Honey’s Yeast—New Source of Valuable Species for Industrial Applications
Abstract
:1. Introduction
2. Results and Discussion
2.1. Yeast Isolation and Identification
2.2. Growth of Yeasts Isolated from Honey on Different Carbon Sources
2.3. Value-Added Chemical Synthesis Using Yeast Isolated from Honey in Shake-Flask Screening
2.4. Bioreactor Studies
3. Materials and Methods
3.1. Honey Sample
3.2. Microorganism Isolation
3.3. Yeast Identification
3.4. API®/ID32
3.5. MALDI TOF/MS
3.6. rDNA Sequence-Based Identification
3.7. Microcultures
3.8. Media Compositions for Shake-Flask and Bioreactor Experiments
3.9. Culture Conditions for Inoculation, Shake-Flask and Bioreactor Experiments
3.10. Analytical Methods
3.11. Fermentation Parameter Calculations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Rao, P.V.; Krishnan, K.T.; Salleh, N.; Gan, S.H. Biological and therapeutic effects of honey produced by honey bees and stingless bees: A comparative review. Rev. Bras. Farmacognosia. 2016, 26, 657–664. [Google Scholar] [CrossRef] [Green Version]
- Meo, S.A.; Al-Asiri, S.A.; Mahesar, A.L.; Ansari, M.J. Role of honey in modern medicine. Saudi. J. Biol. Sci. 2017, 24, 975–978. [Google Scholar]
- Silva, B.; Biluca, F.C.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Caon, T.; Costa, A.C.O. In vitro anti-inflammatory properties of honey flavonoids: A review. Food Res. Int. 2021, 141, 110086. [Google Scholar] [CrossRef] [PubMed]
- Silva, B.; Biluca, F.C.; Mohr, E.T.B.; Caon, T.; Gonzaga, L.V.; Fett, R.; Dalmarco, E.M.; Costa, A.C.O. Effect of Mimosa scabrella Bentham honeydew honey on inflammatory mediators. J. Funct. Foods 2020, 72, 104034. [Google Scholar] [CrossRef]
- Chan-Zapata, I.; Segura-Campos, M.R. Honey and its protein components: Effects in the cancer immunology. J. Food Biochem. 2021, 45, e13613. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical composition, stability and authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef]
- Zamora, M.C.; Chirife, J. Determination of water activity change due to crystallization in honeys from Argentina. Food Control. 2006, 17, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Girolamo, F.D.; D’amato, A.; Righetti, P.G. Assessment of the floral origin of honey via proteomic tools. J. Proteom. 2012, 75, 3688–3693. [Google Scholar] [CrossRef]
- Isidorow, W.; Witkowski, S.; Iwaniuk, P.; Zambrzycka, M.; Swiecicka, I. Royal Jelly Aliphatic Acids Contribute to Antimicrobial Activity of Honey. J. Apic. Sci. 2018, 62, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Kunat-Budzyńska, M.; Rysiak, A.; Wiater, A.; Grąz, M.; Andrejko, M.; Budzyński, M.; Bryś, M.S.; Sudziński, M.; Tomczyk, M.; Gancarz, M.; et al. Chemical Composition and Antimicrobial Activity of New Honey Varietals. Int. J. Environ. Res. Public Health 2023, 20, 2458. [Google Scholar] [CrossRef]
- Olaitan, P.B.; Adeleke, O.E.; Ola, I.O. Honey: A reservoir for microorganisms and an inhibitory agent for microbes. Afr. Health Sci. 2007, 7, 159–165. [Google Scholar] [PubMed]
- Xiong, Z.R.; Sogin, J.H.; Worobo, R.W. Microbiome analysis of raw honey reveals important factors influencing the bacterial and fungal communities. Front. Microbiol. 2023, 13, 1099522. [Google Scholar] [CrossRef]
- Buzzini, P.; Turchetti, B.; Yurkov, A. Extremophilic yeasts: The toughest yeasts around? Yeast 2018, 35, 487–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chanchao, C. Antimicrobial activity by Trigona Laeviceps (stingless bee) honey from Thailand. Pak. J. Med. Sci. 2009, 25, 364–369. [Google Scholar]
- Grabowski, N.T.; Klein, G. Microbiology and foodborne pathogens in honey. Crit. Rev. Food Sci. Nutr. 2017, 57, 1852–1862. [Google Scholar]
- Pozo, M.I.; Jacquemyn, H. Addition of pollen increases growth of nectar-living yeasts. FEMS Microbiol. Lett. 2019, 366, fnz191. [Google Scholar] [CrossRef]
- Sinacori, M.; Francesca, N.; Alfonzo, A.; Cruciata, M.; Sannino, C.; Settanni, L.; Moschetti, G. Cultivable microorganisms associated with honeys of different geographical and botanical origin. Food Microbiol. 2014, 38, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Snowdon, J.A.; Cliver, D.O. Microorganisms in honey. Int. J. Food Microbiol. 1996, 31, 1–26. [Google Scholar] [CrossRef]
- Ohashi, K.; Chaleckis, R.; Takaine, M.; Wheelock, C.E.; Yoshida, S. Kynurenine aminotransferase activity of Aro8/Aro9 engage tryptophan degradation by producing kynurenic acid in Saccharomyces cerevisiae. Sci. Rep. 2017, 7, 12180. [Google Scholar] [CrossRef]
- Mor, A.; Tankiewicz-Kwedlo, A.; Krupa, A.; Pawlak, D. Role of kynurenine pathway in oxidative stress during neurodegenerative disorders. Cells 2021, 10, 1603. [Google Scholar] [CrossRef]
- Walczak, K.; Dąbrowski, W.; Langner, E.; Zgrajka, W.; Piłat, J.; Kocki, T.; Rzeski, W.; Turski, W.A. Kynurenic acid synthesis and kynurenine aminotransferases expression in colon derived normal and cancer cells. Scand. J. Gastroenterol. 2011, 46, 903–912. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.H.; Ha, S.E.; Park, M.Y.; Jeong, S.H.; Bhosale, P.B.; Abusaliya, A.; Kil Won, C.; Heo, J.D.; Ahn, M.; Seong, J.K.; et al. Identification of Kynurenic Acid-Induced Apoptotic Biomarkers in Gastric Cancer-Derived AGS Cells through Next-Generation Transcriptome Sequencing Analysis. Nutrients 2023, 15, 193. [Google Scholar] [CrossRef] [PubMed]
- Han, Q.; Cai, T.; Tagle, D.A.; Li, J. Structure, expression, and function of kynurenine aminotransferases in human and rodent brains. Cell. Mol. Life Sci. 2010, 67, 353–368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stone, T. Development and therapeutic potential of kynurenic acid and kynurenine derivatives for neuroprotection. Trends Pharmacol. Sci. 2000, 21, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Sorgdrager, F.J.H.; Vermeiren, Y.; Van Faassen, M.; van der Ley, C.; Nollen, E.A.A.; Kema, I.P.; De Deyn, P.P. Age- and disease-specific changes of the kynurenine pathway in Parkinson’s and Alzheimer’s disease. J. Neurochem. 2019, 151, 656–668. [Google Scholar] [CrossRef] [Green Version]
- Tabrizi, S.J.; Scahill, R.I.; Owen, G.; Durr, A.; Leavitt, B.R.; Roos, R.A.; Borowsky, B.; Landwehrmeyer, B.; Frost, C.; Johnson, H.; et al. Predictors of phenotypic progression and disease onset in premanifest and early-stage Huntington’s disease in the TRACK-HD study: Analysis of 36-month observational data. Lancet Neurol. 2013, 12, 637–649. [Google Scholar] [CrossRef]
- Dhakar, N.K.; Caldera, F.; Bessone, F.; Cecone, C.; Pedrazzo, A.R.; Cavall, R.; Dianzani, C.; Trotta, F. Evaluation of solubility enhancement, antioxidant activity, and cytotoxicity studies of kynurenic acid loaded cyclodextrin nanosponge. Carbohydr. Polym. 2019, 224, 115168. [Google Scholar] [CrossRef]
- Turski, M.P.; Turska, M.; Kocki, T.; Turski, W.A.; Paluszkiewicz, P. Kynurenic acid content in selected culinary herbs and spices. J. Chem. 2015, 2015, 617571. [Google Scholar] [CrossRef] [Green Version]
- Turska, M.; Paluszkiewicz, P.; Turski, W.A.; Parada-Turska, J. A review of the health benefits of food enriched with kynurenic acid. Nutrients 2022, 14, 4182. [Google Scholar] [CrossRef]
- Beretta, G.; Artali, R.; Caneva, E.; Orlandini, S.; Centini, M.; Facino, R.M. Quinoline Alkaloids in Honey: Further Analytical (HPLC-DAD-ESI-MS, Multidimensional Diffusion-Ordered NMR Spectroscopy), Theoretical and Chemometric Studies. J. Pharm. Biomed. Anal. 2009, 50, 432–439. [Google Scholar] [CrossRef]
- Wróbel-Kwiatkowska, M.; Turski, W.; Kocki, T.; Rakicka-Pustułka, M.; Rymowicz, W. An efficient method for production of kynurenic acid by Yarrowia lipolytica. Yeast 2020, 37, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, C.; Gökmen, V. Kinetic evaluation of the formation of tryptophan derivatives in the kynurenine pathway during wort fermentation using Saccharomyces pastorianus and Saccharomyces cerevisiae. Food Chem. 2019, 297, 124975. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, C.; Gökmen, V. Formation of amino acid derivatives in white and red wines during fermentation: Effects of non-Saccharomyces yeasts and Oenococcus Oeni. Food Chem. 2021, 343, 128415. [Google Scholar] [CrossRef]
- Rakicka-Pustułka, M.; Ziuzia, P.; Pierwoła, J.; Szymański, K.; Wróbel-Kwiatkowska, M.; Lazar, Z. The microbial production of kynurenic acid using Yarrowia lipolytica yeast growing on crude glycerol and soybean molasses. Front. Bioeng. Biotechnol. 2022, 10, 936137. [Google Scholar] [CrossRef]
- Rakicka, M.; Biegalska, A.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A.M. Polyol production from waste materials by genetically modified Yarrowia lipolytica. Bioresour. Technol. 2017, 243, 393–399. [Google Scholar] [CrossRef] [PubMed]
- Rywińska, A.; Juszczyk, P.; Wojtatowicz, M.; Rymowicz, W. Chemostat study of citric acid production from glycerol by Yarrowia lipolytica. J. Biotechnol. 2011, 152, 54–57. [Google Scholar] [CrossRef]
- Rzechonek, D.; Dobrowolski, A.; Rymowicz, W.; Mirończuk, A. Recent advantages in biological production of erythritol. Crit. Rev. Biotechnol. 2018, 38, 620–633. [Google Scholar] [CrossRef]
- Khatape, A.B.; Dastager, S.G.; Rangaswamy, V. An overview of erythritol production by yeast strains. FEMS Microbiol. Lett. 2022, 369, fnac107. [Google Scholar] [CrossRef]
- Martău, G.A.; Coman, V.; Vodnar, D.C. Recent advances in the biotechnological production of erythritol and mannitol. Crit. Rev. Biotechnol. 2020, 40, 608–622. [Google Scholar] [CrossRef]
- Tomaszewska, L.; Rywińska, A.; Gładkowski, G. Production of erythritol and mannitol by Yarrowia lipolytica yeast in media containing glycerol. J. Ind. Microbiol. Biotechnol. 2012, 39, 1333–1343. [Google Scholar] [CrossRef] [Green Version]
- Soetaert, W. Synthesis of D-Mannitol and L-Sorbose by Microbial Hydrogenation and Dehydrogenation of Monosaccharides. Ph.D. Thesis, University of Gent, Gent, Belgium, 1991. [Google Scholar]
- Zhang, M.; Gu, L.; Cheng, C.; Ma, J.; Xin, F.; Liu, J.; Wu, H.; Jiang, M. Recent advantages in microbial production of mannitol: Utilization of low-cost substrate, strain development and regulation strategies. World J. Microbiol. Biotechnol. 2018, 34, 34–41. [Google Scholar] [CrossRef] [PubMed]
- Börekçi, B.S.; Kaban, G.; Kaya, M. Citric Acid Production of Yeast: An Overview. EuroBiotech J. 2021, 5, 79–91. [Google Scholar] [CrossRef]
- Cassagne, C.; Normand, A.-C.; L’Ollivier, C.; Ranque, S.; Piarroux, R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016, 59, 678–690. [Google Scholar] [CrossRef] [PubMed]
- Bankar, A.V.; Kumar, A.R.; Zinjarde, S.S. Environmental and industrial applications of Yarrowia lipolytica. Appl. Microbiol. Biotechnol. 2009, 84, 847–865. [Google Scholar] [CrossRef] [PubMed]
- Lazar, Z.; Neuvéglise, C.; Rossignol, T.; Devillers, H.; Morin, N.; Robak, M.; Nicaud, J.M.; Crutz-Le Coq, A.M. Characterization of hexose transporters in Yarrowia lipolytica reveals new groups of Sugar Porters involved in yeast growth. Fungal Genet. Biol. 2017, 100, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Echeverrigaray, S.; Scariot, F.J.; Foresti, L.; Schwarz, L.V.; Rocha, R.K.M.; da Silva, G.P.; Moreira, J.P.; Delamare, A.P.L. Yeast biodiversity in honey produced by stingless bees raised in the highlands of southern Brazil. Int. J. Food Microbiol. 2021, 347, 109200. [Google Scholar] [CrossRef]
- Dobrowolski, A.; Drzymała, K.; Rzechonek, D.; Mituła, P.; Mirończuk, M.A. Lipid Production from Waste Materials in Seawater-Based Medium by the Yeast Yarrowia lipolytica. Front. Microbiol. 2019, 10, 547. [Google Scholar] [CrossRef] [Green Version]
- Mirończuk, M.A.; Rakicka, M.; Biegalska, A.; Rymowicz, W.; Dobrowolski, A. A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresour. Technol. 2015, 198, 445–455. [Google Scholar] [CrossRef]
- Mirończuk, A.M.; Biegalska, A.; Dobrowolski, A. Functional overexpression of genes involved in erythritol synthesis in the yeast Yarrowia lipolytica. Biotech. Biofuels. 2017, 10, 77. [Google Scholar] [CrossRef] [Green Version]
- Turski, M.P.; Turska, M.; Zgrajka, W.; Kuc, D.; Turski, W.A. Presence of kynurenic acid in food and honeybee products. Amino Acids. 2009, 36, 75–80. [Google Scholar] [CrossRef]
- Żubrowski, D.; Lazar, Z.; Robak, M. Preliminary choice of components concentration of sacharose medium for biosynthesis of citrate and invertase by Yarrowia lipolytica A-101-B56-5. Acta Sci. Pol. Biotechnol. 2013, 12, 31–40. [Google Scholar]
- Rywińska, A.; Marcinkiewicz, M.; Cibis, E.; Rymowicz, W. Optimization of medium composition for erythritol production from glycerol by Yarrowia lipolytica using response surface methodology. Prep. Biochem. Biotech. 2015, 45, 515–529. [Google Scholar] [CrossRef] [PubMed]
- Rakicka, M.; Kieroń, A.; Hapeta, P.; Neuvélise, C.; Lazar, Z. Sweet and sour potential of yeast from the Yarrowia clade. Biomass Bioenergy 2016, 92, 48–54. [Google Scholar] [CrossRef]
- Tomaszewska-Hetman, L.; Rywińska, A. Erythritol biosynthesis from glycerol by Yarrowia lipolytica yeast: Effect of osmotic pressure. Chem. Pap. 2015, 70, 272–283. [Google Scholar] [CrossRef]
- Cas, D.; Vigentini, I.; Vitalini, S.; Laganaro, A.; Iriti, M.; Paroni, R.; Foschino, R. Tryptophan derivatives by Saccharomyces cerevisiae EC1118: Evaluation, optimization, and production in a soybean-based medium. Int. J. Mol. Sci. 2021, 22, 472. [Google Scholar] [CrossRef]
- Deshpande, M.S.; Kulkarni, P.P.; Kumbhar, P.S.; Ghosalkar, A.R. Erythritol production from sugar based feedstocks by Moniliella pollinis using lysate of recycled cells as nutrients source. Process. Biochem. 2022, 112, 45–52. [Google Scholar] [CrossRef]
- Li, L.; Yang, T.; Guo, W.; Ju, X.; Hu, C.; Tang, B.; Fu, J.; Gu, J.; Zhang, H. Construction of an efficient mutant strain of Trichosporonoides oedocephalis with HOG1 gene deletion for production of erythritol. J. Microbiol. Biotechnol. 2016, 26, 700–709. [Google Scholar] [CrossRef] [Green Version]
- Song, K.H.; Lee, J.K.; Song, J.Y.; Baek, H.; Kim, S.Y.; Hyun, H.H. Production of mannitol by a novel strain of Candida magnoliae. Biotechnol. Lett. 2002, 24, 9–12. [Google Scholar] [CrossRef]
- Yang, L.B.; Zhan, X.B.; Zheng, Z.Y.; Wu, J.R.; Gao, M.J.; Lin, C.C. A novel osmotic pressure control fed-batch fermentation strategy for improvement of erythritol production by Yarrowia lipolytica from glycerol. Bioresour. Technol. 2014, 151, 120–127. [Google Scholar] [CrossRef]
- Carsanba, E.; Papanikolaou, S.; Fickers, P.; Agirman, B.; Erten, H. Citric Acid Production by Yarrowia lipolytica. In Non-Conventional Yeasts: From Basic Research to Application, 1st ed; Sibirny, A., Ed.; Springer: Cham, Switzerland, 2019; pp. 91–117. [Google Scholar]
- Knutsen, A.K.; Robert, V.; Poot, G.A.; Epping, W.; Figge, M.; Holst-Jensen, A.; Skaar, I.; Smith, M.T. Polyphasic re-examination of Yarrowia lipolytica strains and the description of three novel Candida species: Candida osloensis sp. nov., Candida alimentaria sp. nov. and Candida hollandica sp. nov. Int. J. Syst. Evol. Micr. 2007, 57, 2426–2435. [Google Scholar]
- Hoffman, C.S.; Winston, F. A ten-minute DNA preparation from yeast efficiently releases autonomous plasmids for transformation of Escherichia coli. Gene 1987, 57, 267–272. [Google Scholar] [CrossRef] [PubMed]
Strain No. | Color | Phenotype |
---|---|---|
1 | light beige | wrinkled |
2 | light beige | wrinkled |
3 | light beige | wrinkled |
4 | light beige | wrinkled |
5 | light beige | wrinkled |
6 | light beige | wrinkled |
7 | light beige | wrinkled |
8 | light beige | smooth |
9 | light beige | wrinkled |
10 | light beige | smooth |
11 | light beige | wrinkled |
12 | light beige | wrinkled |
13 | light beige | wrinkled |
14 | light beige | wrinkled |
15 | light beige | smooth |
Strain No. | Identification Profile of the Microorganism | ||||
---|---|---|---|---|---|
API 32C Test | MALDI TOF/MS Identification | rDNA Sequence-Based Identification | |||
Species | The Degree of Identification, % | Species | Identification Index Value a, % | Species | |
1 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 1.90 | Yarrowia lipolytica |
2 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 2.12 | Yarrowia lipolytica |
3 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 2.00 | Yarrowia lipolytica |
4 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 2.14 | Yarrowia lipolytica |
5 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 1.99 | Yarrowia lipolytica |
6 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 2.09 | Yarrowia lipolytica |
7 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 2.18 | Yarrowia lipolytica |
8 | Candida magnoliae | 86.4 | Candida magnoliae | 2.13 | Candida magnoliae |
Candida globosa | 13.4 | ||||
9 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 2.19 | Yarrowia lipolytica |
10 | Candida magnoliae | 98.7 | Candida magnoliae | 2.14 | Candida magnoliae |
11 | Candida lipolytica | 98.8 | Yarrowia lipolytica | 2.13 | Yarrowia lipolytica |
12 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 1.98 | Yarrowia lipolytica |
13 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 1.91 | Yarrowia lipolytica |
14 | Candida lipolytica | 99.9 | Yarrowia lipolytica | 1.97 | Yarrowia lipolytica |
15 | Candida magnoliae | 99.3 | Candida magnoliae | 1.86 | Starmerella magnoliae |
Metabolites | Strain No. | QX | Max. Concentration of Metabolite | QMET | YMET |
---|---|---|---|---|---|
g/L·h | g/L | mg/L·h a g/L h | mg/g b g/g | ||
Kynurenic Acid Production in Bioreactor | |||||
Kynurenic acid | 12 | 0.10 | 3.9 | 0.02 a | 0.1 |
Erythritol production in bioreactor | |||||
Erythritol | 9 | 0.22 | 32.6 | 0.34 | 0.33 |
Arabitol | 1.3 | 0.01 | 0.01 | ||
Mannitol | 4.8 | 0.05 | 0.05 | ||
Citric acid | 1.1 | 0.01 | 0.01 | ||
Mannitol production in bioreactor | |||||
Mannitol | 5 | 0.21 | 15.1 | 0.16 | 0.15 |
Arabitol | 1.6 | 0.01 | 0.02 | ||
Citric acid | 30.2 | 0.25 | 0.30 | ||
Citric acid production in bioreactor | |||||
Citric acid | 3 | 0.10 | 75.7 | 0.63 | 0.76 |
Arabitol | 2.05 | 0.17 | 0.02 | ||
Erythritol | 4.05 | 0.03 | 0.04 | ||
Mannitol | 7.15 | 0.06 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziuzia, P.; Janiec, Z.; Wróbel-Kwiatkowska, M.; Lazar, Z.; Rakicka-Pustułka, M. Honey’s Yeast—New Source of Valuable Species for Industrial Applications. Int. J. Mol. Sci. 2023, 24, 7889. https://doi.org/10.3390/ijms24097889
Ziuzia P, Janiec Z, Wróbel-Kwiatkowska M, Lazar Z, Rakicka-Pustułka M. Honey’s Yeast—New Source of Valuable Species for Industrial Applications. International Journal of Molecular Sciences. 2023; 24(9):7889. https://doi.org/10.3390/ijms24097889
Chicago/Turabian StyleZiuzia, Patrycja, Zuzanna Janiec, Magdalena Wróbel-Kwiatkowska, Zbigniew Lazar, and Magdalena Rakicka-Pustułka. 2023. "Honey’s Yeast—New Source of Valuable Species for Industrial Applications" International Journal of Molecular Sciences 24, no. 9: 7889. https://doi.org/10.3390/ijms24097889
APA StyleZiuzia, P., Janiec, Z., Wróbel-Kwiatkowska, M., Lazar, Z., & Rakicka-Pustułka, M. (2023). Honey’s Yeast—New Source of Valuable Species for Industrial Applications. International Journal of Molecular Sciences, 24(9), 7889. https://doi.org/10.3390/ijms24097889