Krystal, M.R.; Nowicka-Sans, B.; Langley, D.R.; Conlon, D.A.; Eastgate, M.D.; Grasela, D.M.; Timmins, P.; Wang, T.; Kadow, J.F. Inhibitors of HIV-1 Attachment: The Discovery and Development of Temsavir and its Prodrug Fostemsavir. J. Med. Chem. 2018, 61, 62–80. [Google Scholar] [CrossRef]
- Wang, T.; Zhang, Z.; Wallace, O.B.; Deshpande, M.; Fang, H.; Yang, Z.; Zadjura, L.M.; Tweedie, D.L.; Huang, S.; Zhao, F.; et al. Discovery of 4-benzoyl-1-[(4-methoxy-1H- pyrrolo[2,3-b]pyridin-3-yl)oxoacetyl]-2- (R)-methylpiperazine (BMS-378806): A novel HIV-1 attachment inhibitor that interferes with CD4-gp120 interactions. J. Med. Chem. 2003, 46, 4236–4239. [Google Scholar] [CrossRef]
- Sarfo, F.S.; Bibby, D.F.; Schwab, U.; Appiah, L.T.; Clark, D.A.; Collini, P.; Phillips, R.; Green, I.; Dittmar, M.T.; Chadwick, D.R. Inadvertent non-nucleoside reverse transcriptase inhibitor (NNRTI)-based antiretroviral therapy in dual HIV-1/2 and HIV-2 seropositive West Africans: A retrospective study. J. Antimicrob. Chemother. 2009, 64, 667–669. [Google Scholar] [CrossRef] [Green Version]
- Drylewicz, J.; Eholie, S.; Maiga, M.; Zannou, D.M.; Sow, P.S.; Ekouevi, D.K.; Peterson, K.; Bissagnene, E.; Dabis, F.; Thiebaut, R.; et al. First-year lymphocyte T CD4+ response to antiretroviral therapy according to the HIV type in the IeDEA West Africa collaboration. AIDS 2010, 24, 1043–1050. [Google Scholar] [CrossRef] [Green Version]
- Borrego, P.; Goncalves, M.F.; Gomes, P.; Araujo, L.; Moranguinho, I.; Figueiredo, I.B.; Barahona, I.; Rocha, J.; Mendonca, C.; Cruz, M.C.; et al. Assessment of the Cavidi ExaVir Load Assay for Monitoring Plasma Viral Load in HIV-2-Infected Patients. J. Clin. Microbiol. 2017, 55, 2367–2379. [Google Scholar] [CrossRef] [Green Version]
- Damond, F.; Benard, A.; Balotta, C.; Boni, J.; Cotten, M.; Duque, V.; Ferns, B.; Garson, J.; Gomes, P.; Goncalves, F.; et al. An international collaboration to standardize HIV-2 viral load assays: Results from the 2009 ACHI(E)V(2E) quality control study. J. Clin. Microbiol. 2011, 49, 3491–3497. [Google Scholar] [CrossRef] [Green Version]
- Ntemgwa, M.L.; d’Aquin Toni, T.; Brenner, B.G.; Camacho, R.J.; Wainberg, M.A. Antiretroviral drug resistance in human immunodeficiency virus type 2. Antimicrob. Agents. Chemother. 2009, 53, 3611–3619. [Google Scholar] [CrossRef] [Green Version]
- Tzou, P.L.; Descamps, D.; Rhee, S.Y.; Raugi, D.N.; Charpentier, C.; Taveira, N.; Smith, R.A.; Soriano, V.; de Mendoza, C.; Holmes, S.P.; et al. Expanded Spectrum of Antiretroviral-Selected Mutations in Human Immunodeficiency Virus Type 2. J. Infect. Dis. 2020, 221, 1962–1972. [Google Scholar] [CrossRef]
- Singh, K.; Marchand, B.; Kirby, K.A.; Michailidis, E.; Sarafianos, S.G. Structural Aspects of Drug Resistance and Inhibition of HIV-1 Reverse Transcriptase. Viruses 2010, 2, 606–638. [Google Scholar] [CrossRef] [Green Version]
- Ren, J.; Stammers, D.K. Structural basis for drug resistance mechanisms for non-nucleoside inhibitors of HIV reverse transcriptase. Virus. Res. 2008, 134, 157–170. [Google Scholar] [CrossRef]
- Boyer, P.L.; Sarafianos, S.G.; Clark, P.K.; Arnold, E.; Hughes, S.H. Why do HIV-1 and HIV-2 use different pathways to develop AZT resistance? PLoS Pathog. 2006, 2, e10. [Google Scholar] [CrossRef]
- Hizi, A.; Tal, R.; Shaharabany, M.; Loya, S. Catalytic properties of the reverse transcriptases of human immunodeficiency viruses type 1 and type 2. J. Biol. Chem. 1991, 266, 6230–6239. [Google Scholar] [CrossRef]
- Hizi, A.; Herschhorn, A. Retroviral reverse transcriptases (other than those of HIV-1 and murine leukemia virus): A comparison of their molecular and biochemical properties. Virus. Res. 2008, 134, 203–220. [Google Scholar] [CrossRef]
- Boyer, P.L.; Clark, P.K.; Hughes, S.H. HIV-1 and HIV-2 reverse transcriptases: Different mechanisms of resistance to nucleoside reverse transcriptase inhibitors. J. Virol. 2012, 86, 5885–5894. [Google Scholar] [CrossRef] [Green Version]
- Lenzi, G.M.; Domaoal, R.A.; Kim, D.H.; Schinazi, R.F.; Kim, B. Kinetic variations between reverse transcriptases of viral protein X coding and noncoding lentiviruses. Retrovirology 2014, 11, 111. [Google Scholar] [CrossRef] [Green Version]
- Bowen, N.E.; Oo, A.; Kim, B. Mechanistic Interplay between HIV-1 Reverse Transcriptase Enzyme Kinetics and Host SAMHD1 Protein: Viral Myeloid-Cell Tropism and Genomic Mutagenesis. Viruses 2022, 14, 1622. [Google Scholar] [CrossRef]
- Baldauf, H.M.; Stegmann, L.; Schwarz, S.M.; Ambiel, I.; Trotard, M.; Martin, M.; Burggraf, M.; Lenzi, G.M.; Lejk, H.; Pan, X.; et al. Vpx overcomes a SAMHD1-independent block to HIV reverse transcription that is specific to resting CD4 T cells. Proc. Natl. Acad. Sci. USA 2017, 114, 2729–2734. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chougui, G.; Munir-Matloob, S.; Matkovic, R.; Martin, M.M.; Morel, M.; Lahouassa, H.; Leduc, M.; Ramirez, B.C.; Etienne, L.; Margottin-Goguet, F. HIV-2/SIV viral protein X counteracts HUSH repressor complex. Nat. Microbiol. 2018, 3, 891–897. [Google Scholar] [CrossRef]
- Maga, G.; Radi, M.; Gerard, M.A.; Botta, M.; Ennifar, E. HIV-1 RT Inhibitors with a Novel Mechanism of Action: NNRTIs that Compete with the Nucleotide Substrate. Viruses 2010, 2, 880–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Clercq, E.; Li, G. Approved Antiviral Drugs over the Past 50 Years. Clin. Microbiol. Rev. 2016, 29, 695–747. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Talwani, R.; Temesgen, Z. Doravirine: A new non-nucleoside reverse transcriptase inhibitor for the treatment of HIV infection. Drugs Today 2020, 56, 113–124. [Google Scholar] [CrossRef]
- Li, G.; Wang, Y.; De Clercq, E. Approved HIV reverse transcriptase inhibitors in the past decade. Acta Pharm. Sin. B 2022, 12, 1567–1590. [Google Scholar] [CrossRef]
- Witvrouw, M.; Pannecouque, C.; Switzer, W.M.; Folks, T.M.; De Clercq, E.; Heneine, W. Susceptibility of HIV-2, SIV and SHIV to various anti-HIV-1 compounds: Implications for treatment and postexposure prophylaxis. Antivir. Ther. 2004, 9, 57–65. [Google Scholar] [CrossRef]
- Isaka, Y.; Miki, S.; Kawauchi, S.; Suyama, A.; Sugimoto, H.; Adachi, A.; Miura, T.; Hayami, M.; Yoshie, O.; Fujiwara, T.; et al. A single amino acid change at Leu-188 in the reverse transcriptase of HIV-2 and SIV renders them sensitive to non-nucleoside reverse transcriptase inhibitors. Arch. Virol. 2001, 146, 743–755. [Google Scholar] [CrossRef]
- De Clercq, E. Anti-HIV drugs: 25 compounds approved within 25 years after the discovery of HIV. Int. J. Antimicrob. Agents 2009, 33, 307–320. [Google Scholar] [CrossRef]
- Camacho, R.J. Special aspects of the treatment of HIV-2-infected patients. Intervirology 2012, 55, 179–183. [Google Scholar] [CrossRef]
- World Health Organization. Update of Recommendations on First- and Second-Line Antiretroviral Regimens; World Health Organization: Geneva, Switzerland, 2019. [Google Scholar]
- NIH. Panel on Antiretroviral Guidelines for Adults and Adolescents. In Guidelines for the Use of Antiretroviral Agents in Adults and Adolescents with HIV; Department of Health and Human Services, Ed.; NIH: Washington, DC, USA, 2021. [Google Scholar]
- Ballana, E.; Badia, R.; Terradas, G.; Torres-Torronteras, J.; Ruiz, A.; Pauls, E.; Riveira-Muñoz, E.; Clotet, B.; Martí, R.; Esté, J.A. SAMHD1 specifically affects the antiviral potency of thymidine analog HIV reverse transcriptase inhibitors. Antimicrob. Agents Chemother. 2014, 58, 4804–4813. [Google Scholar] [CrossRef] [Green Version]
- Reid, P.; MacInnes, H.; Cong, M.E.; Heneine, W.; García-Lerma, J.G. Natural resistance of human immunodeficiency virus type 2 to zidovudine. Virology 2005, 336, 251–264. [Google Scholar] [CrossRef] [Green Version]
- Lee, W.A.; He, G.X.; Eisenberg, E.; Cihlar, T.; Swaminathan, S.; Mulato, A.; Cundy, K.C. Selective intracellular activation of a novel prodrug of the human immunodeficiency virus reverse transcriptase inhibitor tenofovir leads to preferential distribution and accumulation in lymphatic tissue. Antimicrob. Agents. Chemother. 2005, 49, 1898–1906. [Google Scholar] [CrossRef] [Green Version]
- Sax, P.E.; Wohl, D.; Yin, M.T.; Post, F.; DeJesus, E.; Saag, M.; Pozniak, A.; Thompson, M.; Podzamczer, D.; Molina, J.M.; et al. Tenofovir alafenamide versus tenofovir disoproxil fumarate, coformulated with elvitegravir, cobicistat, and emtricitabine, for initial treatment of HIV-1 infection: Two randomised, double-blind, phase 3, non-inferiority trials. Lancet 2015, 385, 2606–2615. [Google Scholar] [CrossRef]
- Sax, P.E.; Zolopa, A.; Brar, I.; Elion, R.; Ortiz, R.; Post, F.; Wang, H.; Callebaut, C.; Martin, H.; Fordyce, M.W.; et al. Tenofovir alafenamide vs. tenofovir disoproxil fumarate in single tablet regimens for initial HIV-1 therapy: A randomized phase 2 study. J. Acquir. Immune Defic. Syndr. 2014, 67, 52–58. [Google Scholar] [CrossRef] [Green Version]
- Ruane, P.J.; DeJesus, E.; Berger, D.; Markowitz, M.; Bredeek, U.F.; Callebaut, C.; Zhong, L.; Ramanathan, S.; Rhee, M.S.; Fordyce, M.W.; et al. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of tenofovir alafenamide as 10-day monotherapy in HIV-1-positive adults. J. Acquir. Immune Defic. Syndr. 2013, 63, 449–455. [Google Scholar] [CrossRef] [Green Version]
- Callebaut, C.; Stepan, G.; Tian, Y.; Miller, M.D. In Vitro Virology Profile of Tenofovir Alafenamide, a Novel Oral Prodrug of Tenofovir with Improved Antiviral Activity Compared to That of Tenofovir Disoproxil Fumarate. Antimicrob. Agents Chemother. 2015, 59, 5909–5916. [Google Scholar] [CrossRef] [Green Version]
- Bartolo, I.; Borrego, P.; Gomes, P.; Goncalves, F.; Caixas, U.; Pinto, I.V.; Taveira, N. In vitro evaluation of novel reverse transcriptase inhibitors TAF (tenofovir alafenamide) and OBP-601 (2,3-didehydro-3-deoxy-4-ethynylthymidine) against multi-drug resistant primary isolates of HIV-2. Antivir. Res. 2019, 161, 85–89. [Google Scholar] [CrossRef]
- Cardoso, M.; Vasconcelos, J.; Baptista, T.; Diogo, I.; Goncalves, F.; Mansinho, K.; Gomes, P. Management of HIV-2 resistance to antiretroviral therapy in a HIV-1/HIV-2/HBV co-infected patient. AIDS. Res. Ther. 2021, 18, 69. [Google Scholar] [CrossRef]
- Wang, R.R.; Yang, Q.H.; Luo, R.H.; Peng, Y.M.; Dai, S.X.; Zhang, X.J.; Chen, H.; Cui, X.Q.; Liu, Y.J.; Huang, J.F.; et al. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PLoS ONE 2014, 9, e105617. [Google Scholar] [CrossRef] [Green Version]
- Haraguchi, K.; Takeda, S.; Tanaka, H.; Nitanda, T.; Baba, M.; Dutschman, G.E.; Cheng, Y.C. Synthesis of a highly active new anti-HIV agent 2′,3′-didehydro-3′-deoxy-4′-ethynylthymidine. Bioorg. Med. Chem. Lett. 2003, 13, 3775–3777. [Google Scholar] [CrossRef]
- Smith, R.A.; Raugi, D.N.; Wu, V.H.; Leong, S.S.; Parker, K.M.; Oakes, M.K.; Sow, P.S.; Ba, S.; Seydi, M.; Gottlieb, G.S. The Nucleoside Analog BMS-986001 Shows Greater In Vitro Activity against HIV-2 than against HIV-1. Antimicrob. Agents. Chemother. 2015, 59, 7437–7446. [Google Scholar] [CrossRef] [Green Version]
- Gupta, S.K.; McComsey, G.A.; Lombaard, J.; Echevarria, J.; Orrell, C.; Avihingsanon, A.; Osiyemi, O.; Santoscoy, M.; Ray, N.; Stock, D.A.; et al. Efficacy, safety, bone and metabolic effects of HIV nucleoside reverse transcriptase inhibitor BMS-986001 (AI467003): A phase 2b randomised, controlled, partly blinded trial. Lancet HIV 2016, 3, e13-22. [Google Scholar] [CrossRef] [Green Version]
- Markowitz, M.; Sarafianos, S.G. 4′-Ethynyl-2-fluoro-2′-deoxyadenosine, MK-8591: A novel HIV-1 reverse transcriptase translocation inhibitor. Curr. Opin. HIV AIDS 2018, 13, 294–299. [Google Scholar] [CrossRef]
- Molina, J.M.; Yazdanpanah, Y.; Afani Saud, A.; Bettacchi, C.; Chahin Anania, C.; DeJesus, E.; Olsen Klopfer, S.; Grandhi, A.; Eves, K.; Robertson, M.N.; et al. Islatravir in combination with doravirine for treatment-naive adults with HIV-1 infection receiving initial treatment with islatravir, doravirine, and lamivudine: A phase 2b, randomised, double-blind, dose-ranging trial. Lancet HIV 2021, 8, e324–e333. [Google Scholar] [CrossRef]
- Das, K.; Bandwar, R.P.; White, K.L.; Feng, J.Y.; Sarafianos, S.G.; Tuske, S.; Tu, X.; Clark, A.D., Jr.; Boyer, P.L.; Hou, X.; et al. Structural basis for the role of the K65R mutation in HIV-1 reverse transcriptase polymerization, excision antagonism, and tenofovir resistance. J. Biol. Chem. 2009, 284, 35092–35100. [Google Scholar] [CrossRef] [Green Version]
- Menendez-Arias, L. Molecular basis of human immunodeficiency virus type 1 drug resistance: Overview and recent developments. Antiviral Res. 2013, 98, 93–120. [Google Scholar] [CrossRef]
- Alvarez, M.; Nevot, M.; Mendieta, J.; Martinez, M.A.; Menendez-Arias, L. Amino acid residues in HIV-2 reverse transcriptase that restrict the development of nucleoside analogue resistance through the excision pathway. J. Biol. Chem. 2018, 293, 2247–2259. [Google Scholar] [CrossRef] [Green Version]
- Damond, F.; Matheron, S.; Peytavin, G.; Campa, P.; Taieb, A.; Collin, G.; Delaunay, C.; Chene, G.; Brun-Vezinet, F.; Descamps, D. Selection of K65R mutation in HIV-2-infected patients receiving tenofovir-containing regimen. Antivir. Ther. 2004, 9, 635–636. [Google Scholar] [CrossRef]
- Descamps, D.; Damond, F.; Matheron, S.; Collin, G.; Campa, P.; Delarue, S.; Pueyo, S.; Chene, G.; Brun-Vezinet, F. High frequency of selection of K65R and Q151M mutations in HIV-2 infected patients receiving nucleoside reverse transcriptase inhibitors containing regimen. J. Med. Virol. 2004, 74, 197–201. [Google Scholar] [CrossRef]
- Damond, F.; Collin, G.; Matheron, S.; Peytavin, G.; Campa, P.; Delarue, S.; Taieb, A.; Benard, A.; Chene, G.; Brun-Vezinet, F.; et al. In vitro phenotypic susceptibility to nucleoside reverse transcriptase inhibitors of HIV-2 isolates with the Q151M mutation in the reverse transcriptase gene. Antivir. Ther. 2005, 10, 861–865. [Google Scholar] [CrossRef]
- Ba, S.; Dia-Badiane, N.M.; Hawes, S.E.; Deguenonvo, L.F.; Sall, F.; Ndour, C.T.; Faye, K.; Traore, F.; Toure, M.; Sy, M.P.; et al. [HIV-2 infection in Senegal: Virological failures and resistance to antiretroviral drugs (ARVs)]. Pan. Afr. Med. J. 2019, 33, 222. [Google Scholar] [CrossRef]
- Colson, P.; Henry, M.; Tivoli, N.; Gallais, H.; Gastaut, J.A.; Moreau, J.; Tamalet, C. Polymorphism and drug-selected mutations in the reverse transcriptase gene of HIV-2 from patients living in southeastern France. J. Med. Virol. 2005, 75, 381–390. [Google Scholar] [CrossRef]
- Deuzing, I.P.; Charpentier, C.; Wright, D.W.; Matheron, S.; Paton, J.; Frentz, D.; van de Vijver, D.A.; Coveney, P.V.; Descamps, D.; Boucher, C.A.; et al. Mutation V111I in HIV-2 reverse transcriptase increases the fitness of the nucleoside analogue-resistant K65R and Q151M viruses. J. Virol. 2015, 89, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Moranguinho, I.; Borrego, P.; Goncalves, F.; Gomes, P.; Rocha, J.; Barreto, J.; Taveira, N. Genotypic resistance profiles of HIV-2-infected patients from Cape Verde failing first-line antiretroviral therapy. AIDS 2020, 34, 483–486. [Google Scholar] [CrossRef]
- Pina-Araujo, I.I.; Guimaraes, M.L.; Bello, G.; Vicente, A.C.; Morgado, M.G. Profile of the HIV epidemic in Cape Verde: Molecular epidemiology and drug resistance mutations among HIV-1 and HIV-2 infected patients from distinct islands of the archipelago. PLoS ONE 2014, 9, e96201. [Google Scholar] [CrossRef]
- Ruelle, J.; Roman, F.; Vandenbroucke, A.T.; Lambert, C.; Fransen, K.; Echahidi, F.; Pierard, D.; Verhofstede, C.; Van Laethem, K.; Delforge, M.L.; et al. Transmitted drug resistance, selection of resistance mutations and moderate antiretroviral efficacy in HIV-2: Analysis of the HIV-2 Belgium and Luxembourg database. BMC Infect. Dis. 2008, 8, 21. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Anderson, D.J.; Pyrak, C.L.; Preston, B.D.; Gottlieb, G.S. Antiretroviral drug resistance in HIV-2: Three amino acid changes are sufficient for classwide nucleoside analogue resistance. J. Infect. Dis. 2009, 199, 1323–1326. [Google Scholar] [CrossRef] [Green Version]
- Raugi, D.N.; Ba, S.; Cisse, O.; Diallo, K.; Tamba, I.T.; Ndour, C.; Badiane, N.M.D.; Fortes, L.; Diallo, M.B.; Faye, D.; et al. Long-term Experience and Outcomes of Programmatic Antiretroviral Therapy for Human Immunodeficiency Virus Type 2 Infection in Senegal, West Africa. Clin. Infect. Dis. 2021, 72, 369–378. [Google Scholar] [CrossRef]
- Andreatta, K.; Miller, M.D.; White, K.L. HIV-2 antiviral potency and selection of drug resistance mutations by the integrase strand transfer inhibitor elvitegravir and NRTIs emtricitabine and tenofovir in vitro. J. Acquir. Immune Defic. Syndr. 2013, 62, 367–374. [Google Scholar] [CrossRef]
- Ntemgwa, M.L.; Toni, T.; Brenner, B.G.; Oliveira, M.; Asahchop, E.L.; Moisi, D.; Wainberg, M.A. Nucleoside and nucleotide analogs select in culture for different patterns of drug resistance in human immunodeficiency virus types 1 and 2. Antimicrob. Agents Chemother. 2009, 53, 708–715. [Google Scholar] [CrossRef] [Green Version]
- Deval, J.; Selmi, B.; Boretto, J.; Egloff, M.P.; Guerreiro, C.; Sarfati, S.; Canard, B. The molecular mechanism of multidrug resistance by the Q151M human immunodeficiency virus type 1 reverse transcriptase and its suppression using alpha-boranophosphate nucleotide analogues. J. Biol. Chem. 2002, 277, 42097–42104. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.; Jallow, S.; Rowland-Jones, S.L.; de Silva, T.I. Antiretroviral Therapy for HIV-2 Infection: Recommendations for Management in Low-Resource Settings. AIDS Res. Treat. 2011, 2011, 463704. [Google Scholar] [CrossRef]
- Majerova, T.; Konvalinka, J. Viral proteases as therapeutic targets. Mol. Aspects. Med. 2022, 88, 101159. [Google Scholar] [CrossRef]
- Miller, M. The early years of retroviral protease crystal structures. Biopolymers 2010, 94, 521–529. [Google Scholar] [CrossRef] [Green Version]
- Louis, J.M.; Ishima, R.; Aniana, A.; Sayer, J.M. Revealing the dimer dissociation and existence of a folded monomer of the mature HIV-2 protease. Protein Sci. 2009, 18, 2442–2453. [Google Scholar] [CrossRef] [Green Version]
- Menendez-Arias, L.; Tozser, J. HIV-1 protease inhibitors: Effects on HIV-2 replication and resistance. Trends. Pharmacol. Sci. 2008, 29, 42–49. [Google Scholar] [CrossRef] [Green Version]
- Brower, E.T.; Bacha, U.M.; Kawasaki, Y.; Freire, E. Inhibition of HIV-2 protease by HIV-1 protease inhibitors in clinical use. Chem. Biol. Drug Des. 2008, 71, 298–305. [Google Scholar] [CrossRef]
- Kovalevsky, A.Y.; Louis, J.M.; Aniana, A.; Ghosh, A.K.; Weber, I.T. Structural evidence for effectiveness of darunavir and two related antiviral inhibitors against HIV-2 protease. J. Mol. Biol. 2008, 384, 178–192. [Google Scholar] [CrossRef] [Green Version]
- Mahdi, M.; Matuz, K.; Toth, F.; Tozser, J. A modular system to evaluate the efficacy of protease inhibitors against HIV-2. PLoS ONE 2014, 9, e113221. [Google Scholar] [CrossRef] [Green Version]
- Nijhuis, M.; Schuurman, R.; de Jong, D.; Erickson, J.; Gustchina, E.; Albert, J.; Schipper, P.; Gulnik, S.; Boucher, C.A. Increased fitness of drug resistant HIV-1 protease as a result of acquisition of compensatory mutations during suboptimal therapy. AIDS 1999, 13, 2349–2359. [Google Scholar] [CrossRef] [PubMed]
- Romano, L.; Venturi, G.; Giomi, S.; Pippi, L.; Valensin, P.E.; Zazzi, M. Development and significance of resistance to protease inhibitors in HIV-1-infected adults under triple-drug therapy in clinical practice. J. Med. Virol. 2002, 66, 143–150. [Google Scholar] [CrossRef]
- Ridky, T.; Leis, J. Development of drug resistance to HIV-1 protease inhibitors. J. Biol. Chem. 1995, 270, 29621–29623. [Google Scholar] [CrossRef] [Green Version]
- Desbois, D.; Roquebert, B.; Peytavin, G.; Damond, F.; Collin, G.; Benard, A.; Campa, P.; Matheron, S.; Chene, G.; Brun-Vezinet, F.; et al. In vitro phenotypic susceptibility of human immunodeficiency virus type 2 clinical isolates to protease inhibitors. Antimicrob. Agents Chemother. 2008, 52, 1545–1548. [Google Scholar] [CrossRef] [Green Version]
- Raugi, D.N.; Smith, R.A.; Ba, S.; Toure, M.; Traore, F.; Sall, F.; Pan, C.; Blankenship, L.; Montano, A.; Olson, J.; et al. Complex patterns of protease inhibitor resistance among antiretroviral treatment-experienced HIV-2 patients from Senegal: Implications for second-line therapy. Antimicrob. Agents Chemother. 2013, 57, 2751–2760. [Google Scholar] [CrossRef] [Green Version]
- Raugi, D.N.; Smith, R.A.; Gottlieb, G.S. Four Amino Acid Changes in HIV-2 Protease Confer Class-Wide Sensitivity to Protease Inhibitors. J. Virol. 2015, 90, 1062–1069. [Google Scholar] [CrossRef] [Green Version]
- Rodes, B.; Sheldon, J.; Toro, C.; Jimenez, V.; Alvarez, M.A.; Soriano, V. Susceptibility to protease inhibitors in HIV-2 primary isolates from patients failing antiretroviral therapy. J. Antimicrob. Chemother. 2006, 57, 709–713. [Google Scholar] [CrossRef]
- Trevino, A.; de Mendoza, C.; Caballero, E.; Rodriguez, C.; Parra, P.; Benito, R.; Cabezas, T.; Roc, L.; Aguilera, A.; Soriano, V. Drug resistance mutations in patients infected with HIV-2 living in Spain. J. Antimicrob. Chemother. 2011, 66, 1484–1488. [Google Scholar] [CrossRef] [Green Version]
- Gupta, R.K.; Kohli, A.; McCormick, A.L.; Towers, G.J.; Pillay, D.; Parry, C.M. Full-length HIV-1 Gag determines protease inhibitor susceptibility within in vitro assays. AIDS 2010, 24, 1651–1655. [Google Scholar] [CrossRef] [Green Version]
- Deforche, K.; Camacho, R.; Grossman, Z.; Silander, T.; Soares, M.A.; Moreau, Y.; Shafer, R.W.; Van Laethem, K.; Carvalho, A.P.; Wynhoven, B.; et al. Bayesian network analysis of resistance pathways against HIV-1 protease inhibitors. Infect. Genet. Evol. 2007, 7, 382–390. [Google Scholar] [CrossRef]
- Damond, F.; Brun-Vezinet, F.; Matheron, S.; Peytavin, G.; Campa, P.; Pueyo, S.; Mammano, F.; Lastere, S.; Farfara, I.; Simon, F.; et al. Polymorphism of the human immunodeficiency virus type 2 (HIV-2) protease gene and selection of drug resistance mutations in HIV-2-infected patients treated with protease inhibitors. J. Clin. Microbiol. 2005, 43, 484–487. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gottlieb, G.S.; Badiane, N.M.; Hawes, S.E.; Fortes, L.; Toure, M.; Ndour, C.T.; Starling, A.K.; Traore, F.; Sall, F.; Wong, K.G.; et al. Emergence of multiclass drug-resistance in HIV-2 in antiretroviral-treated individuals in Senegal: Implications for HIV-2 treatment in resouce-limited West Africa. Clin. Infect. Dis. 2009, 48, 476–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodes, B.; Holguin, A.; Soriano, V.; Dourana, M.; Mansinho, K.; Antunes, F.; Gonzalez-Lahoz, J. Emergence of drug resistance mutations in human immunodeficiency virus type 2-infected subjects undergoing antiretroviral therapy. J. Clin. Microbiol. 2000, 38, 1370–1374. [Google Scholar] [CrossRef] [Green Version]
- Ntemgwa, M.; Brenner, B.G.; Oliveira, M.; Moisi, D.; Wainberg, M.A. Natural polymorphisms in the human immunodeficiency virus type 2 protease can accelerate time to development of resistance to protease inhibitors. Antimicrob. Agents. Chemother. 2007, 51, 604–610. [Google Scholar] [CrossRef] [Green Version]
- Diallo, K.; Brenner, B.; Oliveira, M.; Moisi, D.; Detorio, M.; Gotte, M.; Wainberg, M.A. The M184V substitution in human immunodeficiency virus type 1 reverse transcriptase delays the development of resistance to amprenavir and efavirenz in subtype B and C clinical isolates. Antimicrob. Agents Chemother. 2003, 47, 2376–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, V.A.; Calvez, V.; Gunthard, H.F.; Paredes, R.; Pillay, D.; Shafer, R.; Wensing, A.M.; Richman, D.D. 2011 update of the drug resistance mutations in HIV-1. Top. Antivir. Med. 2011, 19, 156–164. [Google Scholar]
- M’Barek, N.B.; Audoly, G.; Raoult, D.; Gluschankof, P. HIV-2 Protease resistance defined in yeast cells. Retrovirology 2006, 3, 58. [Google Scholar] [CrossRef] [Green Version]
- Adje-Toure, C.A.; Cheingsong, R.; Garcia-Lerma, J.G.; Eholie, S.; Borget, M.Y.; Bouchez, J.M.; Otten, R.A.; Maurice, C.; Sassan-Morokro, M.; Ekpini, R.E.; et al. Antiretroviral therapy in HIV-2-infected patients: Changes in plasma viral load, CD4+ cell counts, and drug resistance profiles of patients treated in Abidjan, Cote d’Ivoire. AIDS 2003, 17 (Suppl. 3), S49–S54. [Google Scholar] [CrossRef]
- Cavaco-Silva, J.; Aleixo, M.J.; Van Laethem, K.; Faria, D.; Valadas, E.; Goncalves Mde, F.; Gomes, P.; Vandamme, A.M.; Cunha, C.; Camacho, R.J. Mutations selected in HIV-2-infected patients failing a regimen including atazanavir. J. Antimicrob. Chemother. 2013, 68, 190–192. [Google Scholar] [CrossRef] [Green Version]
- Colson, P.; Henry, M.; Tourres, C.; Lozachmeur, D.; Gallais, H.; Gastaut, J.A.; Moreau, J.; Tamalet, C. Polymorphism and drug-selected mutations in the protease gene of human immunodeficiency virus type 2 from patients living in Southern France. J. Clin. Microbiol. 2004, 42, 570–577. [Google Scholar] [CrossRef] [Green Version]
- Rodes, B.; Toro, C.; Sheldon, J.A.; Jimenez, V.; Mansinho, K.; Soriano, V. High rate of proV47A selection in HIV-2 patients failing lopinavir-based HAART. AIDS 2006, 20, 127–129. [Google Scholar] [CrossRef] [PubMed]
- Masse, S.; Lu, X.; Dekhtyar, T.; Lu, L.; Koev, G.; Gao, F.; Mo, H.; Kempf, D.; Bernstein, B.; Hanna, G.J.; et al. In vitro selection and characterization of human immunodeficiency virus type 2 with decreased susceptibility to lopinavir. Antimicrob. Agents Chemother. 2007, 51, 3075–3080. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krishnan, L.; Engelman, A. Retroviral integrase proteins and HIV-1 DNA integration. J. Biol. Chem. 2012, 287, 40858–40866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bercoff, D.P.; Triqueneaux, P.; Lambert, C.; Oumar, A.A.; Ternes, A.M.; Dao, S.; Goubau, P.; Schmit, J.C.; Ruelle, J. Polymorphisms of HIV-2 integrase and selection of resistance to raltegravir. Retrovirology 2010, 7, 98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roquebert, B.; Damond, F.; Collin, G.; Matheron, S.; Peytavin, G.; Benard, A.; Campa, P.; Chene, G.; Brun-Vezinet, F.; Descamps, D.; et al. HIV-2 integrase gene polymorphism and phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitors raltegravir and elvitegravir in vitro. J. Antimicrob. Chemother. 2008, 62, 914–920. [Google Scholar] [CrossRef] [Green Version]
- Lataillade, M.; Chiarella, J.; Kozal, M.J. Natural polymorphism of the HIV-1 integrase gene and mutations associated with integrase inhibitor resistance. Antivir. Ther. 2007, 12, 563–570. [Google Scholar] [CrossRef]
- Summa, V.; Petrocchi, A.; Bonelli, F.; Crescenzi, B.; Donghi, M.; Ferrara, M.; Fiore, F.; Gardelli, C.; Gonzalez Paz, O.; Hazuda, D.J.; et al. Discovery of raltegravir, a potent, selective orally bioavailable HIV-integrase inhibitor for the treatment of HIV-AIDS infection. J. Med. Chem. 2008, 51, 5843–5855. [Google Scholar] [CrossRef]
- Smith, S.J.; Zhao, X.Z.; Passos, D.O.; Lyumkis, D.; Burke, T.R., Jr.; Hughes, S.H. Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs. Viruses 2021, 13, 205. [Google Scholar] [CrossRef]
- Jaskolski, M.; Alexandratos, J.N.; Bujacz, G.; Wlodawer, A. Piecing together the structure of retroviral integrase, an important target in AIDS therapy. FEBS. J. 2009, 276, 2926–2946. [Google Scholar] [CrossRef] [Green Version]
- Kobayashi, M.; Yoshinaga, T.; Seki, T.; Wakasa-Morimoto, C.; Brown, K.W.; Ferris, R.; Foster, S.A.; Hazen, R.J.; Miki, S.; Suyama-Kagitani, A.; et al. In Vitro antiretroviral properties of S/GSK1349572, a next-generation HIV integrase inhibitor. Antimicrob. Agents Chemother. 2011, 55, 813–821. [Google Scholar] [CrossRef] [Green Version]
- Hall, N.; Allavena, C.; Katlama, C.; Jobert, A.; Molina, J.-M.; Cua, E.; Bani-Sadr, F.; Hocqueloux, L.; Duvivier, C.; Merrien, D.; et al. Raltegravir 1200 mg once daily as maintenance therapy in virologically suppressed HIV-1 infected adults: QDISS open-label trial. AIDS Res. Ther. 2022, 19, 4. [Google Scholar] [CrossRef]
- Damond, F.; Lariven, S.; Roquebert, B.; Males, S.; Peytavin, G.; Morau, G.; Toledano, D.; Descamps, D.; Brun-Vezinet, F.; Matheron, S. Virological and immunological response to HAART regimen containing integrase inhibitors in HIV-2-infected patients. AIDS 2008, 22, 665–666. [Google Scholar] [CrossRef]
- Matheron, S.; Descamps, D.; Gallien, S.; Besseghir, A.; Sellier, P.; Blum, L.; Mortier, E.; Charpentier, C.; Tubiana, R.; Damond, F.; et al. First-line Raltegravir/Emtricitabine/Tenofovir Combination in Human Immunodeficiency Virus Type 2 (HIV-2) Infection: A Phase 2, Noncomparative Trial (ANRS 159 HIV-2). Clin. Infect. Dis. 2018, 67, 1161–1167. [Google Scholar] [CrossRef]
- Requena, S.; Lozano, A.B.; Caballero, E.; Garcia, F.; Nieto, M.C.; Tellez, R.; Fernandez, J.M.; Trigo, M.; Rodriguez-Avial, I.; Martin-Carbonero, L.; et al. Clinical experience with integrase inhibitors in HIV-2-infected individuals in Spain. J. Antimicrob. Chemother. 2019, 74, 1357–1362. [Google Scholar] [CrossRef] [Green Version]
- Raffe, S.; Fisher, M. The pharmacokinetics, pharmacodynamics and clinical efficacy of elvitegravir + cobicistat + emtricitabine + tenofovir combination therapy for the treatment of HIV. Expert. Opin. Drug Metab. Toxicol. 2015, 11, 427–435. [Google Scholar] [CrossRef]
- Zheng, Y.; Lambert, C.; Arendt, V.; Seguin-Devaux, C. Virological and immunological outcomes of elvitegravir-based regimen in a treatment-naive HIV-2-infected patient. AIDS 2014, 28, 2329–2331. [Google Scholar] [CrossRef]
- Ba, S.; Raugi, D.N.; Smith, R.A.; Sall, F.; Faye, K.; Hawes, S.E.; Sow, P.S.; Seydi, M.; Gottlieb, G.S. A Trial of a Single-tablet Regimen of Elvitegravir, Cobicistat, Emtricitabine, and Tenofovir Disoproxil Fumarate for the Initial Treatment of Human Immunodeficiency Virus Type 2 Infection in a Resource-limited Setting: 48-Week Results From Senegal, West Africa. Clin. Infect. Dis. 2018, 67, 1588–1594. [Google Scholar] [CrossRef]
- Wainberg, M.A.; Mesplede, T.; Raffi, F. What if HIV were unable to develop resistance against a new therapeutic agent? BMC Med. 2013, 11, 249. [Google Scholar] [CrossRef] [Green Version]
- Llibre, J.M.; Pulido, F.; Garcia, F.; Garcia Deltoro, M.; Blanco, J.L.; Delgado, R. Genetic barrier to resistance for dolutegravir. AIDS Rev. 2015, 17, 56–64. [Google Scholar]
- White, K.L.; Raffi, F.; Miller, M.D. Resistance analyses of integrase strand transfer inhibitors within phase 3 clinical trials of treatment-naive patients. Viruses 2014, 6, 2858–2879. [Google Scholar] [CrossRef]
- Wainberg, M.A.; Han, Y.S. Will drug resistance against dolutegravir in initial therapy ever occur? Front. Pharmacol. 2015, 6, 90. [Google Scholar] [CrossRef] [Green Version]
- Hightower, K.E.; Wang, R.; Deanda, F.; Johns, B.A.; Weaver, K.; Shen, Y.; Tomberlin, G.H.; Carter, H.L., 3rd; Broderick, T.; Sigethy, S.; et al. Dolutegravir (S/GSK1349572) exhibits significantly slower dissociation than raltegravir and elvitegravir from wild-type and integrase inhibitor-resistant HIV-1 integrase-DNA complexes. Antimicrob. Agents Chemother. 2011, 55, 4552–4559. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Raugi, D.N.; Pan, C.; Sow, P.S.; Seydi, M.; Mullins, J.I.; Gottlieb, G.S. In vitro activity of dolutegravir against wild-type and integrase inhibitor-resistant HIV-2. Retrovirology 2015, 12, 10. [Google Scholar] [CrossRef] [Green Version]
- Charpentier, C.; Larrouy, L.; Collin, G.; Damond, F.; Matheron, S.; Chene, G.; Nie, T.; Schinazi, R.; Brun-Vezinet, F.; Descamps, D. In-vitro phenotypic susceptibility of HIV-2 clinical isolates to the integrase inhibitor S/GSK1349572. AIDS 2010, 24, 2753–2755. [Google Scholar] [CrossRef]
- Bartolo, I.; Moranguinho, I.; Goncalves, P.; Diniz, A.R.; Borrego, P.; Martin, F.; Figueiredo, I.; Gomes, P.; Goncalves, F.; Alves, A.J.S.; et al. High Instantaneous Inhibitory Potential of Bictegravir and the New Spiro-beta-Lactam BSS-730A for HIV-2 Isolates from RAL-Naive and RAL-Failing Patients. Int. J. Mol. Sci. 2022, 23, 14300. [Google Scholar] [CrossRef]
- Pujari, S.; Patel, A.; Gaikwad, S.; Patel, K.; Dabhade, D.; Chitalikar, A.; Joshi, K.; Bele, V. Effectiveness of dolutegravir-based antiretroviral treatment for HIV-2 infection: Retrospective observational study from Western India. J. Antimicrob. Chemother. 2020, 75, 1950–1954. [Google Scholar] [CrossRef]
- Descamps, D.; Peytavin, G.; Visseaux, B.; Tubiana, R.; Damond, F.; Campa, P.; Charpentier, C.; Khuong-Josses, M.A.; Duvivier, C.; Karmochkine, M.; et al. Dolutegravir in HIV-2-Infected Patients With Resistant Virus to First-line Integrase Inhibitors From the French Named Patient Program. Clin. Infect. Dis. 2015, 60, 1521–1527. [Google Scholar] [CrossRef] [Green Version]
- Trevino, A.; Cabezas, T.; Lozano, A.B.; Garcia-Delgado, R.; Force, L.; Fernandez-Montero, J.M.; Mendoza, C.; Caballero, E.; Soriano, V. Dolutegravir for the treatment of HIV-2 infection. J. Clin. Virol. 2015, 64, 12–15. [Google Scholar] [CrossRef]
- Mills, A.; Richmond, G.J.; Newman, C.; Osiyemi, O.; Cade, J.; Brinson, C.; De Vente, J.; Margolis, D.A.; Sutton, K.C.; Wilches, V.; et al. Long-acting cabotegravir and rilpivirine for HIV-1 suppression: Switch to 2-monthly dosing after 5 years of daily oral therapy. AIDS 2022, 36, 195–203. [Google Scholar] [CrossRef]
- Yoshinaga, T.; Kobayashi, M.; Seki, T.; Miki, S.; Wakasa-Morimoto, C.; Suyama-Kagitani, A.; Kawauchi-Miki, S.; Taishi, T.; Kawasuji, T.; Johns, B.A.; et al. Antiviral characteristics of GSK1265744, an HIV integrase inhibitor dosed orally or by long-acting injection. Antimicrob. Agents Chemother. 2015, 59, 397–406. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Wu, V.H.; Zavala, C.G.; Raugi, D.N.; Ba, S.; Seydi, M.; Gottlieb, G.S. In Vitro Antiviral Activity of Cabotegravir against HIV-2. Antimicrob. Agents Chemother. 2018, 62. [Google Scholar] [CrossRef] [Green Version]
- Hill, L.; Smith, S.R.; Karris, M.Y. Profile of bictegravir/emtricitabine/tenofovir alafenamide fixed dose combination and its potential in the treatment of HIV-1 infection: Evidence to date. HIV AIDS 2018, 10, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Le Hingrat, Q.; Collin, G.; Le, M.; Peytavin, G.; Visseaux, B.; Bertine, M.; Tubiana, R.; Karmochkine, M.; Valin, N.; Collin, F.; et al. A New Mechanism of Resistance of Human Immunodeficiency Virus Type 2 to Integrase Inhibitors: A 5-Amino-Acid Insertion in the Integrase C-Terminal Domain. Clin. Infect. Dis. 2019, 69, 657–667. [Google Scholar] [CrossRef]
- Smith, R.A.; Raugi, D.N.; Wu, V.H.; Zavala, C.G.; Song, J.; Diallo, K.M.; Seydi, M.; Gottlieb, G.S.; University of Washington-Dakar, H.I.V.S.G. Comparison of the Antiviral Activity of Bictegravir against HIV-1 and HIV-2 Isolates and Integrase Inhibitor-Resistant HIV-2 Mutants. Antimicrob. Agents Chemother. 2019, 63. [Google Scholar] [CrossRef] [Green Version]
- Tsiang, M.; Jones, G.S.; Goldsmith, J.; Mulato, A.; Hansen, D.; Kan, E.; Tsai, L.; Bam, R.A.; Stepan, G.; Stray, K.M.; et al. Antiviral Activity of Bictegravir (GS-9883), a Novel Potent HIV-1 Integrase Strand Transfer Inhibitor with an Improved Resistance Profile. Antimicrob. Agents Chemother. 2016, 60, 7086–7097. [Google Scholar] [CrossRef] [Green Version]
- Cavaco-Silva, J.; Abecasis, A.; Miranda, A.C.; Pocas, J.; Narciso, J.; Aguas, M.J.; Maltez, F.; Almeida, I.; Germano, I.; Diniz, A.; et al. HIV-2 integrase polymorphisms and longitudinal genotypic analysis of HIV-2 infected patients failing a raltegravir-containing regimen. PLoS ONE 2014, 9, e92747. [Google Scholar] [CrossRef] [Green Version]
- Garrett, N.; Xu, L.; Smit, E.; Ferns, B.; El-Gadi, S.; Anderson, J. Raltegravir treatment response in an HIV-2 infected patient: A case report. AIDS 2008, 22, 1091–1092. [Google Scholar] [CrossRef]
- Charpentier, C.; Roquebert, B.; Delelis, O.; Larrouy, L.; Matheron, S.; Tubiana, R.; Karmochkine, M.; Duval, X.; Chene, G.; Storto, A.; et al. Hot spots of integrase genotypic changes leading to HIV-2 resistance to raltegravir. Antimicrob. Agents Chemother. 2011, 55, 1293–1295. [Google Scholar] [CrossRef] [Green Version]
- Smith, R.A.; Wu, V.H.; Song, J.; Raugi, D.N.; Diallo Mbaye, K.; Seydi, M.; Gottlieb, G.S. Spectrum of Activity of Raltegravir and Dolutegravir Against Novel Treatment-Associated Mutations in HIV-2 Integrase: A Phenotypic Analysis Using an Expanded Panel of Site-Directed Mutants. J. Infect. Dis. 2022, 226, 497–509. [Google Scholar] [CrossRef]
- Smith, R.A.; Raugi, D.N.; Pan, C.; Coyne, M.; Hernandez, A.; Church, B.; Parker, K.; Mullins, J.I.; Sow, P.S.; Gottlieb, G.S.; et al. Three main mutational pathways in HIV-2 lead to high-level raltegravir and elvitegravir resistance: Implications for emerging HIV-2 treatment regimens. PLoS ONE 2012, 7, e45372. [Google Scholar] [CrossRef]
- Salgado, M.; Toro, C.; Simon, A.; Garrido, C.; Blanco, F.; Soriano, V.; Rodes, B. Mutation N155H in HIV-2 integrase confers high phenotypic resistance to raltegravir and impairs replication capacity. J. Clin. Virol. 2009, 46, 173–175. [Google Scholar] [CrossRef]
- Roquebert, B.; Blum, L.; Collin, G.; Damond, F.; Peytavin, G.; Leleu, J.; Matheron, S.; Chene, G.; Brun-Vezinet, F.; Descamps, D. Selection of the Q148R integrase inhibitor resistance mutation in a failing raltegravir containing regimen. AIDS 2008, 22, 2045–2046. [Google Scholar] [CrossRef] [PubMed]
- Requena, S.; Trevino, A.; Cabezas, T.; Garcia-Delgado, R.; Amengual, M.J.; Lozano, A.B.; Penaranda, M.; Fernandez, J.M.; Soriano, V.; de Mendoza, C. Drug resistance mutations in HIV-2 patients failing raltegravir and influence on dolutegravir response. J. Antimicrob. Chemother. 2017, 72, 2083–2088. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- White, K.L.; Osman, N.; Cuadra-Foy, E.; Brenner, B.G.; Shivakumar, D.; Campigotto, F.; Tsiang, M.; Morganelli, P.A.; Novikov, N.; Lazerwith, S.E.; et al. Long Dissociation of Bictegravir from HIV-1 Integrase-DNA Complexes. Antimicrob. Agents Chemother. 2021, 65. [Google Scholar] [CrossRef]
- Emu, B.; Fessel, J.; Schrader, S.; Kumar, P.; Richmond, G.; Win, S.; Weinheimer, S.; Marsolais, C.; Lewis, S. Phase 3 Study of Ibalizumab for Multidrug-Resistant HIV-1. N. Engl. J. Med. 2018, 379, 645–654. [Google Scholar] [CrossRef] [PubMed]
- Borrego, P.; Taveira, N. HIV-2 susceptibility to entry inhibitors. AIDS Rev. 2013, 15, 49–61. [Google Scholar]
- Borrego, P.; Calado, R.; Marcelino, J.M.; Pereira, P.; Quintas, A.; Barroso, H.; Taveira, N. An ancestral HIV-2/simian immunodeficiency virus peptide with potent HIV-1 and HIV-2 fusion inhibitor activity. AIDS 2013, 27, 1081–1090. [Google Scholar] [CrossRef] [Green Version]
- Xiong, S.; Borrego, P.; Ding, X.; Zhu, Y.; Martins, A.; Chong, H.; Taveira, N.; He, Y. A Helical Short-Peptide Fusion Inhibitor with Highly Potent Activity against Human Immunodeficiency Virus Type 1 (HIV-1), HIV-2, and Simian Immunodeficiency Virus. J. Virol. 2017, 91, e01839-16. [Google Scholar] [CrossRef] [Green Version]
- Xue, J.; Chong, H.; Zhu, Y.; Zhang, J.; Tong, L.; Lu, J.; Chen, T.; Cong, Z.; Wei, Q.; He, Y. Efficient treatment and pre-exposure prophylaxis in rhesus macaques by an HIV fusion-inhibitory lipopeptide. Cell 2022, 185, 131–144.e18. [Google Scholar] [CrossRef]
- Gulick, R.M.; Lalezari, J.; Goodrich, J.; Clumeck, N.; DeJesus, E.; Horban, A.; Nadler, J.; Clotet, B.; Karlsson, A.; Wohlfeiler, M.; et al. Maraviroc for previously treated patients with R5 HIV-1 infection. N. Engl. J. Med. 2008, 359, 1429–1441. [Google Scholar] [CrossRef] [Green Version]
- Sierra-Madero, J.; Di Perri, G.; Wood, R.; Saag, M.; Frank, I.; Craig, C.; Burnside, R.; McCracken, J.; Pontani, D.; Goodrich, J.; et al. Efficacy and safety of maraviroc versus efavirenz, both with zidovudine/lamivudine: 96-week results from the MERIT study. HIV Clin. Trials. 2010, 11, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Soriano, V.; Geretti, A.M.; Perno, C.F.; Fatkenheuer, G.; Pillay, D.; Reynes, J.; Tambussi, G.; Calvez, V.; Alcami, J.; Rockstroh, J. Optimal use of maraviroc in clinical practice. AIDS 2008, 22, 2231–2240. [Google Scholar] [CrossRef] [PubMed]
- Borrego, P.; Calado, R.; Marcelino, J.M.; Bartolo, I.; Rocha, C.; Cavaco-Silva, P.; Doroana, M.; Antunes, F.; Maltez, F.; Caixas, U.; et al. Baseline susceptibility of primary HIV-2 to entry inhibitors. Antivir. Ther. 2012, 17, 565–570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Visseaux, B.; Charpentier, C.; Hurtado-Nedelec, M.; Storto, A.; Antoine, R.; Peytavin, G.; Damond, F.; Matheron, S.; Brun-Vezinet, F.; Descamps, D.; et al. In vitro phenotypic susceptibility of HIV-2 clinical isolates to CCR5 inhibitors. Antimicrob. Agents Chemother. 2012, 56, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Espirito-Santo, M.; Santos-Costa, Q.; Calado, M.; Dorr, P.; Azevedo-Pereira, J.M. Susceptibility of HIV type 2 primary isolates to CCR5 and CXCR4 monoclonal antibodies, ligands, and small molecule inhibitors. AIDS Res. Hum. Retrovir. 2012, 28, 478–485. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armstrong-James, D.; Stebbing, J.; Scourfield, A.; Smit, E.; Ferns, B.; Pillay, D.; Nelson, M. Clinical outcome in resistant HIV-2 infection treated with raltegravir and maraviroc. Antiviral. Res. 2010, 86, 224–226. [Google Scholar] [CrossRef]
- Stegmann, S.; Manea, M.E.; Charpentier, C.; Damond, F.; Karmochkine, M.; Laureillard, D.; Si-Mohamed, A.; Weiss, L.; Piketty, C. Foscarnet as salvage therapy in HIV-2-infected patient with antiretroviral treatment failure. J. Clin. Virol. 2010, 47, 79–81. [Google Scholar] [CrossRef]
- Doring, M.; Borrego, P.; Buch, J.; Martins, A.; Friedrich, G.; Camacho, R.J.; Eberle, J.; Kaiser, R.; Lengauer, T.; Taveira, N.; et al. A genotypic method for determining HIV-2 coreceptor usage enables epidemiological studies and clinical decision support. Retrovirology 2016, 13, 85. [Google Scholar] [CrossRef] [Green Version]
- Le Hingrat, Q.; Collin, G.; Bachelard, A.; Ghosn, J.; Chalal, S.; Pacanowski, J.; Peytavin, G.; Weinheimer, S.; Marsolais, C.; Damond, F.; et al. Ibalizumab shows in-vitro activity against group A and group B HIV-2 clinical isolates. AIDS 2022, 36, 1055–1060. [Google Scholar] [CrossRef]
- Segal-Maurer, S.; DeJesus, E.; Stellbrink, H.-J.; Castagna, A.; Richmond, G.J.; Sinclair, G.I.; Siripassorn, K.; Ruane, P.J.; Berhe, M.; Wang, H.; et al. Capsid Inhibition with Lenacapavir in Multidrug-Resistant HIV-1 Infection. N. Engl. J. Med. 2022, 386, 1793–1803. [Google Scholar] [CrossRef]
- Link, J.O.; Rhee, M.S.; Tse, W.C.; Zheng, J.; Somoza, J.R.; Rowe, W.; Begley, R.; Chiu, A.; Mulato, A.; Hansen, D.; et al. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature 2020, 584, 614–618. [Google Scholar] [CrossRef]
- Singh, K.; Gallazzi, F.; Hill, K.J.; Burke, D.H.; Lange, M.J.; Quinn, T.P.; Neogi, U.; Sonnerborg, A. GS-CA Compounds: First-In-Class HIV-1 Capsid Inhibitors Covering Multiple Grounds. Front. Microbiol. 2019, 10, 1227. [Google Scholar] [CrossRef]
- Bester, S.M.; Wei, G.; Zhao, H.; Adu-Ampratwum, D.; Iqbal, N.; Courouble, V.V.; Francis, A.C.; Annamalai, A.S.; Singh, P.K.; Shkriabai, N.; et al. Structural and mechanistic bases for a potent HIV-1 capsid inhibitor. Science 2020, 370, 360–364. [Google Scholar] [CrossRef]
- Nka, A.D.; Bouba, Y.; Teto, G.; Semengue, E.N.J.; Takou, D.K.; Ngueko, A.M.K.; Fabeni, L.; Carioti, L.; Armenia, D.; Pabo, W.; et al. Evaluation of HIV-1 capsid genetic variability and lenacapavir (GS-6207) drug resistance-associated mutations according to viral clades among drug-naive individuals. J. Antimicrob. Chemother. 2022, 78, 272–275. [Google Scholar] [CrossRef]
- Marcelin, A.G.; Charpentier, C.; Jary, A.; Perrier, M.; Margot, N.; Callebaut, C.; Calvez, V.; Descamps, D. Frequency of capsid substitutions associated with GS-6207 in vitro resistance in HIV-1 from antiretroviral-naive and -experienced patients. J. Antimicrob. Chemother. 2020, 75, 1588–1590. [Google Scholar] [CrossRef]
- Margot, N.; Ram, R.; Rhee, M.; Callebaut, C. Absence of Lenacapavir (GS-6207) Phenotypic Resistance in HIV Gag Cleavage Site Mutants and in Isolates with Resistance to Existing Drug Classes. Antimicrob. Agents Chemother. 2021, 65, e02057-20. [Google Scholar] [CrossRef]
- Alves, A.J.S.; Alves, N.G.; Bartolo, I.; Fontinha, D.; Caetano, S.; Prudencio, M.; Taveira, N.; Pinho, E.M.T. Unveiling a family of spiro-beta-lactams with anti-HIV and antiplasmodial activity via phosphine-catalyzed [3+2] annulation of 6-alkylidene-penicillanates and allenoates. Front. Chem. 2022, 10, 1017250. [Google Scholar] [CrossRef]
- Bartolo, I.; Santos, B.S.; Fontinha, D.; Machado, M.; Francisco, D.; Sepodes, B.; Rocha, J.; Mota-Filipe, H.; Pinto, R.; Figueira, M.E.; et al. Spiro-beta-lactam BSS-730A Displays Potent Activity against HIV and Plasmodium. ACS Infect. Dis. 2021, 7, 421–434. [Google Scholar] [CrossRef]
Drug Class | Name | Development Phase | Resistance Mutations |
---|---|---|---|
Nucleoside Reverse Transcriptase Inhibitors | Lamivudine | Clinical use | K65R, K70E, L74V, Q151M, M184I/V |
Abacavir | Clinical use | ||
Zidovudine | Clinical use | ||
Emtricitabine | Clinical use | ||
Tenofovir | Clinical use | ||
Tenofovir alafenamide | Clinical use | ||
Azvudine | Investigational | not determined | |
Festinavir | Investigational | Q151M and M184V or K223R | |
Islatravir | Investigational | not determined | |
Protease Inhibitors | Lopinavir | Clinical use | V33I, K45R, V47A, I50V, I54M, T56V, V62A, A73G, I82F, I84V, F85L, L90M |
Darunavir | Clinical use | ||
Saquinavir | Clinical use | ||
Integrase Strand Transfer Inhibitors | Raltegravir | Clinical use | Q91R, E92A/Q, T97A, G140S, Y143G, Q148R, A153G, N155H, H156R, five amino acid insertions in R231 |
Elvitegravir | Clinical use | ||
Dolutegravir | Clinical use | ||
Bictegravir | Clinical use * | ||
Cabotegravir | Clinical use * | ||
Fusion Inhibitors | P3 | Investigational | not determined |
2P23 | Investigational | not determined | |
Lipopeptides (LP97; LP98) | Investigational | not determined | |
Ibalizumab | Clinical use * | not determined | |
CCR5 Antagonist | Maraviroc | Clinical use | not determined |
Capsid Inhibitor | Lenacapavir (LEN) | Clinical use * | not determined |
Other | Spiro-β-lactams | Investigational | not determined |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moranguinho, I.; Taveira, N.; Bártolo, I. Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds. Int. J. Mol. Sci. 2023, 24, 5905. https://doi.org/10.3390/ijms24065905
Moranguinho I, Taveira N, Bártolo I. Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds. International Journal of Molecular Sciences. 2023; 24(6):5905. https://doi.org/10.3390/ijms24065905
Chicago/Turabian StyleMoranguinho, Inês, Nuno Taveira, and Inês Bártolo. 2023. "Antiretroviral Treatment of HIV-2 Infection: Available Drugs, Resistance Pathways, and Promising New Compounds" International Journal of Molecular Sciences 24, no. 6: 5905. https://doi.org/10.3390/ijms24065905