Functional and Anatomical Outcomes of Anti-Vascular Endothelial Growth Factor Treatment for Exudative Age-Related Macular Degeneration with or without Obstructive Sleep Apnea
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Data Source and Ethics Declaration
4.2. Patient Selection and Study Design
4.3. Baseline Characteristics and Comorbidities
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ho, M.L.; Brass, S.D. Obstructive sleep apnea. Neurol. Int. 2011, 3, e15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zamarron, C.; Vanesa García, P.; Riveiro, A. Obstructive sleep apnea syndrome is a systemic disease. Current evidence. Eur. J. Intern. Med. 2008, 19, 390–398. [Google Scholar] [CrossRef]
- Ng, S.S.S.; Chan, T.-O.; To, K.-W.; Chan, K.K.P.; Ngai, J.; Tung, A.; Ko, F.W.S.; Hui, D.S.C. Prevalence of Obstructive Sleep Apnea Syndrome and CPAP Adherence in the Elderly Chinese Population. PLoS ONE 2015, 10, e0119829. [Google Scholar] [CrossRef] [PubMed]
- Peppard, P.E.; Young, T.; Barnet, J.H.; Palta, M.; Hagen, E.W.; Hla, K.M. Increased Prevalence of Sleep-Disordered Breathing in Adults. Am. J. Epidemiol. 2013, 177, 1006–1014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Santos, M.; Hofmann, R.J. Ocular Manifestations of Obstructive Sleep Apnea. J. Clin. Sleep Med. 2017, 13, 1345–1348. [Google Scholar] [CrossRef] [Green Version]
- Al Saeed, A.A.; AlShabib, N.S.; Al Taisan, A.A.; Kreary, Y.A. Association of Retinal Vascular Manifestation and Obstructive Sleep Apnea (OSA): A Narrative Review. Clin. Ophthalmol. 2021, 15, 3315–3320. [Google Scholar] [CrossRef]
- Chang, A.C.; Fox, T.P.; Wang, S.; Wu, A.Y. Relationship between Obstructive Sleep Apnea and the Presence and Severity of Diabetic Retinopathy. Retina 2018, 38, 2197–2206. [Google Scholar] [CrossRef]
- Keenan, T.D.; Goldacre, R.; Goldacre, M.J. Associations between obstructive sleep apnoea, primary open angle glaucoma and age-related macular degeneration: Record linkage study. Br. J. Ophthalmol. 2017, 101, 155–159. [Google Scholar] [CrossRef]
- Han, X.; Lee, S.S.; Ingold, N.; McArdle, N.; Khawaja, A.P.; MacGregor, S.; Mackey, D.A. Associations of sleep apnoea with glaucoma and age-related macular degeneration: An analysis in the United Kingdom Biobank and the Canadian Longitudinal Study on Aging. BMC Med. 2021, 19, 104. [Google Scholar] [CrossRef]
- Nesmith, B.L.W.; Sherman, M.; Barak, Y.; Schaal, S. Treatment of obstructive sleep apnea with continuous positive airway pressure therapy improves functional and anatomical outcomes in exudative age related macular degeneration. Investig. Ophthalmol. Vis. Sci. 2015, 56, 3153. [Google Scholar]
- Schaal, S.; Sherman, M.P.; Nesmith, B.; Barak, Y. Untreated obstructive sleep apnea hinders response to bevacizumab in age-related macular degeneration. Retina 2016, 36, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Nesmith, B.L.; Ihnen, M.; Schaal, S. Poor responders to bevacizumab pharmacotherapy in age-related macular degeneration and in diabetic macular edema demonstrate increased risk for obstructive sleep apnea. Retina 2014, 34, 2423–2430. [Google Scholar] [CrossRef] [PubMed]
- Jarrett, S.G.; Boulton, M.E. Consequences of oxidative stress in age-related macular degeneration. Mol. Asp. Med. 2012, 33, 399–417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahn, S.M.; Lee, S.Y.; Hwang, S.Y.; Kim, S.W.; Oh, J.; Yun, C. Retinal vascular flow and choroidal thickness in eyes with early age-related macular degeneration with reticular pseudodrusen. BMC Ophthalmol. 2018, 18, 184. [Google Scholar] [CrossRef] [Green Version]
- Xin, C.; Wang, J.; Zhang, W.; Wang, L.; Peng, X. Retinal and choroidal thickness evaluation by SD-OCT in adults with obstructive sleep apnea-hypopnea syndrome (OSAS). Eye 2014, 28, 415–421. [Google Scholar] [CrossRef] [Green Version]
- Sun, M.H.; Lee, C.Y.; Liao, Y.J.; Sun, C.C. Nonarteritic anterior ischaemic optic neuropathy and its association with obstructive sleep apnoea: A health insurance database study. Acta Ophthalmol. 2019, 97, e64–e70. [Google Scholar] [CrossRef] [Green Version]
- Del Rio, R.; Munoz, C.; Arias, P.; Court, F.A.; Moya, E.A.; Iturriaga, R. Chronic intermittent hypoxia-induced vascular enlargement and VEGF upregulation in the rat carotid body is not prevented by antioxidant treatment. Am. J. Physiol. Lung Cell. Mol. Physiol. 2011, 301, L702–L711. [Google Scholar]
- Gonzaga, C.C.; Gaddam, K.K.; Ahmed, M.I.; Pimenta, E.; Thomas, S.J.; Harding, S.M.; Oparil, S.; Cofield, S.S.; Calhoun, D.A. Severity of obstructive sleep apnea is related to aldosterone status in subjects with resistant hypertension. J. Clin. Sleep Med. 2010, 6, 363–368. [Google Scholar] [CrossRef]
- Wu, C.Y.; Riangwiwat, T.; Rattanawong, P.; Nesmith, B.L.W.; Deobhakta, A. Association of obstructive sleep apnea with central serous chorioretinopathy and choroidal thickness: A systematic review and meta-analysis. Retina 2018, 38, 1642–1651. [Google Scholar] [CrossRef]
- Jonas, J.B.; Forster, T.M.; Steinmetz, P.; Schlichtenbrede, F.C.; Harder, B.C. Choroidal thickness in age-related macular degeneration. Retina 2014, 34, 1149–1155. [Google Scholar] [CrossRef]
- Chung, S.E.; Kang, S.W.; Lee, J.H.; Kim, Y.T. Choroidal Thickness in Polypoidal Choroidal Vasculopathy and Exudative Age-related Macular Degeneration. Ophthalmology 2011, 118, 840–845. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, H.; Yamagishi, T.; Yamazaki, T.; Kawasaki, R.; Kinoshita, S. Subfoveal choroidal thickness in typical age-related macular degeneration and polypoidal choroidal vasculopathy. Graefes Arch. Clin. Exp. Ophthalmol. 2011, 249, 1123–1128. [Google Scholar] [CrossRef] [PubMed]
- Ting, D.S.W.; Yanagi, Y.; Agrawal, R.; Teo, H.Y.; Seen, S.; Yeo, I.Y.S.; Mathur, R.; Chan, C.M.; Lee, S.Y.; Wong, E.Y.M.; et al. Choroidal Remodeling in Age-related Macular Degeneration and Polypoidal Choroidal Vasculopathy: A 12-month Prospective Study. Sci. Rep. 2017, 7, 7868. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Han, X.; Wu, H.; Huang, W. Choroidal thickness changes in obstructive sleep apnea syndrome: A systematic review and meta-analysis. Sleep Breath. 2016, 20, 369–378. [Google Scholar] [CrossRef] [PubMed]
- Ablonczy, Z.; Dahrouj, M.; Marneros, A.G. Progressive dysfunction of the retinal pigment epithelium and retina due to increased VEGF-A levels. FASEB J. 2014, 28, 2369–2379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakayama, L.F.; Tempaku, P.F.; Bergamo, V.C.; Polizelli, M.U.; Santos da Cruz, N.F.; Bittencourt, L.R.A.; Regatieri, C.V.S. Obstructive sleep apnea and the retina: A review. J. Clin. Sleep Med. 2021, 17, 1947–1952. [Google Scholar] [CrossRef] [PubMed]
- Zarbin, M.A. Current Concepts in the Pathogenesis of Age-Related Macular Degeneration. Arch. Ophthalmol. 2004, 122, 598–614. [Google Scholar] [CrossRef] [Green Version]
- Lin, P.W.; Lin, H.C.; Friedman, M.; Chang, H.W.; Salapatas, A.M.; Lin, M.C.; Chin, C.H. Effects of OSA Surgery on Ophthalmological Microstructures. Ann. Otol. Rhinol. Laryngol. 2019, 128, 938–948. [Google Scholar] [CrossRef]
- Fan, W.; Abdelfattah, N.S.; Uji, A.; Lei, J.; Ip, M.; Sadda, S.R.; Wykoff, C.C.; TREX-AMD Study Group. Subfoveal choroidal thickness predicts macular atrophy in age-related macular degeneration: Results from the TREX-AMD trial. Graefes Arch. Clin. Exp. Ophthalmol. 2018, 256, 511–518. [Google Scholar] [CrossRef]
- Metrangolo, C.; Donati, S.; Mazzola, M.; Fontanel, L.; Messina, W.; D’Alterio, G.; Rubino, M.; Radice, P.; Premi, E.; Azzolini, C. OCT Biomarkers in Neovascular Age-Related Macular Degeneration: A Narrative Review. J. Ophthalmol. 2021, 2021, 9994098. [Google Scholar] [CrossRef]
OSA | Non-OSA | ||||
---|---|---|---|---|---|
Variables | N | (%) | N | (%) | p-Value |
Gender | 0.889 | ||||
Male | 9 | (60.0) | 31 | (62.0) | |
Female | 6 | (40.0) | 19 | (38.0) | |
AMD age, years | 1.000 | ||||
50~65 | 3 | (20.0) | 10 | (20.0) | |
≥65 | 12 | (80.0) | 40 | (80.0) | |
mean (SD) | 71.8 | (7.5) | 71.3 | (6.8) | 0.824 |
Comorbidities | |||||
Arrhythmia | 4 | (26.7) | 3 | (6.0) | 0.024 |
CAD | 7 | (46.7) | 3 | (6.0) | 0.001 |
COPD | 1 | (6.7) | 2 | (4.0) | 0.551 |
DM | 5 | (33.3) | 12 | (24.0) | 0.512 |
Dementia | 1 | (6.7) | 0 | (0.0) | 0.231 |
Heart failure | 2 | (13.3) | 2 | (4.0) | 0.226 |
HTN | 12 | (80.0) | 13 | (26.0) | 0.001 |
Hyperlipidemia | 5 | (33.3) | 7 | (14.0) | 0.128 |
Stroke | 3 | (20.0) | 8 | (16.0) | 0.706 |
Obesity | 1 | (6.7) | 0 | (0.0) | 0.231 |
Variables | Eyes (OSA/Non-OSA) | OSA | Non-OSA | p-Value |
---|---|---|---|---|
Baseline | ||||
Log MAR | 15/50 | 1.0 (0.7, 1.3) | 1.0 (0.7, 1.3) | 0.582 |
CMT (μm) | 15/50 | 416.0 (326.0, 452.0) | 342.5 (284.0, 425.0) | 0.173 |
Presence of SRF | 15/50 | 10 (66.7) | 37 (74.0) | 0.743 |
Presence of IRC | 15/50 | 6 (40.0) | 27 (54.0) | 0.342 |
Presence of RPED | 15/50 | 7 (46.7) | 31 (62.0) | 0.291 |
EZ disruption | 15/50 | 5 (33.3) | 37 (74.0) | 0.004 |
Presence of HRDs (inner) | 15/50 | 1 (6.7) | 9 (18.0) | 0.431 |
Presence of HRDs (outer) | 15/50 | 9 (60.0) | 21 (42.0) | 0.220 |
Presence of SHRM (μm) | 15/50 | 0.145 | ||
0 | 9 (60.0) | 21 (42.0) | ||
<500 | 5 (33.3) | 13 (26.0) | ||
>500 | 1 (6.7) | 16 (32.0) | ||
Choroidal thickness (μm) | 15/50 | 233.0 (150.0, 275.0) | 300.0 (250.0, 350.0) | 0.003 |
1 month | ||||
Log MAR | 14/45 | 0.9 (0.7, 1.3) | 0.8 (0.5, 1.4) | 0.907 |
CMT (μm) | 14/45 | 313.0 (285.0, 359.0) | 265.0 (224.0, 314.0) | 0.030 |
Presence of SRF | 14/45 | 4 (28.6) | 26 (57.8) | 0.056 |
Presence of IRC | 14/45 | 4 (28.6) | 18 (40.0) | 0.440 |
Presence of RPED | 14/45 | 6 (42.9) | 27 (60.0) | 0.259 |
EZ disruption | 14/45 | 6 (42.9) | 32 (71.1) | 0.065 |
Presence of HRDs (inner) | 14/45 | 2 (14.3) | 11 (24.4) | 0.713 |
Presence of HRDs (outer) | 14/45 | 8 (57.1) | 20 (44.4) | 0.542 |
Presence of SHRM (μm) | 14/45 | 0.831 | ||
0 | 5 (35.7) | 20 (44.4) | ||
<500 | 5 (35.7) | 13 (28.9) | ||
>500 | 4 (28.6) | 12 (26.7) | ||
Choroidal thickness (μm) | 14/45 | 191.5 (100.0, 250.0) | 287.0 (250.0, 375.0) | <0.001 |
3 months | ||||
Log MAR | 15/46 | 0.7 (0.4, 1.3) | 0.9 (0.5, 1.3) | 0.409 |
CMT (μm) | 15/46 | 276.0 (231.0, 326.0) | 268.0 (231.0, 328.0) | 0.431 |
Presence of SRF | 15/46 | 0 (0.0) | 25 (54.4) | <0.001 |
Presence of IRC | 15/46 | 4 (26.7) | 17 (37.0) | 0.466 |
Presence of RPED | 15/46 | 5 (33.3) | 27 (58.7) | 0.088 |
EZ disruption | 15/46 | 7 (46.7) | 30 (65.2) | 0.202 |
Presence of HRDs (inner) | 15/46 | 2 (13.3) | 9 (19.6) | 0.716 |
Presence of HRDs (outer) | 15/46 | 5 (33.3) | 19 (41.3) | 0.763 |
Presence of SHRM (μm) | 15/46 | 0.144 | ||
0 | 10 (66.7) | 19 (41.3) | ||
<500 | 4 (26.7) | 14 (30.4) | ||
>500 | 1 (6.7) | 13 (28.3) | ||
Choroidal thickness (μm) | 15/46 | 200.0 (100.0, 250.0) | 275.0 (225.0, 325.0) | 0.002 |
Variables | Eyes (OSA/Non-OSA) | OSA | Non-OSA | p-Value |
---|---|---|---|---|
At 1 month from baseline | ||||
Delta changes in Log MAR | 14/45 | 0.0 (−0.3, 0.3) | 0.0 (−0.3, 0.1) | 0.620 |
Delta changes in CMT | 14/45 | −103.5 (−141.0, −37.0) | −55.0 (−124.0, −10.0) | 0.165 |
Changes in SRF | 14/45 | 0.431 | ||
no difference | 9 (64.3) | 35 (77.8) | ||
increase | 0 (0.0) | 1 (2.2) | ||
decrease | 5 (35.7) | 9 (20.0) | ||
Changes in IRC | 14/45 | 0.852 | ||
no difference | 12 (85.7) | 38 (84.4) | ||
increase | 0 (0.0) | 1 (2.2) | ||
decrease | 2 (14.3) | 6 (13.3) | ||
Changes in RPED | 14/45 | 0.444 | ||
no difference | 13 (92.9) | 36 (80.0) | ||
increase | 0 (0.0) | 4 (8.9) | ||
decrease | 1 (7.1) | 5 (11.1) | ||
Changes in EZ disruption | 14/45 | 0.364 | ||
no difference | 13 (92.9) | 35 (77.8) | ||
increase | 1 (7.1) | 5 (11.1) | ||
decrease | 0 (0.0) | 5 (11.1) | ||
Changes in HRDs (inner) | 14/45 | 0.513 | ||
no difference | 12 (85.7) | 34 (75.6) | ||
increase | 1 (7.1) | 9 (20.0) | ||
decrease | 1 (7.1) | 2 (4.4) | ||
Changes in HRDs (outer) | 14/45 | 0.658 | ||
no difference | 6 (42.9) | 25 (55.6) | ||
increase | 3 (21.4) | 9 (20.0) | ||
decrease | 5 (35.7) | 11 (24.4) | ||
Changes in SHRM | 14/45 | 0.013 | ||
no difference | 9 (64.3) | 37 (82.2) | ||
increase | 5 (35.7) | 3 (6.7) | ||
decrease | 0 (0.0) | 5 (11.1) | ||
Delta changes in choroidal thickness | 14/45 | −25.0 (−50.0, 0.0) | −25.0 (−50.0, 50.0) | 0.142 |
At 3 months from baseline | ||||
Delta changes in Log MAR | 15/46 | −0.1 (−0.4, 0.0) | 0.0 (−0.3, 0.2) | 0.590 |
Delta changes in CMT | 15/46 | −51.0 (−221.0, −17.0) | −46.5 (−180.0, −8.0) | 0.471 |
Changes in SRF | 15/46 | 0.009 | ||
no difference | 5 (33.3) | 33 (71.7) | ||
increase | 0 (0.0) | 2 (4.4) | ||
decrease | 10 (66.7) | 11 (23.9) | ||
Changes in IRC | 15/46 | 0.693 | ||
no difference | 11 (73.3) | 36 (78.3) | ||
increase | 1 (6.7) | 1 (2.2) | ||
decrease | 3 (20.0) | 9 (19.6) | ||
Changes in RPED | 15/46 | 0.284 | ||
no difference | 13 (86.7) | 32 (69.6) | ||
increase | 0 (0.0) | 6 (13.0) | ||
decrease | 2 (13.3) | 8 (17.4) | ||
Changes in EZ disruption | 15/46 | 0.221 | ||
no difference | 13 (86.7) | 36 (78.3) | ||
increase | 2 (13.3) | 3 (6.5) | ||
decrease | 0 (0.0) | 7 (15.2) | ||
Changes in HRDs (inner) | 15/46 | 0.781 | ||
no difference | 13 (86.7) | 37 (80.4) | ||
increase | 2 (13.3) | 8 (17.4) | ||
decrease | 0 (0.0) | 1 (2.2) | ||
Changes in HRDs (outer) | 15/46 | 0.769 | ||
no difference | 10 (66.7) | 27 (58.7) | ||
increase | 2 (13.3) | 10 (21.7) | ||
decrease | 3 (20.0) | 9 (19.6) | ||
Changes in SHRM | 15/46 | 0.785 | ||
no difference | 12 (80.0) | 35 (76.1) | ||
increase | 1 (6.7) | 6 (13.0) | ||
decrease | 2 (13.3) | 5 (10.9) | ||
Delta changes in choroidal thickness | 15/46 | −25.0 (−50.0, 0.0) | −16.5 (−32.0, 12.5) | 0.302 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, N.-N.; Chen, C.-Y.; Wang, J.-J.; Huang, H.-C.; Chen, W.-D.; Chen, C.-L.; Yang, Y.-H.; Lin, M.-H.; Kuo, T.-Y.; Lai, C.-H. Functional and Anatomical Outcomes of Anti-Vascular Endothelial Growth Factor Treatment for Exudative Age-Related Macular Degeneration with or without Obstructive Sleep Apnea. Int. J. Mol. Sci. 2023, 24, 7285. https://doi.org/10.3390/ijms24087285
Chen N-N, Chen C-Y, Wang J-J, Huang H-C, Chen W-D, Chen C-L, Yang Y-H, Lin M-H, Kuo T-Y, Lai C-H. Functional and Anatomical Outcomes of Anti-Vascular Endothelial Growth Factor Treatment for Exudative Age-Related Macular Degeneration with or without Obstructive Sleep Apnea. International Journal of Molecular Sciences. 2023; 24(8):7285. https://doi.org/10.3390/ijms24087285
Chicago/Turabian StyleChen, Nan-Ni, Chau-Yin Chen, Jin-Jhe Wang, Heng-Chiao Huang, Wei-Dar Chen, Ching-Lung Chen, Yao-Hsu Yang, Meng-Hung Lin, Ting-Yu Kuo, and Chien-Hsiung Lai. 2023. "Functional and Anatomical Outcomes of Anti-Vascular Endothelial Growth Factor Treatment for Exudative Age-Related Macular Degeneration with or without Obstructive Sleep Apnea" International Journal of Molecular Sciences 24, no. 8: 7285. https://doi.org/10.3390/ijms24087285