Creation of New Oregano Genotypes with Different Terpene Chemotypes via Inter- and Intraspecific Hybridization
Abstract
:1. Introduction
2. Results
2.1. Phenotypic Evaluation of 12 Oregano Genotypes and Construction of F1 Hybrids
2.2. Development and Application of SSRs in Six Hybrid Combinations
2.3. Identification of VOCs in the Leaves of Seven Parental Genotypes and 37 F1 Lines
2.3.1. Combination 1 (Omh × Ov; Six Hybrids, F1-1 to F1-6)
2.3.2. Combination 2 (Ovv × Ovh; Three Hybrids, F1-7 to F1-9)
2.3.3. Combination 3 (Omh × Ovc; 13 Hybrids, F1-10 to F1-22)
2.3.4. Combination 4 (Ovhs × Ovs; Five Hybrids, F1-23 to F1-27)
2.3.5. Combination 5 (Ovv × Ovs; Seven Hybrids, F1-28 to F1-34)
2.3.6. Combination 6 (Omh × Ovs; Three Hybrids, F1-35 to F1-37)
3. Discussion
4. Materials and Methods
4.1. Plant Materials
4.2. Measurement of GST Density
4.3. Extraction of Essential Oil
4.4. Analysis of Essential Oil by GC-MS
4.5. Hybridization Design
4.6. DNA Extraction
4.7. Genotyping Using SSR Markers
4.8. Analysis of Leaf VOCs by HS-SPME
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gutierrez-Grijalva, E.P.; Leyva-Lopez, N.; Vazquez-Olivo, G.; Heredia, J.B. Oregano as a potential source of antidiabetic agents. J. Food Biochem. 2022, 46, e14388. [Google Scholar] [CrossRef] [PubMed]
- Papaioannou, C.; Stefanakis, M.K.; Batargias, C.; Kilias, G.; Anastasopoulos, E.; Katerinopoulos, H.E.; Papasotiropoulos, V. Genetic profiling and volatile oil content of oregano genotypes from Greece. Rev. Bras. Farmacogn. 2020, 30, 295–300. [Google Scholar] [CrossRef]
- Sharifi-Rad, M.; Yılmaz, Y.B.; Antika, G.; Salehi, B.; Tumer, T.B.; Venil, C.K.; Das, G.; Patra, J.K.; Karazhan, N.; Akram, M.; et al. Phytochemical constituents, biological activities, and health-promoting effects of the genus Origanum. Phytother. Res. 2021, 35, 95–121. [Google Scholar] [CrossRef] [PubMed]
- Kosakowska, O.; Weglarz, Z.; Pióro-Jabrucka, E.; Przybyl, J.L.; Krasniewska, K.; Gniewosz, M.; Baczek, K. Antioxidant and antibacterial activity of essential oils and hydroethanolic extracts of greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare). Molecules 2021, 26, 988. [Google Scholar] [CrossRef]
- Carvalho, C.B.; Madrona, G.S.; Mitcha, J.G.; Valero, M.V.; Guerrero, A.; Scapim, M.R.D.; Yamashita, F.; Do Prado, I.N. Effect of active packaging with oregano oil on beef burgers with low sodium content. Acta Sci.-Technol. 2020, 42, e42892. [Google Scholar] [CrossRef] [Green Version]
- Lages, L.; Radunz, M.; Goncalves, B.T.; da Rosa, R.S.; Fouchy, M.V.; da Conceicao, R.D.D.; Gularte, M.A.; Mendonça, C.R.B.; Gandra, E.A. Microbiological and sensory evaluation of meat sausage using thyme (Thymus vulgaris L.) essential oil and powdered beet juice (Beta vulgaris L., Early Wonder cultivar). LWT 2021, 148, 111794. [Google Scholar] [CrossRef]
- Amer, S.A.; Tolba, S.A.; AlSadek, D.M.M.; Fattah, D.M.A.; Hassan, A.M.; Metwally, A.E. Effect of supplemental glycerol monolaurate and oregano essential oil blend on the growth performance, intestinal morphology, and amino acid digestibility of broiler chickens. BMC Vet. Res. 2021, 17, 312. [Google Scholar] [CrossRef]
- Guo, G.X.; Li, K.X.; Zhu, Q.H.; Zhao, C.Y.; Li, C.; He, Z.L.; Hu, S.N.; Ren, Y. Improvements of immune genes and intestinal microbiota composition of turbot (Scophthalmus maximus) with dietary oregano oil and probiotics. Aquaculture 2022, 547, 737442. [Google Scholar] [CrossRef]
- Li, C.Y.; Niu, J.L.; Liu, Y.X.; Li, F.C.; Liu, L. The effects of oregano essential oil on production performance and intestinal barrier function in growing Hyla rabbits. Ital. J. Anim. Sci. 2021, 20, 2165–2173. [Google Scholar] [CrossRef]
- Hao, Y.P.; Kang, J.M.; Yang, R.; Li, H.; Cui, H.; Bai, H.T.; Tsitsilin, A.; Li, J.; Shi, L. Multidimensional exploration of essential oils generated via eight oregano cultivars: Compositions, chemodiversities, and antibacterial capacities. Food Chem. 2022, 374, 131629. [Google Scholar] [CrossRef]
- Mora-Zuniga, A.E.; Trevino-Garza, M.Z.; Guerra, C.A.A.; Rodriguez, S.A.G.; Castillo, S.; Martinez-Rojas, E.; Rodriguez-Rodriguez, J.; Báez-González, J.G. Comparison of chemical composition, physicochemical parameters, and antioxidant and antibacterial activity of the essential oil of cultivated and wild Mexican oregano poliomintha longiflora gray. Plants-Basel 2022, 11, 1785. [Google Scholar] [CrossRef] [PubMed]
- Weglarz, Z.; Kosakowska, O.; Przybyl, J.L.; Pioro-Jabrucka, E.; Baczek, K. The quality of Greek oregano (O. vulgare L. subsp. hirtum (Link) Ietswaart) and common oregano (O. vulgare L. subsp. vulgare) cultivated in the temperate climate of central Europeek oregano (O. vulgare L. subsp. Foods 2020, 9, 1671. [Google Scholar] [CrossRef]
- Reyes-Becerril, M.; Gijon, D.; Angulo, M.; Vazquez-Martinez, J.; Lopez, M.G.; Junco, E.; Armenta, J.; Guerra, K.; Angulo, C. Composition, antioxidant capacity, intestinal, and immunobiological effects of oregano (Lippia palmeri Watts) in goats: Preliminary in vitro and in vivo studies. Trop. Anim. Health. Prod. 2021, 53, 101. [Google Scholar] [CrossRef] [PubMed]
- Sokolova, O.; Sivicka, I.; Krivmane, B.; Karklina, K. First report of Truncatella angustata causing leaf spot on oregano (Origanum vulgare) in Latvia. J. Phytopathol. 2022, 170, 167–175. [Google Scholar] [CrossRef]
- Al-Hijazeen, M.; Mendonca, A.; Lee, E.J.; Ahn, D.U.; White, S. Fate of natural bacterial flora, and artificially inoculated Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella enterica in raw ground chicken meat with added oregano oil or tannic acid alone or combined. Food Control. 2022, 139, 109059. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Przychodna, M.; Sopata, S.; Bodalska, A.; Fecka, I. Thymol and thyme essential oil-new insights into selected therapeutic applications. Molecules 2020, 25, 4125. [Google Scholar] [CrossRef]
- Moghrovyan, A.; Parseghyan, L.; Sevoyan, G.; Darbinyan, A.; Sahakyan, N.; Gaboyan, M.; Karabekian, Z.; Voskanyan, A. Antinociceptive, anti-inflammatory, and cytotoxic properties of Origanum vulgare essential oil, rich with β-caryophyllene and β-caryophyllene oxide. Korean J. Pain. 2022, 35, 140–151. [Google Scholar] [CrossRef]
- Kambire, D.A.; Boti, J.B.; Yapi, T.A.; Ouattara, Z.A.; Bighelli, A.; Casanova, J.; Tomi, F. New natural oxygenated sesquiterpenes and chemical composition of leaf essential oil from Ivoirian Isolona dewevrei (De Wild. & T. Durand) Engl. & Diels. Molecules 2020, 25, 5613. [Google Scholar] [CrossRef]
- Kokkini, S.; Karousou, R.; Hanlidou, E.; Lanaras, T. Essential oil composition of Greek (Origanum vulgare ssp. hirtum) and Turkish (O. onites) oregano: A tool for their distinction. J. Essent. Oil Res. 2004, 16, 334–338. [Google Scholar] [CrossRef]
- Figuérédo, G.; Chalchat, J.C.; Pasquier, B. Studies of mediterranean oregano population IV-chemical composition of essential oils of hybrids Origanum × majoricum Cambassedes from France, Origanum × intercedens Rechinger and Origanum × minoanum Davis from Turkey and Crete. J. Essent. Oil Res. 2005, 17, 296–300. [Google Scholar] [CrossRef]
- Napoli, E.; Giovino, A.; Carrubba, A.; Siong, V.H.Y.; Rinoldo, C.; Nina, O.; Ruberto, G. Variations of essential oil constituents in oregano Origanum vulgare subsp. viridulum (=O. heracleoticum) over cultivation cycles. Plants 2020, 9, 1174. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Burton, D.; Parra, F.; Lopez, J.; Munoz, P.; Escobar, H.; Parra, C. Antioxidant and antibacterial capacities of Origanum vulgare L. essential oil from the Arid Andean Region of Chile and its chemical characterization by GC-MS. Metabolites 2020, 10, 414. [Google Scholar] [CrossRef] [PubMed]
- Franz, G.; Novak, J. Breeding of Oregano. In Oregano: The Genera Origanum and Lippia; Kintzios, E.S., Ed.; CRC Press: Boca Raton, FL, USA, 2002; pp. 163–174. [Google Scholar] [CrossRef]
- Reichert, W.; Patel, H.; Mazzei, C.; Park, C.H.; Juliani, R.; Simon, J.E. Two new high essential oil and carvacrol yielding oregano (Origanum vulgare) cultivars Pierre and Eli. Hortscience 2021, 56, 1610–1613. [Google Scholar] [CrossRef]
- Brindha, N.; John, A.G.; Zhao, L.Q.; Qui, Z.Q.; Norman, C. Oregano Clonal Line Having High Levels of Carvacrol. US2014/0336421 A1, 7 May 2014. Available online: https://patents.justia.com/patent/9832966 (accessed on 5 December 2017).
- Sarrou, E.; Tsivelika, N.; Chatzopoulou, P.; Tsakalidis, G.; Menexes, G.; Mavromatis, A. Conventional breeding of Greek oregano (Origanum vulgare ssp. hirtum) and development of improved cultivars for yield potential and essential oil quality. Euphytica 2017, 213, 104. [Google Scholar] [CrossRef]
- Torres, L.E.; Brunetti, P.C.; Baglio, C.; Bauzá, P.G.; Chaves, A.G.; Massuh, Y.; Ocaño, S.F.; Ojeda, M.S. Field evaluation of twelve clones of oregano grown in the main production areas of Argentina: Identification of quantitative trait with the highest discriminant value. Int. Sch. Res. Not. 2012, 2012, 349565. [Google Scholar] [CrossRef] [Green Version]
- Pérez-Conesa, D.; Cao, J.; Chen, L.; McLandsborough, L.; Weiss, J. Inactivation of Listeria monocytogenes and Escherichia coli O157:H7 biofilms by micelle-encapsulated eugenol and carvacrol. J. Food Protect. 2011, 74, 55–62. [Google Scholar] [CrossRef]
- Dias, C.J.; Costa, H.A.; Dias-Filho, C.A.A.; Ferreira, A.C.; Rodrigues, B.; Irigoyen, M.C.; Borges, A.C.R.; de Andadre Martins, V.; Vidal, F.C.B.; Ribeiro, R.M.; et al. Carvacrol reduces blood pressure, arterial responsiveness and increases expression of MAS receptors in spontaneously hypertensive rats. Eur. J. Pharmacol. 2022, 917, 174717. [Google Scholar] [CrossRef] [PubMed]
- Jayakumar, S.; Madankumar, A.; Asokkumar, S.; Raghunandhakumar, S.; Gokula dhas, K.; Kamaraj, S.; Josephine Divya, M.G.; Devaki, T. Potential preventive effect of carvacrol against diethylnitrosamine-induced hepatocellular carcinoma in rats. Mol. Cell. Biochem. 2012, 360, 51–60. [Google Scholar] [CrossRef]
- Gostimsky, S.A.; Kokaeva, Z.G.; Konovalov, F.A. Studying plant genome variation using molecular markers. Russ. J. Genet. 2005, 41, 378–388. [Google Scholar] [CrossRef]
- Nadeem, M.A.; Nawaz, M.A.; Shahid, M.Q.; Doğan, Y.; Comertpay, G.; Yıldız, M.; Hatipoğlu, R.; Ahmad, F.; Alsaleh, A.; Labhane, N.; et al. DNA molecular markers in plant breeding: Current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotec. Eq. 2018, 32, 261–285. [Google Scholar] [CrossRef] [Green Version]
- Hasan, N.; Choudhary, S.; Naaz, N.; Sharma, N.; Laskar, R.A. Recent advancements in molecular marker-assisted selection and applications in plant breeding programmes. J. Genet. Eng. Biotechnol. 2021, 19, 128. [Google Scholar] [CrossRef] [PubMed]
- Pandey, M.; Kumar, R.; Srivastava, P.; Agarwal, S.; Srivastava, S.; Nagpure, N.S.; Jena, J.K.; Kushwaha, B. WGSSAT: A high-throughput computational pipeline for mining and annotation of SSR markers from whole genomes. J. Hered. 2018, 109, 339–343. [Google Scholar] [CrossRef] [Green Version]
- Poland, J.A.; Rife, T.W. Genotyping-by-sequencing for plant breeding and genetics. Plant. Genome 2012, 5, 92–102. [Google Scholar] [CrossRef] [Green Version]
- Hashemifar, Z.; Rahimmalek, M. Genetic structure and variation in Perovskia abrotanoides Karel and P. atriplicifolia as revealed by molecular and morphological markers. Sci. Hortic. 2018, 230, 169–177. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Novak, J.; Lukas, B.; Bolzer, K.; Grausgruber-Groger, S.; Degenhardt, J. Identification and characterization of simple sequence repeat markers from a glandular Origanum vulgare expressed sequence tag. Mol. Ecol. Resour. 2008, 8, 599–601. [Google Scholar] [CrossRef]
- Katsiotis, A.; Nikoloudakis, N.; Linos, A.; Drossou, A.; Constantinidis, T. Phylogenetic relationships in Origanum spp. based on rDNA sequences and intra-genetic variation of Greek O. vulgare subsp. hirtum revealed by RAPD. Sci. Hortic. 2009, 121, 103–108. [Google Scholar] [CrossRef]
- Lukas, B.; Schmiderer, C.; Novak, J. Phytochemical diversity of Origanum vulgare L. subsp vulgare (Lamiaceae) from Austria. Biochem. Syst. Ecol. 2013, 50, 106–113. [Google Scholar] [CrossRef]
- Ince, A.D.; Karaca, M.; Elmasulu, S.Y. New microsatellite and CAPS-microsatellite markers for clarifying taxonomic and phylogenetic relationships within Origanum L. Mol. Breed. 2014, 34, 643–654. [Google Scholar] [CrossRef]
- Martinez-Nataren, D.A.; Parra-Tabla, V.; Dzib, G.; Calvo-Irabien, L.M. Morphology and density of glandular trichomes in populations of Mexican oregano (Lippia graveolens HBK, Verbenaceae), and the relationship between trichome density and climate. J. Torrey Bot. Soc. 2011, 138, 134–144. [Google Scholar] [CrossRef]
- Diaz-Maroto, M.C.; Pérez-Coello, M.S.; Vinas, M.A.G.; Cabezudo, M.D. Influence of drying on the flavor quality of spearmint (Mentha spicata L.). J. Agric. Food Chem. 2003, 51, 1265–1269. [Google Scholar] [CrossRef]
- Ram, D.; Ram, M.; Singh, R. Optimization of water and nitrogen application to menthol mint (Mentha arvensis L.) through sugarcane trash mulch in a sandy loam soil of semi-arid subtropical climate. Bioresour. Technol. 2006, 97, 886–893. [Google Scholar] [CrossRef]
- Brada, M.; Saadi, A.; Wathelet, J.P.; Lognay, G. The essential oils of Origanum majorana L. and Origanum floribundum Munby in Algeria. J. Essent. Oil Bear. Plants 2012, 15, 497–502. [Google Scholar] [CrossRef]
- Quiroga, P.R.; Grosso, N.R.; Lante, A.; Lomolino, G.; Zygadlo, J.A.; Nepote, V. Chemical composition, antioxidant activity and anti-lipase activity of Origanum vulgare and Lippia turbinata essential oils. Int. J. Food Sci. Technol. 2013, 48, 642–649. [Google Scholar] [CrossRef]
- Atti-Santos, A.C.; Rossato, M.; Pauletti, G.F.; Rota, L.D.; Rech, J.C.; Pansera, M.R.; Agostini, F.; Serafini, L.A.; Moyna, P. Physico-chemical evaluation of Rosmarinus officinalis L. essential oils. Braz. Arch. Biol. Technol. 2005, 48, 1035–1039. [Google Scholar] [CrossRef] [Green Version]
- Adlard, E.R. Handbook of Essential Oils. Science, Technology and Applications. Chromatographia 2010, 72, 1021. [Google Scholar] [CrossRef]
- Kim, M.; Moon, J.C.; Kim, S.; Sowndhararajan, K. Morphological, chemical, and genetic characteristics of Korean native thyme Bak-Ri-Hyang (Thymus quinquecostatus Celak.). Antibiotics 2020, 9, 289. [Google Scholar] [CrossRef]
- Bendif, H.; Peron, G.; Miara, M.D.; Sut, S.; Dall’Acqua, S.; Flamini, G.; Maggi, F. Total phytochemical analysis of Thymus munbyanus subsp. coloratus from Algeria by HS-SPME-GC-MS, NMR and HPLC-MSn studies. J. Pharmaceut. Biomed. 2020, 186, 113330. [Google Scholar] [CrossRef]
- Li, F.Y.; Liu, X.; Wu, S.Y.; Luo, Q.Y.; Yu, B.J. Hybrid identification for Glycine max and Glycine soja with SSR markers and analysis of salt tolerance. PeerJ 2019, 7, e6483. [Google Scholar] [CrossRef] [Green Version]
- Pontes, M.; Marques, J.C.; Câmara, J.S. Headspace solid-phase microextraction-gas chromatography-quadrupole mass spectrometric methodology for the establishment of the volatile composition of Passiflora fruit species. Microchem. J. 2009, 93, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.C.; Yu, S.Q.; Zhao, H.Y.; Li, L.X.; Li, Y.Q.; Tu, Y.; Jiang, L.S. Lipidomic profiling using GC and LC-MS/MS revealed the improved milk quality and lipid composition in dairy cows supplemented with citrus peel extract. Food Res. Int. 2022, 161, 111767. [Google Scholar] [CrossRef] [PubMed]
No. | Terpenoid | RI Cal 1 | RI Lit 2 | Relative Content (%) 3 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ov | Ova | Olr | Ovc | Ovv | Ovt | Ovgs | Ovag | Ovs | Ovh | Ovhs | Omh | ||||
1 | Carvacrol | 1300 | 1299 | - | - | 13.80 ± 0.04 e | 1.11 ± 0.22 j | 22.28 ± 0.38 c | 2.60 ± 0.01 g | 1.69 ± 0.15 i | 2.43 ± 0.01 g | 19.08 ± 0.25 d | 35.59 ± 0.89 b | 70.36 ± 0.49 a | 6.80 ± 0.04 f |
2 | Thymol | 1291 | 1291 | - | - | 22.95 ± 0.19 b | 1.26 ± 0.25 f | 0.36 ± 0.01 f | 0.95 ± 0.01 f | 16.98 ± 0.47 e | 1.15 ± 0.02 f | 32.89 ± 0.62 a | 21.34 ± 0.24 c | 0.55 ± 0.01 f | 20.17 ± 2.08 d |
3 | γ-Terpinene | 1057 | 1060 | - | 12.98 ± 0.09 c | 9.58 ± 0.02 e | 2.60 ± 0.50 h | 13.53 ± 0.30 c | 11.59 ± 0.01 d | 12.75 ± 1.88 c | 8.38 ± 0.06 f | 15.63 ± 0.27 b | 16.75 ± 0.08 a | 6.94 ± 0.10 g | 10.87 ± 0.06 d |
4 | p-Cymene | 1023 | 1025 | - | 12.30 ± 0.03 a | 8.68 ± 0.10 d | 1.36 ± 0.26 j | 9.25 ± 0.06 c | 11.68 ± 0.04 b | 4.79 ± 0.43 h | 6.71 ± 0.02 g | 8.65 ± 0.16 d | 7.45 ± 0.19 e | 7.02 ± 0.05 f | 2.84 ± 0.01 i |
5 | β-Caryophyllene | 1417 | 1419 | 16.24 ± 1.68 a | 1.91 ± 0.02 c | 3.53 ± 0.04 c | 12.55 ± 0.12 b | 3.16 ± 0.02 c | 1.84 ± 0.01 c | 3.32 ± 0.30 c | 1.88 ± 0.01 c | 0.70 ± 0.01 c | 0.70 ± 0.01 c | 2.00 ± 0.08 c | 2.52 ± 0.01 c |
6 | Sabinene hydrate | 1097 | 1077 | - | - | - | - | - | - | 8.67 ± 0.23 b | 7.83 ± 0.07 b | - | - | - | 10.71 ± 1.78 a |
7 | α-Farnesene | 1508 | 1508 | 3.76 ± 0.08 c | 1.41 ± 0.02 d | - | 9.06 ± 0.75 a | - | 1.58 ± 0.01 d | 3.90 ± 0.34 c | 7.70 ± 0.59 b | - | - | - | - |
8 | Linalool | 1099 | 1099 | 1.40 ± 0.25 d | 26.50 ± 0.26 a | - | 1.35 ± 0.28 d | - | 23.18 ± 0.17 b | 1.17 ± 0.10 d | 10.00 ± 1.32 c | 0.33 ± 0.02 e | 0.38 ± 0.02 e | - | 1.12 ± 0.01 d |
9 | Sabinene | 973 | 974 | 1.61 ± 0.16 g | - | 3.44 ± 0.10 d e | 8.88 ± 0.73 a | 7.72 ± 0.01 b | - | 4.19 ± 0.37 c | 2.42 ± 0.01 f | 3.04 ± 1.46 e f | 1.46 ± 0.11 g | - | 3.91 ± 0.03 c d |
10 | 1-Octen-3-ol | 978 | 980 | - | 1.29 ± 0.01 b c | 1.05 ± 0.04 d | 1.20 ± 0.27 c | 1.42 ± 0.02 a b | 1.45 ± 0.01 a | - | - | 0.75 ± 0.02 e | 0.53 ± 0.06 f | 0.51 ± 0.01 f | - |
11 | Humulene | 1451 | 1454 | 4.85 ± 1.04 a | - | - | 1.96 ± 0.37 b | - | - | - | - | - | - | 0.23 ± 0.01 c | - |
12 | β-Ocimene | 1038 | 1037 | 7.11 ± 1.02 d | 16.81 ± 0.01 a | 2.20 ± 0.06 f | 10.32 ± 0.50 c | 11.94 ± 0.11 b | 16.90 ± 0.02 a | 5.15 ± 1.75 e | 16.00 ± 0.05 a | - | 1.54 ± 0.12 f | - | 1.45 ± 0.01 f |
13 | Terpinen-4-ol | 1175 | 1177 | 2.94 ± 1.03 d | - | 1.59 ± 0.04 e | 2.48 ± 0.45 d | 1.67 ± 0.01 e | - | 11.10 ± 0.98 b | 7.64 ± 0.04 c | 1.25 ± 0.03 e | 0.93 ± 0.09 e | 1.04 ± 0.02 e | 14.90 ± 0.03 a |
14 | α-Terpinene | 1015 | 1017 | - | 0.83 ± 0.03 h | 2.13 ± 0.08 f | 0.72 ± 0.13 h | 2.47 ± 0.03 e | 0.95 ± 0.01 h | 4.49 ± 0.40 b | 2.29 ± 0.02 e f | 3.67 ± 0.08 c | 3.25 ± 0.24 d | 1.77 ± 0.05 g | 6.56 ± 0.04 a |
15 | Germacrene D | 1480 | 1481 | 22.01 ± 2.95 a | 8.36 ± 0.03 d | 8.79 ± 0.03 d | 16.68 ± 0.08 b | 4.66 ± 0.03 e | 8.14 ± 0.03 d | 10.72 ± 0.95 c | 8.05 ± 0.17 d | 1.23 ± 0.05 f | 0.62 ± 0.06 f | 0.34 ± 0.10 f | 1.57 ± 0.06 f |
16 | Caryophyllene oxide | 1581 | 1581 | 13.51 ± 1.35 a | - | 0.72 ± 0.02 b c | 0.97 ± 0.18 b | - | - | - | - | - | - | - | - |
17 | 1,8-Cineole | 1029 | 1032 | 2.92 ± 0.99 d | - | - | - | - | - | - | - | - | - | - | - |
18 | Bicyclogermacrene | 1495 | 1495 | 3.38 ± 0.09 b | 1.59 ± 0.02 c d | 1.98 ± 0.02 c | 5.90 ± 0.63 a | 1.77 ± 0.02 c d | 1.53 ± 0.01 c d | 1.32 ± 0.12 d | 1.77 ± 0.02 c d | - | - | - | 0.86 ± 0.03 e |
19 | Cadinene | 1522 | 1518 | 1.05 ± 0.02 c | 2.22 ± 0.01 b | - | 4.97 ± 1.50 a | 1.50 ± 0.06 b c | - | - | - | - | - | - | - |
20 | Cadinol | 1640 | 1640 | - | 3.44 ± 0.05 b | - | 5.80 ± 0.89 a | 1.40 ± 0.01 c | - | - | - | - | - | - | - |
Characteristic | Combination 1 | Combination 2 | Combination 3 | Combination 4 | Combination 5 | Combination 6 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
♀ Omh | ♂ Ov | ♀ Ovv | ♂ Ovh | ♀ Omh | ♂ Ovc | ♀ Ovhs | ♂ Ovs | ♀ Ovv | ♂ Ovs | ♀ Omh | ♂ Ovs | |
Chemotype | Thymol | β-caryophyllene | Carvacrol | Carvacrol | Thymol | Germacrene D | Carvacrol | Thymol | Carvacrol | Thymol | Thymol | Thymol |
Essential oil yield (%) | 1.62 | 0.15 | 0.37 | 1.30 | 1.62 | 0.33 | 1.50 | 1.40 | 0.37 | 1.40 | 1.62 | 1.40 |
GST density (per cm2) | 439 | 194 | 411 | 761 | 439 | 400 | 900 | 1017 | 411 | 1017 | 439 | 1017 |
No. of lines | 7 | 4 | 13 | 5 | 7 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, M.; Liu, N.; Miao, J.; Zhang, Y.; Hao, Y.; Zhang, J.; Li, H.; Bai, H.; Shi, L. Creation of New Oregano Genotypes with Different Terpene Chemotypes via Inter- and Intraspecific Hybridization. Int. J. Mol. Sci. 2023, 24, 7320. https://doi.org/10.3390/ijms24087320
Sun M, Liu N, Miao J, Zhang Y, Hao Y, Zhang J, Li H, Bai H, Shi L. Creation of New Oregano Genotypes with Different Terpene Chemotypes via Inter- and Intraspecific Hybridization. International Journal of Molecular Sciences. 2023; 24(8):7320. https://doi.org/10.3390/ijms24087320
Chicago/Turabian StyleSun, Meiyu, Ningning Liu, Jiahui Miao, Yanan Zhang, Yuanpeng Hao, Jinzheng Zhang, Hui Li, Hongtong Bai, and Lei Shi. 2023. "Creation of New Oregano Genotypes with Different Terpene Chemotypes via Inter- and Intraspecific Hybridization" International Journal of Molecular Sciences 24, no. 8: 7320. https://doi.org/10.3390/ijms24087320
APA StyleSun, M., Liu, N., Miao, J., Zhang, Y., Hao, Y., Zhang, J., Li, H., Bai, H., & Shi, L. (2023). Creation of New Oregano Genotypes with Different Terpene Chemotypes via Inter- and Intraspecific Hybridization. International Journal of Molecular Sciences, 24(8), 7320. https://doi.org/10.3390/ijms24087320