Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection
Abstract
:1. Introduction
2. Results
2.1. Participants Characteristics
2.2. Host miRNAs in Saliva
2.3. Differential Expression of miRNAs
2.4. Biological Relevance to SARS-CoV-2
3. Discussion
4. Materials and Methods
4.1. Study Design
4.2. Study Definitions
4.3. Participants
4.4. Data and Sample Collection
4.5. RNA Processing
4.6. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Available online: https://covid.cdc.gov/covid-data-tracker/#datatracker-home (accessed on 7 March 2023).
- Available online: https://www.aap.org/en/pages/2019-novel-coronavirus-covid-19-infections/children-and-covid-19-state-level-data-report/ (accessed on 14 October 2022).
- Fernandes, D.M.; Oliveira, C.R.; Guerguis, S.; Eisenberg, R.; Choi, J.; Kim, M.; Abdelhemid, A.; Agha, R.; Agarwal, S.; Aschner, J.L.; et al. Severe Acute Respiratory Syndrome Coronavirus 2 Clinical Syndromes and Predictors of Disease Severity in Hospitalized Children and Youth. J. Pediatr. 2020, 230, 23–31.e10. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, L.R.; Rose, E.B.; Horwitz, S.M.; Collins, J.P.; Newhams, M.M.; Son, M.B.F.; Newburger, J.W.; Kleinman, L.C.; Heidemann, S.M.; Martin, A.A.; et al. Multisystem Inflammatory Syndrome in U.S. Children and Adolescents. N. Engl. J. Med. 2020, 383, 334–346. [Google Scholar] [CrossRef]
- Ranabothu, S.; Onteddu, S.; Nalleballe, K.; Dandu, V.; Veerapaneni, K.; Veerapandiyan, A. Spectrum of COVID-19 in children. Acta Paediatr. 2020, 109, 1899–1900. [Google Scholar] [CrossRef] [PubMed]
- Feldstein, L.R.; Tenforde, M.W.; Friedman, K.G.; Newhams, M.; Rose, E.B.; Dapul, H.; Soma, V.L.; Maddux, A.B.; Mourani, P.M.; Bowens, C.; et al. Overcoming COVID-19 Investigators. Characteristics and Outcomes of US Children and Adolescents with Multisystem Inflammatory Syndrome in Children (MIS-C) Compared With Severe Acute COVID-19. JAMA 2021, 325, 1074–1087. [Google Scholar] [CrossRef] [PubMed]
- Centers for Disease Control and Prevention. Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET). Available online: https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covid-net/purpose-methods.html (accessed on 13 March 2023).
- Marks, K.J.; Whitaker, M.; Anglin, O.; Milucky, J.; Patel, K.; Pham, H.; Chai, S.J.; Kirley, P.D.; Armistead, I.; McLafferty, S.; et al. COVID-NET Surveillance Team. Hospitalizations of Children and Adolescents with Laboratory-Confirmed COVID-19—COVID-NET, 14 States, July 2021–January 2022. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 271–278. [Google Scholar] [CrossRef]
- Diorio, C.; Henrickson, S.E.; Vella, L.A.; McNerney, K.O.; Chase, J.M.; Burudpakdee, C.; Lee, J.H.; Jasen, C.; Balamuth, F.; Barrett, D.M.; et al. Multisystem Inflammatory Syndrome in Children and COVID-19 are distinct presentations of SARS-CoV-2. J. Clin. Investig. 2020, 130, 5967–5975. [Google Scholar] [CrossRef]
- Önal, P.; Kılınç, A.A.; Aygün, F.D.; Aygün, F.; Durak, C.; Akkoç, G.; Ağbaş, A.; Elevli, M.; Çokuğraş, H. Diagnostic and Prognostic Biomarkers of Coronavirus Disease 2019 in Children. J. Trop. Pediatr. 2022, 68, fmac003. [Google Scholar] [CrossRef]
- Drury, J.L.; Chung, W.O. DNA methylation differentially regulates cytokine secretion in gingival epithelia in response to bacterial challenges. Pathog. Dis. 2015, 73, 1–6. [Google Scholar] [CrossRef]
- Modak, R.; Das Mitra, S.; Vasudevan, M.; Krishnamoorthy, P.; Kumar, M.; Bhat, A.V.; Bhuvana, M.; Ghosh, S.K.; Shome, B.R.; Kundu, T.K. Epigenetic response in mice mastitis: Role of histone H3 acetylation and microRNA(s) in the regulation of host inflammatory gene expression during Staphylococcus aureus infection. Clin. Epigenetics 2014, 6, 12. [Google Scholar] [CrossRef]
- Karouzakis, E.; Gay, R.E.; Gay, S.; Neidhart, M. Epigenetic control in rheumatoid arthritis synovial fibroblasts. Nat. Rev. Rheumatol. 2009, 5, 266–272. [Google Scholar] [CrossRef]
- Arbibe, L.; Sansonetti, P.J. Epigenetic regulation of host response to LPS: Causing tolerance while avoiding Toll errancy. Cell Host Microbe 2007, 1, 244–246. [Google Scholar] [CrossRef] [PubMed]
- Delcuve, G.P.; Khan, D.H.; Davie, J.R. Roles of histone deacetylases in epigenetic regulation: Emerging paradigms from studies with inhibitors. Clin. Epigenetics 2012, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Li, Y.; Zeng, J.; Wu, X.; Liu, X.; Wang, Y. Mycobacterium bovis BCG triggered MyD88 induces miR-124 feedback negatively regulates immune response in alveolar epithelial cells. PLoS ONE 2014, 9, e92419. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.J.; Si, R.H.; Liang, Y.H.; Ma, B.Q.; Jiang, Z.B.; Wang, B.; Gao, P. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J. Gastroenterol. 2016, 22, 3978–3991. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Mollenkopf, H.J.; Klemm, U.; Meyer, T.F. Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis. Proc. Natl. Acad. Sci. USA 2012, 109, E1153–E1162. [Google Scholar] [CrossRef]
- Ghorpade, D.S.; Leyland, R.; Kurowska-Stolarska, M.; Patil, S.A.; Balaji, K.N. MicroRNA-155 is required for Mycobacterium bovis BCG-mediated apoptosis of macrophages. Mol. Cell. Biol. 2012, 32, 2239–2253. [Google Scholar] [CrossRef]
- Martínez-Hernández, R.; De La Fuente, H.; Lamana, A.; Sampedro-Núñez, M.; Ramos-Levi, A.; Serrano-Somavilla, A.; García-Vicuña, R.; Ortiz, A.M.; Daudén, E.; Llamas-Velasco, M.; et al. Utility of circulating serum miRNA profiles to evaluate the potential risk and severity of immune-mediated inflammatory disorders. J. Autoimmun. 2020, 111, 102472. [Google Scholar] [CrossRef]
- Hussain, N.; Zhu, W.; Jiang, C.; Xu, J.; Wu, X.; Geng, M.; Hussain, S.; Cai, Y.; Xu, K.; Xu, P.; et al. Down-regulation of miR-10a-5p in synoviocytes contributes to TBX5-controlled joint inflammation. J. Cell. Mol. Med. 2018, 22, 241–250. [Google Scholar] [CrossRef]
- Hicks, S.D.; Johnson, J.; Carney, M.C.; Bramley, H.; Olympia, R.P.; Loeffert, A.C.; Thomas, N.J. Overlapping MicroRNA Expression in Saliva and Cerebrospinal Fluid Accurately Identifies Pediatric Traumatic Brain Injury. J. Neurotrauma 2018, 35, 64–72. [Google Scholar] [CrossRef]
- Johnson, J.J.; Loeffert, A.C.; Stokes, J.; Olympia, R.P.; Bramley, H.; Hicks, S.D. Association of Salivary MicroRNA Changes with Prolonged Concussion Symptoms. JAMA Pediatr. 2018, 172, 65–73. [Google Scholar] [CrossRef]
- Hicks, S.D.; Carpenter, R.L.; Wagner, K.E.; Pauley, R.; Barros, M.; Tierney-Aves, C.; Barns, S.; Greene, C.D.; Middleton, F.A. Saliva MicroRNA Differentiates Children with Autism from Peers with Typical and Atypical Development. J. Am. Acad. Child Adolesc. Psychiatry 2020, 59, 296–308. [Google Scholar] [CrossRef]
- Hoeke, L.; Sharbati, J.; Pawar, K.; Keller, A.; Einspanier, R.; Sharbati, S. Intestinal Salmonella typhimurium Infection Leads to miR-29a Induced Caveolin 2 Regulation. PLoS ONE 2013, 8, e67300. [Google Scholar] [CrossRef]
- Dorhoi, A.; Iannaccone, M.; Farinacci, M.; Faé, K.C.; Schreiber, J.; Moura-Alves, P.; Nouailles, G.; Mollenkopf, H.-J.; Oberbeck-Müller, D.; Jörg, S.; et al. MicroRNA-223 controls susceptibility to tuberculosis by regulating lung neutrophil recruitment. J. Clin. Investig. 2013, 123, 4836–4848. [Google Scholar] [CrossRef]
- Fang, L.; Hou, Y.; An, J.; Li, B.; Song, M.; Wang, X.; Sørensen, P.; Dong, Y.; Liu, C.; Wang, Y.; et al. Genome-Wide Transcriptional and Post-transcriptional Regulation of Innate Immune and Defense Responses of Bovine Mammary Gland to Staphylococcus aureus. Front. Cell. Infect. Microbiol. 2016, 6, 193. [Google Scholar] [CrossRef] [PubMed]
- Guterres, A.; de Azeredo Lima, C.H.; Miranda, R.L.; Gadelha, M.R. What is the potential function of microRNAs as biomarkers and therapeutic targets in COVID-19? Infect. Genet. Evol. 2020, 85, 104417. [Google Scholar] [CrossRef]
- Bartoszewski, R.; Dabrowski, M.; Jakiela, B.; Matalon, S.; Harrod, K.S.; Sanak, M.; Collawn, J.F. SARS-CoV-2 may regulate cellular responses through depletion of specific host miRNAs. Am. J. Physiol. Lung Cell. Mol. Physiol. 2020, 319, L444–L445. [Google Scholar] [CrossRef]
- Lam, W.-Y.; Yeung, A.C.-M.; Ngai, K.L.-K.; Li, M.-S.; To, K.-F.; Tsui, S.K.-W.; Chan, P.K.-S. Effect of avian influenza A H5N1 infection on the expression of microRNA-141 in human respiratory epithelial cells. BMC Microbiol. 2013, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Chan, E.Y.; Li, J.; Ni, C.; Peng, X.; Rosenzweig, E.; Tumpey, T.M.; Katze, M.G. MicroRNA expression and virulence in pandemic influenza virus-infected mice. J. Virol. 2010, 84, 3023–3032. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, R.; Daulatabad, S.V.; Srivastava, M.; Janga, S.C. Role of SARS-CoV-2 in altering the RNA binding protein and miRNA directed post-transcriptional regulatory networks in humans. Int. J. Mol. Sci. 2020, 21, 7090. [Google Scholar] [CrossRef] [PubMed]
- Keikha, R.; Hashemi-Shahri, S.; Jebali, A. The miRNA neuroinflammatory biomarkers in COVID-19 patients with different severity of illness. Neurologia 2021, in press. [CrossRef]
- Garnier, N.; Pollet, K.; Fourcot, M.; Caplan, M.; Marot, G.; Goutay, J.; Labreuche, J.; Soncin, F.; Boukherroub, R.; Hober, D.; et al. Lille COVID Research Network (LICORNE), Szunerits S, Poissy J, Engelmann I. Altered microRNA expression in severe COVID-19: Potential prognostic and pathophysiological role. Clin. Transl. Med. 2022, 12, e899. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Gao, Y.; Li, Z.; Miao, Y.; Huang, Z.; Liu, X.; Xie, L.; Li, H.; Wen, W.; Zheng, Y.; et al. The noncoding and coding transcriptional landscape of the peripheral immune response in patients with COVID-19. Clin. Transl. Med. 2020, 10, e200. [Google Scholar] [CrossRef] [PubMed]
- Gedikbasi, A.; Adas, G.; Isiksacan, N.; Yasar, K.K.; Unlu, E.C.; Yilmaz, R.; Hergunsel, G.O.; Cukurova, Z. The Effect of Host miRNAs on Prognosis in COVID-19: miRNA-155 May Promote Severity via Targeting Suppressor of Cytokine Signaling 1 (SOCS1) Gene. Genes 2022, 13, 1146. [Google Scholar] [CrossRef] [PubMed]
- Farr, R.J.; Rootes, C.L.; Rowntree, L.C.; Nguyen, T.H.O.; Hensen, L.; Kedzierski, L.; Cheng, A.C.; Kedzierska, K.; Au, G.G.; Marsh, G.A.; et al. Altered microRNA expression in COVID-19 patients enables identification of SARS-CoV-2 infection. PLoS Pathog. 2021, 17, e1009759. [Google Scholar] [CrossRef]
- Fernández-Pato, A.; Virseda-Berdices, A.; Resino, S.; Ryan, P.; Martínez-González, O.; Pérez-García, F.; Martin-Vicente, M.; Valle-Millares, D.; Brochado-Kith, O.; Blancas, R.; et al. Plasma miRNA profile at COVID-19 onset predicts severity status and mortality. Emerg. Microbes Infect. 2022, 11, 676–688. [Google Scholar] [CrossRef]
- Wilson, J.C.; Kealy, D.; James, S.R.; Plowman, T.; Newling, K.; Jagger, C.; Filbey, K.; Mann, E.R.; Konkel, J.E.; Menon, M.; et al. Integrated miRNA/cytokine/chemokine profiling reveals severity-associated step changes and principal correlates of fatality in COVID-19. IScience 2022, 25, 103672. [Google Scholar] [CrossRef]
- Giannella, A.; Riccetti, S.; Sinigaglia, A.; Piubelli, C.; Razzaboni, E.; Di Battista, P.; Agostini, M.; Dal Molin, E.; Manganelli, R.; Gobbi, F.; et al. Circulating microRNA signatures associated with disease severity and outcome in COVID-19 patients. Front. Immunol. 2022, 13, 968991. [Google Scholar] [CrossRef]
- Wagner, K.E.; McCormick, J.B.; Barns, S.; Carney, M.; Middleton, F.A.; Hicks, S.D. Parent perspectives towards genetic and epigenetic testing for autism Spectrum disorder. J. Autism Dev. Disord. 2019, 50, 3114–3125. [Google Scholar] [CrossRef]
- Weber, J.A.; Baxter, D.H.; Zhang, S.; Huang, D.Y.; Huang, K.H.; Lee, M.J.; Galas, D.J.; Wang, K. MicroRNA spectrum in 12 body fluids. Clin. Chem. 2010, 56, 1733–1741. [Google Scholar] [CrossRef]
- Faur, C.I.; Rotaru, H.; Osan, C.; Jurj, A.; Roman, R.C.; Moldovan, M.; Chirila, M.; Hedesiu, M. Salivary exosomal microRNAs as biomarkers for head and neck cancer detection—A literature review. Maxillofac. Plast. Reconstr. Surg. 2021, 43, 19. [Google Scholar] [CrossRef]
- Wiegand, C.; Heusser, P.; Klinger, C.; Cysarz, D.; Büssing, A.; Ostermann, T.; Savelsbergh, A. Stress-associated changes in salivary microRNAs can be detected in response to the Trier Social Stress Test: An exploratory study. Sci. Rep. 2018, 8, 1–3. [Google Scholar] [CrossRef] [PubMed]
- Beheshti, R.; Halstead, E.S.; Cusack, B.; Hicks, S.D. Multi-Omic Factors Associated with Frequency of Upper Respiratory Infections in Developing Infants. Int. J. Mol. Sci. 2023, 24, 934. [Google Scholar] [CrossRef] [PubMed]
- Sagnelli, E.; Potenza, N.; Onorato, L.; Sagnelli, C.; Coppola, N.; Russo, A. Micro-RNAs in hepatitis B virus-related chronic liver diseases and hepatocellular carcinoma. World J. Hepatol. 2018, 10, 558–570. [Google Scholar] [CrossRef] [PubMed]
- Mosca, N.; Castiello, F.; Coppola, N.; Trotta, M.C.; Sagnelli, C.; Pisaturo, M.; Sagnelli, E.; Russo, A.; Potenza, N. Functional interplay between hepatitis B virus X protein and human miR-125a in HBV infection. Biochem. Biophys. Res. Commun. 2014, 449, 141–145. [Google Scholar] [CrossRef]
- Pedersen, I.M.; Cheng, G.; Wieland, S.; Volinia, S.; Croce, C.M.; Chisari, F.V.; David, M. Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 2007, 449, 919–922. [Google Scholar] [CrossRef]
- Zheng, Z.; Ke, X.; Wang, M.; He, S.; Li, Q.; Zheng, C.; Zhang, Z.; Liu, Y.; Wang, H. Human microRNA hsa-miR-296-5p suppresses enterovirus 71 replication by targeting the viral genome. J. Virol. 2013, 87, 5645–5656. [Google Scholar] [CrossRef]
- Gao, J.; Gao, L.; Li, R.; Lai, Z.; Zhang, Z.; Fan, X. Integrated analysis of microRNA-mRNA expression in A549 cells infected with influenza A viruses (IAVs) from different host species. Virus Res. 2019, 263, 34–46. [Google Scholar] [CrossRef]
- Cárdenas-Bedoya, J.; Marquez-Pedroza, J.; Morán-Moguel, M.C.; Escoto-Delgadillo, M.; Vázquez-Valls, E.; González-Enríquez, G.V.; Pérez-Ríos, A.M.; Torres-Mendoza, B.M. MicroRNA-296-5p is differentially expressed in individuals with and without HIV-1 infection. Genet. Mol. Biol. 2020, 43, e20200017. [Google Scholar] [CrossRef]
- Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE 2012, 7, e30679. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Thielke, R.; Payne, J.; Gonzalez, N.; Conde, J.G. Research electronic data capture (REDCap)—A metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 2009, 42, 377–381. [Google Scholar] [CrossRef]
- Harris, P.A.; Taylor, R.; Minor, B.L.; Elliott, V.; Fernandez, M.; O’Neal, L.; McLeod, L.; Delacqua, G.; Delacqua, F.; Kirby, J.; et al. The REDCap consortium: Building an international community of software partners. J. Biomed. Inform. 2019, 95, 103208. [Google Scholar] [CrossRef] [PubMed]
- Hart, S.N.; Therneau, T.M.; Zhang, Y.; Poland, G.A.; Kocher, J.-P. Calculating Sample Size Estimates for RNA Sequencing Data. J. Comput. Biol. 2013, 20, 970–978. [Google Scholar] [CrossRef] [PubMed]
All (n = 197) | Severe (n = 45) | Non-Severe (n = 152) | |
---|---|---|---|
Age (Years), Mean (SD) * | 7.5 (5.9) | 9.4 (5.9) | 6.9 (5.7) |
Female Sex, n (%) | 108 (54.8%) | 20 (44.4%) | 88 (57.9%) |
Race, n (%) | |||
American Indian or Alaskan Native | 0 (0%) | 0 (0%) | 0 (0%) |
Asian | 2 (1.0%) | 0 (0%) | 2 (1.3%) |
Black or African American | 126 (64.0%) | 31 (68.9%) | 95 (62.5%) |
White | 54 (27.4%) | 10 (22.2%) | 44 (28.9%) |
Other | 6 (3.0%) | 2 (4.4%) | 4 (2.6%) |
Unknown | 9 (4.5%) | 2 (4.4%) | 7 (4.6%) |
Hispanic Ethnicity, n (%) | 14 (7.1%) | 4 (8.8%) | 10 (6.6%) |
Public Insurance, n (%) | 144 (73.1%) | 33 (73.3%) | 111 (73.0%) |
History of Asthma, n (%) | 36 (18.2%) | 8 (17.8%) | 28 (18.4%) |
History of Diabetes, n (%) * | 7 (3.6%) | 4 (8.8%) | 3 (2.0%) |
Immunosuppressed, n (%) * | 2 (1.0%) | 2 (4.4%) | 0 (0%) |
Body Mass Index (kg/m2), Mean (SD) * | 24.8 (10.8) | 28.4 (13.1) | 21.9 (7.6) |
Received COVID Vaccination, n (%) | 6 (3.0%) | 1 (2.2%) | 5 (3.3%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hicks, S.D.; Zhu, D.; Sullivan, R.; Kannikeswaran, N.; Meert, K.; Chen, W.; Suresh, S.; Sethuraman, U. Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection. Int. J. Mol. Sci. 2023, 24, 8175. https://doi.org/10.3390/ijms24098175
Hicks SD, Zhu D, Sullivan R, Kannikeswaran N, Meert K, Chen W, Suresh S, Sethuraman U. Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection. International Journal of Molecular Sciences. 2023; 24(9):8175. https://doi.org/10.3390/ijms24098175
Chicago/Turabian StyleHicks, Steven D., Dongxiao Zhu, Rhea Sullivan, Nirupama Kannikeswaran, Kathleen Meert, Wei Chen, Srinivasan Suresh, and Usha Sethuraman. 2023. "Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection" International Journal of Molecular Sciences 24, no. 9: 8175. https://doi.org/10.3390/ijms24098175
APA StyleHicks, S. D., Zhu, D., Sullivan, R., Kannikeswaran, N., Meert, K., Chen, W., Suresh, S., & Sethuraman, U. (2023). Saliva microRNA Profile in Children with and without Severe SARS-CoV-2 Infection. International Journal of Molecular Sciences, 24(9), 8175. https://doi.org/10.3390/ijms24098175