Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis
Abstract
:1. Introduction
2. Results
2.1. Characterization of Extracelullar Vesicles (EVs)
2.2. Proteomics
2.2.1. Protein in Extracellular Vesicles
2.2.2. Predicted Pathway Enrichment in Bone Marrow (BM)-, Adipose Tissue (AD)-, and Lung (L)-Derived EVs
2.3. Survival Rate
2.4. Lung Histology and Molecular Biology
2.5. Kidney Histology and Molecular Biology
2.6. Liver Histology and Molecular Biology
3. Discussion
4. Materials and Methods
4.1. Study Approval
4.2. Extraction and Characterization of Mesenchymal Stromal Cells and Extracellular Vesicles
4.3. Proteomics
4.3.1. Sample Preparation
4.3.2. Mass Spectrometry Analysis
4.3.3. Proteomic Data Analysis
4.3.4. Proteomic Data Interpretation
4.4. Scanning Electron Microscopy
4.5. Animal Preparation and Experimental Protocol
4.6. Survival Rate
4.7. Histology
4.8. Enzyme-Linked Immunosorbent Assay
4.9. Real-Time Reverse Transcription Polymerase Chain Reaction Analysis (RT-PCR)
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Evans, L.; Rhodes, A.; Alhazzani, W.; Antonelli, M.; Coopersmith, C.M.; French, C.; Machado, F.R.; Mcintyre, L.; Ostermann, M.; Prescott, H.C.; et al. Surviving sepsis campaign: International guidelines for management of sepsis and septic shock 2021. Intensive Care Med. 2021, 47, 1181–1247. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, Z.M.; Wu, H.; Hamoud, A.; Stappen, L.; Dobson, R.J.B.; Agarossi, A. Brief Communication On classifying sepsis heterogeneity in the ICU: Insight using machine learning. J. Am. Med. Inform. Assoc. 2020, 27, 437–443. [Google Scholar] [CrossRef] [PubMed]
- Murao, A.; Brenner, M.; Aziz, M.; Wang, P.; Martin, L. Exosomes in Sepsis. Front. Immunol. 2020, 11, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Fleischmann, M.C.; Scherag, A.; Adhikari, N.K.J.; Hartog, C.S.; Tsaganos, T.; Schlattmann, P.; Angus, D.C.; Reinhart, K. Assessment of global incidence and mortality of hospital-treated sepsis current estimates and limitations. Am. J. Respir. Crit Care Med. 2016, 193, 259–272. [Google Scholar] [CrossRef]
- Wiersinga, W.J.; Leopold, S.J.; Cranendonk, D.R.; van der Poll, T. Host innate immune responses to sepsis. Virulence 2014, 5, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Abreu, S.C.; Weiss, D.J.; Rocco, P.R.M. Extracellular vesicles derived from mesenchymal stromal cells: A therapeutic option in respiratory diseases? Stem Cell Res. Ther. 2016, 7, 53. [Google Scholar] [CrossRef]
- Matthay, M.A.; Pati, S.; Lee, J.W. Mesenchymal Stem (Stromal) Cells: Biology and Preclinical Evidence for Therapeutic Potential for Organ Dysfunction following Trauma or Sepsis. Stem Cells 2016, 35, 316–324. [Google Scholar] [CrossRef]
- Silva, L.H.A.; Antunes, M.A.; Santos, C.C.D.; Weiss, D.J.; Cruz, F.F.; Rocco, P.R.M. Strategies to improve the therapeutic effects of mesenchymal stromal cells in respiratory diseases. Stem Cell Res. Ther. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Lalu, M.M.; Sullivan, K.J.; Mei, S.H.; Moher, D.; Straus, A.; Fergusson, D.A.; Stewart, D.J.; Jazi, M.; MacLeod, M.; Winston, B.; et al. Evaluating mesenchymal stem cell therapy for sepsis with preclinical meta-analyses prior to initiating a first-in-human trial. eLife 2016, 5, e17850. [Google Scholar] [CrossRef]
- Keane, C.; Jerkic, M.; Ph, D.; Laffey, J.G. Stem Cell-based Therapies for Sepsis. Anesthesiology 2017, 127, 1017–1034. [Google Scholar] [CrossRef]
- Maron-Gutierrez, T.; Rocco, P.R.M. Cell-Free Therapies: Novel Approaches for COVID-19. Front. Immunol. 2020, 11, 2–7. [Google Scholar] [CrossRef]
- McIntyre, L.A.; Stewart, D.J.; Mei, S.H.J.; Courtman, D.; Watpool, I.; Granton, J.; Marshall, J.; dos Santos, C.; Walley, K.R.; Winston, B.W.; et al. Cellular immunotherapy for septic shock: A phase I clinical trial. Am. J. Respir. Crit. Care Med. 2018, 197, 337–347. [Google Scholar] [CrossRef]
- Mcauley, D.F.; Mckenna, D.H.; Traber, L.D.; Zhuo, H. lung injury in a sheep model of bacterial pneumonia. Thorax 2015, 69, 819–825. [Google Scholar] [CrossRef]
- Yavagal, D.R.; Lin, B.; Raval, A.P.; Garza, P.S.; Dong, C.; Zhao, W.; Rangel, E.B.; McNiece, I.; Rundek, T.; Sacco, R.L.; et al. Efficacy and dose-dependent safety of intra-arterial delivery of mesenchymal stem cells in a rodent stroke model. PLoS ONE 2014, 9, e93735. [Google Scholar] [CrossRef]
- Théry, C.; Witwer, K.W.; Aikawa, E.; Alcaraz, M.J.; Anderson, J.D.; Andriantsitohaina, R.; Antoniou, A.; Arab, T.; Archer, F.; Atkin-Smith, G.K.; et al. Minimal information for studies of extracellular vesicles 2018 ( MISEV2018 ): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell Vesicles 2018, 8, 1535750. [Google Scholar] [CrossRef]
- Keshtkar, S.; Azarpira, N.; Ghahremani, M.H. Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res. Ther. 2018, 9, 1–9. [Google Scholar] [CrossRef]
- Ménard, C.; Dulong, J.; Roulois, D.; Hébraud, B.; Verdière, L.; Pangault, C.; Sibut, V.; Bezier, I.; Bescher, N.; Monvoisin, C.; et al. Integrated transcriptomic. phenotypic. and functional study reveals tissue-specific immune properties of mesenchymal stromal cells. Stem Cells 2020, 38, 146–159. [Google Scholar] [CrossRef] [PubMed]
- Ostanin, A.A.; Petrovskii, Y.L.; Shevela, E.Y.; Chernykh, E.R. Multiplex Analysis of Cytokines. Chemokines. Growth Factors. MMP-9 and TIMP-1 Produced by Human Bone Marrow. Adipose Tissue. and Placental Mesenchymal Stromal Cells. Cell Technol. Biol. Med. 2011, 1, 29–37. [Google Scholar] [CrossRef]
- Abreu, S.C.; Antunes, M.A.; Xisto, D.G.; Cruz, F.F.; Branco, V.C.; Bandeira, E.; Zola Kitoko, J.; de Araújo, A.F.; Dellatorre-Texeira, L.; Olsen, P.C.; et al. Bone Marrow, Adipose. and Lung Tissue-Derived Murine Mesenchymal Stromal Cells Release Different Mediators and Differentiall Affect Airway and Lung Parenchyma in Experimental Asthma. Stem Cells Transl. Med. 2017, 6, 1557–1567. [Google Scholar] [CrossRef]
- Laroye, C.; Sébastien, G.; Loic, R.; Bensoussan, D. Concise Review: Mesenchymal Stromal / Stem Cells: A New Treatment for Sepsis and Septic Shock ? Stem Cells 2017, 35, 2331–2339. [Google Scholar] [CrossRef] [PubMed]
- Braga, C.L.; da Silva, L.R.; Santos, R.T.; de Carvalho, L.R.P.; Mandacaru, S.C.; de Oliveira Trugilho, M.R.; Rocco, P.R.M.; Cruz, F.F.; Silva, P.L. Proteomics profile of mesenchymal stromal cells and extracellular vesicles in normoxic and hypoxic conditions. Cytotherapy 2022, 24, 1211–1224. [Google Scholar] [CrossRef]
- Dominici, M.; Le Blanc, K.; Mueller, I.; Slaper-Cortenbach, I.; Marini, F.C.; Krause, D.S.; Deans, R.J.; Keating, A.; Prockop, D.J.; Horwitz, E.M. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006, 8, 315–317. [Google Scholar] [CrossRef]
- Chao, Y.; Wu, H.; Wu, K.; Tsai, Y.; Peng, C. An Increase in CD3 + CD4 + CD25 + Regulatory T Cells after Administration of Umbilical Cord-Derived Mesenchymal Stem Cells during Sepsis. PLoS ONE 2014, 9, e110338. [Google Scholar] [CrossRef]
- Chang, C.-L.; Leu, S.; Sung, H.-C.; Zhen, Y.-Y.; Cho, C.-L.; Chen, A.; Tsai, T.-H.; Chung, S.-Y.; Chai, H.-T.; Sun, C.-K.; et al. Impact of apoptotic adipose-derived mesenchymal stem cells on attenuating organ damage and reducing mortality in Rat sepsis syndrome induced by cecal puncture and ligation. J. Transl. Med. 2012, 10, 244. [Google Scholar] [CrossRef]
- Ho, Y.; Shimbo, T.; Wijaya, E.; Ouchi, Y.; Takaki, E. Chromatin accessibility identifies diversity in mesenchymal stem cells from different tissue origins. Sci. Rep. 2018, 8, 17765. [Google Scholar] [CrossRef]
- Van Balkom, B.W.M.; Gremmels, H.; Giebel, B.; Lim, S.K. Proteomic Signature of Mesenchymal Stromal Cell-Derived Small Extracellular Vesicles. Proteomics 2019, 19, 1800163. [Google Scholar] [CrossRef]
- Rittirsch, D.; Huber-lang, M.S.; Flierl, M.A.; Ward, P.A. Immunodesign of experimental sepsis by cecal ligation and puncture. Nat. Protoc. 2009, 4, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Osuchowski, M.F.; Ayala, A.; Bahrami, S.; Bauer, M.; Boros, M.; Cavaillon, J.-M.; Chaudry, I.H.; Coopersmith, C.M.; Deutschman, C.S.; Drechsler, S.; et al. Minimum quality threshold in pre-clinical sepsis studies (mqtipss): An international expert consensus initiative for improvement of animal modeling in sepsis. Shock 2018, 50, 377–380. [Google Scholar] [CrossRef] [PubMed]
- Buras, A.; Holzmann, B.; Sitkovsky, M.; Israel, B. Animal models of sepsis: Setting the stage. Nat. Rev. 2005, 4, 854–865. [Google Scholar] [CrossRef] [PubMed]
- De Castro, L.L.; Xisto, D.G.; Kitoko, J.Z.; Cruz, F.F.; Olsen, P.C.; Redondo, P.A.G.; Ferreira, T.P.T.; Weiss, D.J.; Martins, M.A.; Morales, M.M.; et al. Human adipose tissue mesenchymal stromal cells and their extracellular vesicles act differentially on lung mechanics and inflammation in experimental allergic asthma. Stem Cell Res. Ther. 2017, 8, 151. [Google Scholar] [CrossRef]
- Gonçalves-De-Albuquerque, C.F.; Medeiros-De-Moraes, I.M.; Oliveira, F.M.D.J.; Burth, P.; Bozza, P.T.; Faria, M.V.C.; Silva, A.R.; de Castro-Faria-Neto, H.C. Omega-9 Oleic Acid Induces Fatty Acid Oxidation and Decreases Organ Dysfunction and Mortality in Experimental Sepsis. PLoS ONE 2016, 11, e0153607. [Google Scholar] [CrossRef] [PubMed]
- Mei, S.H.J.; Haitsma, J.J.; Dos Santos, C.C.; Deng, Y.; Lai, P.F.H.; Slutsky, A.S.; Liles, W.C.; Stewart, D.J. Mesenchymal Stem Cells Reduce Inflammation while Enhancing Bacterial Clearance and Improving Survival in Sepsis. Am. J. Respir. Crit. Care Med. 2010, 182, 1047–1057. [Google Scholar] [CrossRef] [PubMed]
- Németh, K.; Leelahavanichkul, A.; Yuen, P.S.; Mayer, B.; Parmelee, A.; Doi, K.; Robey, P.G.; Leelahavanichkul, K.; Koller, B.H.; Brown, J.M.; et al. Bone marrow stromal cells attenuate sepsis via prostaglandin E(2)-dependent reprogramming of host macrophages to increase their interleukin-10 production. Nat. Med. 2009, 15, 42–49. [Google Scholar] [CrossRef]
- Lema, A.; Krzy, D.; Skalec, T.; Adamik, B. Plasma and Cellular Forms of Fibronectin as Prognostic Markers in Sepsis. Mediators Inflamm. 2020, 2020, 8364247. [Google Scholar]
- Martín, G.R.; Prieto, J.P.; de Cabo, J.V.; Lus, L.G.; Barberán, J.; Landa, J.M.; Fernández, C. Plasma fibronectin as a marker of sepsis Guadalupe Ruiz Mart. Int. J. Infect. Dis. 2004, 8, 236–243. [Google Scholar] [CrossRef]
- Becker, C.E.; O’Neill, L.A.J. Inflammasomes in inflammatory disorders: The role of TLRs and their interactions with NLRs. Semin. Immunopathol. 2007, 29, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Keski-oja, J.; Mosher, D.F. Cross-Linking of a Major Fibroblast Surface- Associated Glycoprotein Catalyzed by Blood Coagulation Factor XIII. Cell 1976, 9, 29–35. [Google Scholar] [CrossRef]
- Beattie, G.; Cohan, C.; Miraflor, E.; Brigode, W.; Victorino, G.P. Protective Effect of Phosphatidylserine Blockade in Sepsis Induced Organ Dysfunction. Surgery 2019, 166, 844–848. [Google Scholar] [CrossRef]
- Pedroso, L.A.; Nobre, V.; de Almeida, C.D.C.; Praxedes, M.F.D.S.; Guimarães, N.S.; e Silva, A.C.S.; Martins, M.A.P. Clinica Chimica Acta Acute kidney injury biomarkers in the critically ill. Clin. Chim. Acta 2020, 508, 170–178. [Google Scholar] [CrossRef]
- Grohmann, U.; Van Snick, J.; Campanile, F.; Silla, S.; Giampietri, A.; Vacca, C.; Renauld, J.-C.; Fioretti, M.C.; Puccetti, P. IL-9 Protects Mice from Gram-Negative Bacterial Shock: Suppression of TNF-α, IL-12, and IFN-γ, and Induction of IL-10. J. Immunol. 2021, 164, 4197–4203. [Google Scholar] [CrossRef]
- Du Sert, N.P.; Hurst, V.; Ahluwalia, A.; Alam, S.; Avey, M.T.; Baker, M.; Browne, W.J.; Clark, A.; Cuthill, I.C.; Dirnagl, U.; et al. The ARRIVE guidelines 2.0: Updated guidelines for reporting animal research. PLoS Biol. 2020, 18, 1769–1777. [Google Scholar] [CrossRef]
- Bachurski, D.; Schuldner, M.; Nguyen, P.-H.; Malz, A.; Reiners, K.S.; Grenzi, P.C.; Babatz, F.; Schauss, A.C.; Hansen, H.P.; Hallek, M.; et al. Extracellular vesicle measurements with nanoparticle tracking analysis–An accuracy and repeatability comparison between NanoSight NS300 and ZetaView. J. Extracell Vesicles 2019, 8, 1596016. [Google Scholar] [CrossRef] [PubMed]
- Carnielli, C.M.; Macedo, C.C.S.; De Rossi, T.; Granato, D.C.; Rivera, C.; Domingues, R.R.; Pauletti, B.A.; Yokoo, S.; Heberle, H.; Busso-Lopes, A.F.; et al. Combining discovery and targeted proteomics reveals a prognostic signature in oral cancer. Nat. Commun. 2018, 9, 3598. [Google Scholar] [CrossRef]
- Cox, J.; Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantificatio. Nat. Biotechnol. 2008, 26, 1367–1372. [Google Scholar] [CrossRef] [PubMed]
- Neuhauser, N.; Michalski, A.; Scheltema, R.A.; Olsen, J.V.; Mann, M. Andromeda: A Peptide Search Engine Integrated into the MaxQuant Environment. J. Proteome 2011, 10, 1794–1805. [Google Scholar]
- Tyanova, S.; Temu, T.; Sinitcyn, P.; Carlson, A.; Hein, M.Y.; Geiger, T.; Mann, M.; Cox, J. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat. Methods 2016, 13, 731–740. [Google Scholar] [CrossRef]
- Silva, J.D.; De Oliveira, G.P.; Samary, C.D.S.; Araujo, C.C.; Padilha, G.D.A.; Filho, F.C.E.S.; Da Silva, R.T.; Einicker-Lamas, M.; Morales, M.M.; Capelozzi, V.L.; et al. Respiratory and Systemic Effects of LASSBio596 Plus Surfactant in Experimental Acute Respiratory Distress Syndrome. Cell. Physiol. Biochem. 2016, 38, 821–835. [Google Scholar] [CrossRef]
- Kiss, T.; Silva, P.; Huhle, R.; Moraes, L.; Santos, R.; Felix, N.; Santos, C.; Morales, M.; Capelozzi, V.; Kasper, M.; et al. Comparison of different degrees of variability in tidal volume to prevent deterioration of respiratory system elastance in experimental acute lung in fl ammation. Br. J. Anaesth. 2016, 116, 708–715. [Google Scholar] [CrossRef]
- Dear, J.W.; Yasuda, H.; Hu, X.; Hieny, S.; Yuen, P.S.; Hewitt, S.M.; Sher, A.; Star, R.A. Sepsis-induced organ failure is mediated by different pathways in the kidney and liver: Acute renal failure is dependent on MyD88 but not renal cell apoptosis James. Kidney Int. 2008, 69, 832–836. [Google Scholar] [CrossRef] [PubMed]
- Perez-Riverol, Y.; Csordas, A.; Bai, J.; Bernal-Llinares, M.; Hewapathirana, S.; Kundu, D.J.; Inuganti, A.; Griss, J.; Mayer, G.; Eisenacher, M.; et al. The PRIDE database and related tools and resources in 2019: Improving support for quantification data. Nucleic Acids Res. 2019, 47, D442–D450. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blanco, N.G.; Machado, N.M.; Castro, L.L.; Antunes, M.A.; Takiya, C.M.; Trugilho, M.R.O.; Silva, L.R.; Paes Leme, A.F.; Domingues, R.R.; Pauletti, B.A.; et al. Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis. Int. J. Mol. Sci. 2023, 24, 8234. https://doi.org/10.3390/ijms24098234
Blanco NG, Machado NM, Castro LL, Antunes MA, Takiya CM, Trugilho MRO, Silva LR, Paes Leme AF, Domingues RR, Pauletti BA, et al. Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis. International Journal of Molecular Sciences. 2023; 24(9):8234. https://doi.org/10.3390/ijms24098234
Chicago/Turabian StyleBlanco, Natália G., Natália M. Machado, Ligia L. Castro, Mariana A. Antunes, Christina M. Takiya, Monique R. O. Trugilho, Luana R. Silva, Adriana F. Paes Leme, Romênia R. Domingues, Bianca A. Pauletti, and et al. 2023. "Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis" International Journal of Molecular Sciences 24, no. 9: 8234. https://doi.org/10.3390/ijms24098234
APA StyleBlanco, N. G., Machado, N. M., Castro, L. L., Antunes, M. A., Takiya, C. M., Trugilho, M. R. O., Silva, L. R., Paes Leme, A. F., Domingues, R. R., Pauletti, B. A., Miranda, B. T., Silva, J. D., dos Santos, C. C., Silva, P. L., Rocco, P. R. M., & Cruz, F. F. (2023). Extracellular Vesicles from Different Sources of Mesenchymal Stromal Cells Have Distinct Effects on Lung and Distal Organs in Experimental Sepsis. International Journal of Molecular Sciences, 24(9), 8234. https://doi.org/10.3390/ijms24098234