The Relationship between Insomnia and the Pathophysiology of Major Depressive Disorder: An Evaluation of a Broad Selection of Serum and Urine Biomarkers
Abstract
:1. Introduction
2. Results
2.1. Data
2.2. Demographic and Clinical Characteristics
2.3. The Influence of Insomnia on Biomarker Levels
2.3.1. Univariate Analyses
2.3.2. Multivariate Analyses
3. Discussion
Limitations and Future Directions
4. Materials and Methods
4.1. Data Source
4.2. Study Population
4.3. Measurements
4.3.1. Depression
4.3.2. Insomnia
4.3.3. Laboratory Assessments
4.4. Statistical Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stewart, R.; Besset, A.; Bebbington, P.; Brugha, T.; Lindesay, J.; Jenkins, R.; Singleton, N.; Meltzer, H. Insomnia comorbidity and impact and hypnotic use by age group in a national survey population aged 16 to 74 years. Sleep 2006, 29, 1391–1397. [Google Scholar] [CrossRef] [PubMed]
- Troxel, W.M.; Kupfer, D.J.; Reynolds, C.F., III; Frank, E.; Thase, M.E.; Miewald, J.M.; Buysse, D.J. Insomnia and objectively measured sleep disturbances predict treatment outcome in depressed patients treated with psychotherapy or psychotherapy-pharmacotherapy combinations. J. Clin. Psychiatry 2012, 73, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Geoffroy, P.A.; Hoertel, N.; Etain, B.; Bellivier, F.; Delorme, R.; Limosin, F.; Peyre, H. Insomnia and hypersomnia in major depressive episode: Prevalence, sociodemographic characteristics and psychiatric comorbidity in a population-based study. J. Affect. Disord. 2018, 226, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, C.; Battagliese, G.; Feige, B.; Spiegelhalder, K.; Nissen, C.; Voderholzer, U.; Lombardo, C.; Riemann, D. Insomnia as a predictor of depression: A meta-analytic evaluation of longitudinal epidemiological studies. J. Affect. Disord. 2011, 135, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Hertenstein, E.; Feige, B.; Gmeiner, T.; Kienzler, C.; Spiegelhalder, K.; Johann, A.; Jansson-Fröjmark, M.; Palagini, L.; Rücker, G.; Riemann, D.; et al. Insomnia as a predictor of mental disorders: A systematic review and meta-analysis. Sleep Med. Rev. 2019, 43, 96–105. [Google Scholar] [CrossRef]
- Franzen, P.L.; Buysse, D.J. Sleep disturbances and depression: Risk relationships for subsequent depression and therapeutic implications. Dialogues Clin. Neurosci. 2008, 10, 473–481. [Google Scholar] [CrossRef]
- Riemann, D. Does effective management of sleep disorders reduce depressive symptoms and the risk of depression? Drugs 2009, 69 (Suppl. 2), 43–64. [Google Scholar] [CrossRef]
- Cunningham, J.E.A.; Shapiro, C.M. Cognitive Behavioural Therapy for Insomnia (CBT-I) to treat depression: A systematic review. J. Psychosom. Res. 2018, 106, 1–12. [Google Scholar] [CrossRef]
- Gebara, M.A.; Siripong, N.; DiNapoli, E.A.; Maree, R.D.; Germain, A.; Reynolds, C.F.; Kasckow, J.W.; Weiss, P.M.; Karp, J.F. Effect of insomnia treatments on depression: A systematic review and meta-analysis. Depress. Anxiety 2018, 35, 717–731. [Google Scholar] [CrossRef]
- Maes, M. Evidence for an immune response in major depression: A review and hypothesis. Prog. Neuropsychopharmacol. Biol. Psychiatry 1995, 19, 11–38. [Google Scholar] [CrossRef]
- Smith, R.S. The macrophage theory of depression. Med. Hypotheses 1991, 35, 298–306. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Heninger, G.R.; Nestler, E.J. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 1997, 54, 597–606. [Google Scholar] [CrossRef] [PubMed]
- Duman, R.S.; Monteggia, L.M. A neurotrophic model for stress-related mood disorders. Biol. Psychiatry 2006, 59, 1116–1127. [Google Scholar] [CrossRef] [PubMed]
- Pariante, C.M.; Lightman, S.L. The HPA axis in major depression: Classical theories and new developments. Trends Neurosci. 2008, 31, 464–468. [Google Scholar] [CrossRef]
- Werner, F.M.; Coveñas, R. Classical neurotransmitters and neuropeptides involved in major depression: A review. Int. J. Neurosci. 2010, 120, 455–470. [Google Scholar] [CrossRef]
- Lu, X.Y. The leptin hypothesis of depression: A potential link between mood disorders and obesity? Curr. Opin. Pharm. 2007, 7, 648–652. [Google Scholar] [CrossRef]
- Cao, B.; Chen, Y.; Brietzke, E.; Cha, D.; Shaukat, A.; Pan, Z.; Park, C.; Subramaniapillai, M.; Zuckerman, H.; Grant, K.; et al. Leptin and adiponectin levels in major depressive disorder: A systematic review and meta-analysis. J. Affect. Disord. 2018, 238, 101–110. [Google Scholar] [CrossRef]
- Haapakoski, R.; Mathieu, J.; Ebmeier, K.P.; Alenius, H.; Kivimäki, M. Cumulative meta-analysis of interleukins 6 and 1β, tumour necrosis factor α and C-reactive protein in patients with major depressive disorder. Brain Behav. Immun. 2015, 49, 206–215. [Google Scholar] [CrossRef]
- WHO Team. Depression and Other Common Mental Disorders. Booklet. Geneva: WHO Document Production Services; WHO: Geneva, Switzerland, 2017. [Google Scholar]
- Hiles, S.A.; Baker, A.L.; de Malmanche, T.; Attia, J. A meta-analysis of differences in IL-6 and IL-10 between people with and without depression: Exploring the causes of heterogeneity. Brain Behav. Immun. 2012, 26, 1180–1188. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders: DSM-5-TR, 5th ed.; American Psychiatric Association: Washington, DC, USA, 2022. [Google Scholar]
- Fried, E.I.; Nesse, R.M. Depression is not a consistent syndrome: An investigation of unique symptom patterns in the STAR*D study. J. Affect. Disord. 2015, 172, 96–102. [Google Scholar] [CrossRef]
- Charney, D.S.; Barlow, D.H.; Botteron, K.; Cohen, J.D.; Goldman, D.; Gur, R.E.; Lin, K.-M.; López, J.F.; Meador-Woodruff, J.H.; Moldin, S.O.; et al. Neuroscience research agenda to guide development of a pathophysiologically based classification system. In A Research Agenda for DSM—V; American Psychiatric Association: Arlington, VA, USA, 2002; pp. 31–83. [Google Scholar]
- Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry 2010, 9, 155–161. [Google Scholar] [CrossRef] [PubMed]
- Irwin, M.R. Sleep and inflammation: Partners in sickness and in health. Nat. Rev. Immunol. 2019, 19, 702–715. [Google Scholar] [CrossRef] [PubMed]
- Ballesio, A.; Zagaria, A.; Curti, D.G.; Moran, R.; Goadsby, P.J.; Rosenzweig, I.; Lombardo, C. Peripheral brain-derived neurotrophic factor (BDNF) in insomnia: A systematic review and meta-analysis. Sleep Med. Rev. 2023, 67, 101738. [Google Scholar] [CrossRef] [PubMed]
- Van Dalfsen, J.H.; Markus, C.R. The influence of sleep on human hypothalamic-pituitary-adrenal (HPA) axis reactivity: A systematic review. Sleep Med. Rev. 2018, 39, 187–194. [Google Scholar] [CrossRef]
- Meerlo, P.; Sgoifo, A.; Suchecki, D. Restricted and disrupted sleep: Effects on autonomic function, neuroendocrine stress systems and stress responsivity. Sleep Med. Rev. 2008, 12, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Liao, J.; Liu, Y.; Liang, H.; Ma, P.; Pan, J. Plasma neuropeptide Y levels in Chinese patients with primary insomnia. Sleep Breath. 2015, 19, 617–622. [Google Scholar] [CrossRef]
- Van Cauter, E.; Spiegel, K.; Tasali, E.; Leproult, R. Metabolic consequences of sleep and sleep loss. Sleep Med. 2008, 9 (Suppl. 1), S23–S28. [Google Scholar] [CrossRef]
- Cho, H.J.; Savitz, J.; Dantzer, R.; Teague, T.K.; Drevets, W.C.; Irwin, M.R. Sleep disturbance and kynurenine metabolism in depression. J. Psychosom. Res. 2017, 99, 1–7. [Google Scholar] [CrossRef]
- Figueroa-Hall, L.K.; Xu, B.; Kuplicki, R.; Ford, B.N.; Burrows, K.; Teague, T.K.; Sen, S.; Yeh, H.W.; Irwin, M.R.; Savitz, J.; et al. Psychiatric symptoms are not associated with circulating CRP concentrations after controlling for medical, social, and demographic factors. Transl. Psychiatry 2022, 12, 279. [Google Scholar] [CrossRef]
- Frank, P.; Jokela, M.; Batty, G.D.; Cadar, D.; Steptoe, A.; Kivimäki, M. Association Between Systemic Inflammation and Individual Symptoms of Depression: A Pooled Analysis of 15 Population-Based Cohort Studies. Am. J. Psychiatry 2021, 178, 1107–1118. [Google Scholar] [CrossRef]
- Reddy, A.; Thootkur, M.; Li, L. Association Between Major Depressive Disorder and Sleep Disturbances through Inflammation in Adolescents. Front. Psychiatry 2020, 11, 559272. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wei, J.; Yang, X.; Ni, P.; Wang, Y.; Zhao, L.; Deng, W.; Guo, W.; Wang, Q.; Li, T.; et al. The level of IL-6 was associated with sleep disturbances in patients with major depressive disorder. Neuropsychiatr. Dis. Treat. 2019, 15, 1695–1700. [Google Scholar] [CrossRef] [PubMed]
- Lamers, F.; Milaneschi, Y.; de Jonge, P.; Giltay, E.J.; Penninx, B. Metabolic and inflammatory markers: Associations with individual depressive symptoms. Psychol. Med. 2018, 48, 1102–1110. [Google Scholar] [CrossRef]
- Irwin, M.R.; Olmstead, R.; Carroll, J.E. Sleep Disturbance, Sleep Duration, and Inflammation: A Systematic Review and Meta-Analysis of Cohort Studies and Experimental Sleep Deprivation. Biol. Psychiatry 2016, 80, 40–52. [Google Scholar] [CrossRef] [PubMed]
- Colasanto, M.; Madigan, S.; Korczak, D.J. Depression and inflammation among children and adolescents: A meta-analysis. J. Affect. Disord. 2020, 277, 940–948. [Google Scholar] [CrossRef]
- Dikeos, D.; Wichniak, A.; Ktonas, P.Y.; Mikoteit, T.; Crönlein, T.; Eckert, A.; Kopřivová, J.; Ntafouli, M.; Spiegelhalder, K.; Hatzinger, M.; et al. The potential of biomarkers for diagnosing insomnia: Consensus statement of the WFSBP Task Force on Sleep Disorders. World J. Biol. Psychiatry 2023, 1–29. [Google Scholar] [CrossRef] [PubMed]
- De Menezes Galvão, A.C.; Almeida, R.N.; de Sousa, G.M., Jr.; Leocadio-Miguel, M.A.; Palhano-Fontes, F.; de Araujo, D.B.; Lobão-Soares, B.; Maia-de-Oliveira, J.P.; Nunes, E.A.; Hallak, J.E.C.; et al. Pathophysiology of Major Depression by Clinical Stages. Front. Psychol. 2021, 12, 641779. [Google Scholar] [CrossRef] [PubMed]
- Gourgouvelis, J.; Yielder, P.; Clarke, S.T.; Behbahani, H.; Murphy, B.A. Exercise Leads to Better Clinical Outcomes in Those Receiving Medication Plus Cognitive Behavioral Therapy for Major Depressive Disorder. Front. Psychiatry 2018, 9, 37. [Google Scholar] [CrossRef]
- Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.; Penninx, B.W.; Elzinga, B.M. Serum BDNF concentrations as peripheral manifestations of depression: Evidence from a systematic review and meta-analyses on 179 associations (N = 9484). Mol. Psychiatry 2014, 19, 791–800. [Google Scholar] [CrossRef]
- Hidese, S.; Yoshida, F.; Ishida, I.; Matsuo, J.; Hattori, K.; Kunugi, H. Plasma neuropeptide levels in patients with schizophrenia, bipolar disorder, or major depressive disorder and healthy controls: A multiplex immunoassay study. Neuropsychopharmacol. Rep. 2022, 43, 57–68. [Google Scholar] [CrossRef]
- Dressle, R.J.; Feige, B.; Spiegelhalder, K.; Schmucker, C.; Benz, F.; Mey, N.C.; Riemann, D. HPA axis activity in patients with chronic insomnia: A systematic review and meta-analysis of case-control studies. Sleep Med. Rev. 2022, 62, 101588. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Duran, N.L.; Kovacs, M.; George, C.J. Hypothalamic-pituitary-adrenal axis dysregulation in depressed children and adolescents: A meta-analysis. Psychoneuroendocrinology 2009, 34, 1272–1283. [Google Scholar] [CrossRef] [PubMed]
- Stetler, C.; Miller, G.E. Depression and hypothalamic-pituitary-adrenal activation: A quantitative summary of four decades of research. Psychosom. Med. 2011, 73, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Bremmer, M.A.; Deeg, D.J.; Beekman, A.T.; Penninx, B.W.; Lips, P.; Hoogendijk, W.J. Major depression in late life is associated with both hypo- and hypercortisolemia. Biol. Psychiatry 2007, 62, 479–486. [Google Scholar] [CrossRef]
- De Menezes Galvão, A.C.; de Almeida, R.N.; Silva, E.; Freire, F.A.M.; Palhano-Fontes, F.; Onias, H.; Arcoverde, E.; Maia-de-Oliveira, J.P.; de Araújo, D.B.; Lobão-Soares, B.; et al. Cortisol Modulation by Ayahuasca in Patients With Treatment Resistant Depression and Healthy Controls. Front. Psychiatry 2018, 9, 185. [Google Scholar] [CrossRef]
- Oldehinkel, A.J.; van den Berg, M.D.; Flentge, F.; Bouhuys, A.L.; ter Horst, G.J.; Ormel, J. Urinary free cortisol excretion in elderly persons with minor and major depression. Psychiatry Res. 2001, 104, 39–47. [Google Scholar] [CrossRef]
- Heim, C.; Ehlert, U.; Hellhammer, D.H. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology 2000, 25, 1–35. [Google Scholar] [CrossRef]
- Samad, N.; Yasmin, F.; Naheed, S.; Bari, A.Z.; Ayaz, M.M.; Zaman, A.; Akbar, A.; Saeed, S.; Ullah, N. Serum levels of leptin, zinc and tryptophan in obese subjects with sleep deficits. Pak. J. Pharm. Sci. 2017, 30, 1431–1438. [Google Scholar]
- Nasca, C.; Bigio, B.; Lee, F.S.; Young, S.P.; Kautz, M.M.; Albright, A.; Beasley, J.; Millington, D.S.; Mathé, A.A.; Kocsis, J.H.; et al. Acetyl-l-carnitine deficiency in patients with major depressive disorder. Proc. Natl. Acad. Sci. USA 2018, 115, 8627–8632. [Google Scholar] [CrossRef]
- Ballesio, A.; Zagaria, A.; Ottaviani, C.; Steptoe, A.; Lombardo, C. Sleep disturbance, neuro-immune markers, and depressive symptoms in older age: Conditional process analysis from the English Longitudinal Study of Aging (ELSA). Psychoneuroendocrinology 2022, 142, 105770. [Google Scholar] [CrossRef]
- Kuhlman, K.R.; Chiang, J.J.; Bower, J.E.; Irwin, M.R.; Seeman, T.E.; McCreath, H.E.; Almeida, D.M.; Dahl, R.E.; Fuligni, A.J. Sleep problems in adolescence are prospectively linked to later depressive symptoms via the cortisol awakening response. Dev. Psychopathol. 2020, 32, 997–1006. [Google Scholar] [CrossRef] [PubMed]
- Mason, B.L.; Davidov, A.; Minhajuddin, A.; Trivedi, M.H. Focusing on insomnia symptoms to better understand depression: A STAR*D report. J. Affect. Disord. 2020, 260, 183–186. [Google Scholar] [CrossRef] [PubMed]
- Sonmez, A.I.; Kucuker, M.U.; Lewis, C.P.; Kolla, B.P.; Doruk Camsari, D.; Vande Voort, J.L.; Schak, K.M.; Kung, S.; Croarkin, P.E. Improvement in hypersomnia with high frequency repetitive transcranial magnetic stimulation in depressed adolescents: Preliminary evidence from an open-label study. Prog. Neuropsychopharmacol. Biol. Psychiatry 2020, 97, 109763. [Google Scholar] [CrossRef] [PubMed]
- Manber, R.; Blasey, C.; Arnow, B.; Markowitz, J.C.; Thase, M.E.; Rush, A.J.; Dowling, F.; Koscis, J.; Trivedi, M.; Keller, M.B. Assessing insomnia severity in depression: Comparison of depression rating scales and sleep diaries. J. Psychiatr. Res. 2005, 39, 481–488. [Google Scholar] [CrossRef] [PubMed]
- Deligiannidis, K.M.; Citrome, L.; Huang, M.Y.; Acaster, S.; Fridman, M.; Bonthapally, V.; Lasser, R.; Kanes, S.J. Effect of Zuranolone on Concurrent Anxiety and Insomnia Symptoms in Women With Postpartum Depression. J. Clin. Psychiatry 2023, 84, 45307. [Google Scholar] [CrossRef]
- Deng, Z.; Jiang, X.; Liu, W.; Zhao, W.; Jia, L.; Sun, Q.; Xie, Y.; Zhou, Y.; Sun, T.; Wu, F.; et al. The aberrant dynamic amplitude of low-frequency fluctuations in melancholic major depressive disorder with insomnia. Front. Psychiatry 2022, 13, 958994. [Google Scholar] [CrossRef]
- Yi, P.C.; Qin, Y.H.; Zheng, C.M.; Ren, K.M.; Huang, L.; Chen, W. Tumor markers and depression scores are predictive of non-suicidal self-injury behaviors among adolescents with depressive disorder: A retrospective study. Front. Neurosci. 2022, 16, 953842. [Google Scholar] [CrossRef]
- Lange, T.; Dimitrov, S.; Born, J. Effects of sleep and circadian rhythm on the human immune system. Ann. N. Y. Acad. Sci. 2010, 1193, 48–59. [Google Scholar] [CrossRef]
- Khanna, D.; Khanna, S.; Khanna, P.; Kahar, P.; Patel, B.M. Obesity: A Chronic Low-Grade Inflammation and Its Markers. Cureus 2022, 14, e22711. [Google Scholar] [CrossRef]
- Li, X.; He, J. The Association Between Serum/Plasma Leptin Levels and Obstructive Sleep Apnea Syndrome: A Meta-Analysis and Meta-Regression. Front. Endocrinol. (Lausanne) 2021, 12, 696418. [Google Scholar] [CrossRef]
- Nadeem, R.; Molnar, J.; Madbouly, E.M.; Nida, M.; Aggarwal, S.; Sajid, H.; Naseem, J.; Loomba, R. Serum inflammatory markers in obstructive sleep apnea: A meta-analysis. J. Clin. Sleep Med. 2013, 9, 1003–1012. [Google Scholar] [CrossRef] [PubMed]
- Sweetman, A.; Lack, L.; McEvoy, R.D.; Smith, S.; Eckert, D.J.; Osman, A.; Carberry, J.C.; Wallace, D.; Nguyen, P.D.; Catcheside, P. Bi-directional relationships between co-morbid insomnia and sleep apnea (COMISA). Sleep Med. Rev. 2021, 60, 101519. [Google Scholar] [CrossRef] [PubMed]
- Van Buel, E.M.; Meddens, M.J.M.; Arnoldussen, E.A.; van den Heuvel, E.R.; Bohlmeijer, W.C.; den Boer, J.A.; Muller Kobold, A.; Boonman-de Winter, L.J.M.; van Rumpt, D.; Timmers, L.F.J.; et al. Major depressive disorder is associated with changes in a cluster of serum and urine biomarkers. J. Psychosom. Res. 2019, 125, 109796. [Google Scholar] [CrossRef] [PubMed]
- Van Belkum, S.M.; de Boer, M.K.; Opmeer, E.M.; Kortekaas, R.; Mulder, T.; Woonings, F.; Hoenders, H.J.R.; Kamphuis, H.; Aleman, A.; Schoevers, R.A. No antidepressant effects of low intensity transcranial pulsed electromagnetic fields for treatment resistant depression. J. Affect. Disord. 2021, 294, 679–685. [Google Scholar] [CrossRef] [PubMed]
- Lever-van Milligen, B.A.; Verhoeven, J.E.; Schmaal, L.; van Velzen, L.S.; Révész, D.; Black, C.N.; Han, L.K.M.; Horsfall, M.; Batelaan, N.M.; van Balkom, A.; et al. The impact of depression and anxiety treatment on biological aging and metabolic stress: Study protocol of the MOod treatment with antidepressants or running (MOTAR) study. BMC Psychiatry 2019, 19, 425. [Google Scholar] [CrossRef]
- Verhoeven, J.E.; Han, L.K.M.; Lever-van Milligen, B.A.; Hu, M.X.; Révész, D.; Hoogendoorn, A.W.; Batelaan, N.M.; van Schaik, D.J.F.; van Balkom, A.; van Oppen, P.; et al. Antidepressants or running therapy: Comparing effects on mental and physical health in patients with depression and anxiety disorders. J. Affect. Disord. 2023, 329, 19–29. [Google Scholar] [CrossRef]
- Sheehan, D.V.; Lecrubier, Y.; Sheehan, K.H.; Amorim, P.; Janavs, J.; Weiller, E.; Hergueta, T.; Baker, R.; Dunbar, G.C. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 1998, 59 (Suppl. 20), 22–33, quiz 34–57. [Google Scholar]
- Kessler, R.C.; Ustün, T.B. The World Mental Health (WMH) Survey Initiative Version of the World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int. J. Methods Psychiatr. Res. 2004, 13, 93–121. [Google Scholar] [CrossRef]
- Rush, A.J.; Carmody, T.; Reimitz, P.-E. The Inventory of Depressive Symptomatology (IDS): Clinician (IDS-C) and Self-Report (IDS-SR) ratings of depressive symptoms. Int. J. Methods Psychiatr. Res. 2000, 9, 45–59. [Google Scholar] [CrossRef]
- Rush, A.J.; Trivedi, M.H.; Ibrahim, H.M.; Carmody, T.J.; Arnow, B.; Klein, D.N.; Markowitz, J.C.; Ninan, P.T.; Kornstein, S.; Manber, R.; et al. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biol. Psychiatry 2003, 54, 573–583. [Google Scholar] [CrossRef]
- American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 4th ed.; APA: Washington, DC, USA, 1994. [Google Scholar]
- Jentsch, M.C.; Burger, H.; Meddens, M.B.M.; Beijers, L.; van den Heuvel, E.R.; Meddens, M.J.M.; Schoevers, R.A. Gender Differences in Developing Biomarker-Based Major Depressive Disorder Diagnostics. Int. J. Mol. Sci. 2020, 21, 3039. [Google Scholar] [CrossRef] [PubMed]
- IBM Corp. IBM SPSS Statistics for Windows, 28.0; IBM Corp: Armonk, NY, USA, 2021. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- R Core Team and Contributors Worldwide. The R Stats Package, 4.2.2 ed.; R Foundation for Statistical Computing: Vienna, Austria, 2022. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B. (Methodol.) 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Wright, S.P. Adjusted P-Values for Simultaneous Inference. Biometrics 1992, 48, 1005–1013. [Google Scholar] [CrossRef]
- Hoaglin, D.C.; Iglewicz, B. Fine-Tuning Some Resistant Rules for Outlier Labeling. J. Am. Stat. Assoc. 1987, 82, 1147–1149. [Google Scholar] [CrossRef]
- Hoaglin, D.C.; Iglewicz, B.; Tukey, J.W. Performance of Some Resistant Rules for Outlier Labeling. J. Am. Stat. Assoc. 1986, 81, 991–999. [Google Scholar] [CrossRef]
- Hayes, A.F.; Cai, L. Using heteroskedasticity-consistent standard error estimators in OLS regression: An introduction and software implementation. Behav. Res. Methods 2007, 39, 709–722. [Google Scholar] [CrossRef]
Total Sample, N | 227 a | ||
---|---|---|---|
Sex | n | % | |
Female | 134 | 59.0 | |
Male | 92 | 40.5 | |
Age | M | SD | |
Years | 42.04 | 12.63 | |
Antidepressant use | n | % | |
Yes | 43 | 18.9 | |
No | 156 | 68.7 | |
Cohort of origin | n | % | |
PIDON | 38 | 16.7 | |
tPEMF | 56 | 24.7 | |
MOTAR | 133 | 58.6 | |
Depression severity | M | SD | |
QIDS-SR16 | 17.32 | 4.91 | |
QIDS-SR16 (sleep items excluded) | 14.86 | 4.57 | |
QIDS-SR16 insomnia severity | 4.69 | 2.47 | |
Current episode duration | n | % | |
Less than 1 month | 96 | 42.3 | |
1–6 months | 20 | 8.8 | |
6 months–1 year | 11 | 4.8 | |
More than 1 year | 49 | 21.6 | |
Recurrence | Mdn | IQR | |
Lifetime number of episodes | 2 | 1–5 |
Biomarker | Unit of Measurement | n | b | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
b | 95% CI | β | R2 | |||||||
LL | UL | Unadjusted | Adjusted | |||||||
Immunologic | ||||||||||
α1-antitrypsin | mg/L | 213 | −0.073 | −4.797 | 4.650 | −0.002 | 0.976 | 0.988 | 0.000 | |
Calprotectin a | μg/mL | 216 | −0.005 | −0.041 | 0.031 | −0.019 | 0.779 | 0.980 | 0.000 | |
cAMP | pmol/mL | 214 | −0.292 | −1.058 | 0.475 | −0.051 | 0.454 | 0.905 | 0.003 | |
Endothelin-1 a | pg/mL | 215 | −0.006 | −0.019 | 0.008 | −0.057 | 0.408 | 0.868 | 0.003 | |
Myeloperoxidase a | ng/mL | 216 | −0.007 | −0.040 | 0.026 | −0.028 | 0.687 | 0.937 | 0.001 | |
Resistin a | ng/mL | 216 | −0.030 | −0.051 | −0.009 | −0.186 | 0.006 | 0.151 | 0.035 | |
Thromboxane a | ng/mL | 216 | −0.043 | −0.102 | 0.016 | −0.098 | 0.153 | 0.781 | 0.010 | |
TNFαR2 a | ng/mL | 215 | 0.000 | −0.015 | 0.014 | −0.001 | 0.988 | 0.988 | 0.000 | |
Zonulin b | ng/mL | 214 | 0.168 | −0.071 | 0.407 | 0.100 | 0.168 | 0.781 | 0.010 | |
Neurotrophic | ||||||||||
BDNF | ng/mL | 215 | −0.112 | −0.540 | 0.316 | −0.035 | 0.607 | 0.937 | 0.001 | |
BDNF free | ng/mL | 215 | −0.132 | −0.524 | 0.259 | −0.046 | 0.506 | 0.905 | 0.002 | |
BDNF total | ng/mL | 215 | −0.012 | −0.392 | 0.368 | −0.004 | 0.951 | 0.988 | 0.000 | |
EGF | pg/mL | 215 | −2.205 | −15.620 | 11.210 | −0.022 | 0.746 | 0.976 | 0.000 | |
Neuropeptide | ||||||||||
Substance P a | pg/mL | 213 | −0.005 | −0.021 | 0.011 | −0.041 | 0.549 | 0.934 | 0.002 | |
Neuroendocrine | ||||||||||
Cortisol b | μg/dL | 214 | −0.207 | −0.583 | 0.168 | −0.075 | 0.278 | 0.781 | 0.006 | |
Metabolic | ||||||||||
Acetyl-L-carnitine a | ng/mL | 215 | 0.039 | 0.010 | 0.068 | 0.178 | 0.009 | 0.151 | 0.032 | |
Apolipoprotein A1 | mg/mL | 215 | −0.006 | −0.024 | 0.011 | −0.048 | 0.485 | 0.905 | 0.002 | |
Leptin a | ng/mL | 216 | 0.034 | −0.024 | 0.093 | 0.079 | 0.249 | 0.781 | 0.006 | |
Prolactin a | μIU/mL | 214 | 0.023 | −0.014 | 0.060 | 0.084 | 0.222 | 0.781 | 0.007 |
Biomarker | Unit of Measurement | n | b | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
b | 95% CI | β | R2 | |||||||
LL | UL | Unadjusted | Adjusted | |||||||
Immunologic | ||||||||||
α1-antitrypsin | μg/L | 210 | 0.031 | −0.023 | 0.086 | 0.078 | 0.260 | 0.781 | 0.006 | |
Calprotectin ab | ng/mL | 210 | −0.005 | −0.126 | 0.115 | −0.006 | 0.931 | 0.988 | 0.000 | |
cGMP a | pmol/mL | 210 | −0.013 | −0.043 | 0.017 | −0.059 | 0.391 | 0.868 | 0.004 | |
HVEM a | ng/mL | 210 | −0.017 | −0.050 | 0.015 | −0.073 | 0.289 | 0.781 | 0.005 | |
Isoprostane−2 a | ng/mL | 209 | −0.007 | −0.041 | 0.027 | −0.030 | 0.670 | 0.937 | 0.001 | |
Lipocalin−2 a | ng/mL | 209 | 0.047 | −0.028 | 0.121 | 0.086 | 0.216 | 0.781 | 0.007 | |
LTB4 a | pg/mL | 210 | −0.007 | −0.036 | 0.021 | −0.035 | 0.612 | 0.937 | 0.001 | |
Resistin a | ng/mL | 209 | −0.035 | −0.087 | 0.016 | −0.094 | 0.176 | 0.781 | 0.009 | |
Thromboxane a | ng/mL | 210 | −0.001 | −0.036 | 0.034 | −0.005 | 0.947 | 0.988 | 0.000 | |
Neurotrophic | ||||||||||
EGF a | ng/mL | 209 | −0.030 | −0.064 | 0.003 | −0.123 | 0.077 | 0.781 | 0.015 | |
Midkine ab | pg/mL | 207 | 0.005 | −0.040 | 0.049 | 0.017 | 0.832 | 0.988 | 0.000 | |
Neuropeptide | ||||||||||
Substance P b | pg/mL | 205 | −2.503 | −8.435 | 3.428 | −0.058 | 0.406 | 0.868 | 0.003 | |
Neuroendocrine | ||||||||||
Aldosterone a | ng/mL | 207 | −0.019 | −0.054 | 0.017 | −0.073 | 0.299 | 0.781 | 0.077 | |
Cortisol ab | μg/dL | 209 | −0.010 | −0.059 | 0.039 | −0.032 | 0.689 | 0.937 | 0.001 | |
Metabolic | ||||||||||
Acetyl-L-carnitine a | ng/mL | 210 | −0.003 | −0.043 | 0.037 | −0.010 | 0.883 | 0.988 | 0.000 |
Biomarker | Unit of Measurement | n | b | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
b | 95% CI | β | R2 | |||||||
LL | UL | Unadjusted | Adjusted | |||||||
Immunologic | ||||||||||
α1-antitrypsin | mg/L | 175 | −0.717 | −7.121 | 5.686 | −0.020 | 0.825 | 0.935 | 0.040 | |
Calprotectin b | μg/mL | 178 | 0.021 | −0.020 | 0.062 | 0.091 | 0.311 | 0.906 | 0.025 | |
cAMP | pmol/mL | 176 | −0.290 | −1.223 | 0.644 | −0.050 | 0.541 | 0.906 | 0.196 | |
Endothelin-1 b | pg/mL | 177 | −0.019 | −0.037 | −0.002 | −0.183 | 0.033 | 0.528 | 0.119 | |
Myeloperoxidase b | ng/mL | 178 | 0.010 | −0.034 | 0.055 | 0.041 | 0.650 | 0.906 | 0.021 | |
Resistin b | ng/mL | 178 | −0.016 | −0.045 | 0.013 | −0.096 | 0.266 | 0.906 | 0.104 | |
Thromboxane b | ng/mL | 178 | −0.030 | −0.109 | 0.049 | −0.067 | 0.448 | 0.906 | 0.044 | |
TNFαR2 b | ng/mL | 177 | −0.018 | −0.038 | 0.001 | −0.166 | 0.062 | 0.528 | 0.050 | |
Zonulin c | ng/mL | 176 | −0.123 | −0.433 | 0.187 | −0.070 | 0.435 | 0.906 | 0.176 | |
Neurotrophic | ||||||||||
BDNF | ng/mL | 178 | −0.148 | −0.725 | 0.430 | −0.044 | 0.615 | 0.906 | 0.054 | |
BDNF free | ng/mL | 178 | −0.225 | −0.736 | 0.286 | −0.077 | 0.386 | 0.906 | 0.049 | |
BDNF total | ng/mL | 178 | −0.106 | −0.617 | 0.406 | −0.036 | 0.684 | 0.906 | 0.043 | |
EGF | pg/mL | 177 | −5.792 | −24.025 | 12.441 | −0.056 | 0.531 | 0.906 | 0.063 | |
Neuropeptide | ||||||||||
Substance P b | pg/mL | 175 | −0.009 | −0.031 | 0.013 | −0.071 | 0.434 | 0.906 | 0.013 | |
Neuroendocrine | ||||||||||
Cortisol c | μg/dL | 176 | 0.056 | −0.404 | 0.517 | 0.019 | 0.809 | 0.935 | 0.192 | |
Metabolic | ||||||||||
Acetyl-L-carnitine b | ng/mL | 178 | 0.036 | 0.000 | 0.073 | 0.167 | 0.049 | 0.528 | 0.134 | |
Apolipoprotein A1 | mg/mL | 177 | 0.001 | −0.021 | 0.023 | 0.006 | 0.942 | 0.965 | 0.060 | |
Leptin b | ng/mL | 178 | −0.020 | −0.083 | 0.044 | −0.043 | 0.539 | 0.906 | 0.399 | |
Prolactin b | μIU/mL | 178 | 0.009 | −0.030 | 0.048 | 0.036 | 0.653 | 0.906 | 0.205 |
Biomarker | Unit of Measurement | n | b | p | ||||||
---|---|---|---|---|---|---|---|---|---|---|
b | 95% CI | β | R2 | |||||||
LL | UL | Unadjusted | Adjusted | |||||||
Immunologic | ||||||||||
α1-antitrypsin | μg/L | 174 | 0.025 | −0.041 | 0.091 | 0.060 | 0.454 | 0.906 | 0.256 | |
Calprotectin bc | ng/mL | 174 | −0.017 | −0.119 | 0.084 | −0.020 | 0.735 | 0.906 | 0.564 | |
cGMP b | pmol/mL | 174 | −0.007 | −0.045 | 0.031 | −0.030 | 0.729 | 0.906 | 0.095 | |
HVEM b | ng/mL | 174 | −0.010 | −0.050 | 0.031 | −0.040 | 0.645 | 0.906 | 0.118 | |
Isoprostane−2 b | ng/mL | 173 | 0.008 | −0.035 | 0.051 | 0.032 | 0.713 | 0.906 | 0.113 | |
Lipocalin−2 b | ng/mL | 173 | 0.073 | −0.018 | 0.164 | 0.127 | 0.115 | 0.784 | 0.254 | |
LTB4 b | pg/mL | 174 | 0.001 | −0.035 | 0.037 | 0.005 | 0.959 | 0.965 | 0.063 | |
Resistin b | ng/mL | 173 | −0.012 | −0.079 | 0.055 | −0.031 | 0.719 | 0.906 | 0.109 | |
Thromboxane b | ng/mL | 174 | 0.003 | −0.041 | 0.047 | 0.011 | 0.901 | 0.965 | 0.145 | |
Neurotrophic | ||||||||||
EGF b | ng/mL | 174 | −0.007 | −0.048 | 0.034 | −0.027 | 0.746 | 0.906 | 0.183 | |
Midkine bc | pg/mL | 172 | 0.025 | −0.026 | 0.076 | 0.084 | 0.336 | 0.906 | 0.221 | |
Neuropeptide | ||||||||||
Substance P c | pg/mL | 170 | −1.710 | −8.455 | 5.034 | −0.038 | 0.617 | 0.906 | 0.294 | |
Neuroendocrine | ||||||||||
Aldosterone b | ng/mL | 171 | 0.001 | −0.044 | 0.046 | 0.004 | 0.965 | 0.965 | 0.074 | |
Cortisol bc | μg/dL | 174 | 0.020 | −0.038 | 0.078 | 0.064 | 0.508 | 0.906 | 0.057 | |
Metabolic | ||||||||||
Acetyl-L-carnitine b | ng/mL | 174 | −0.048 | −0.096 | 0.001 | −0.168 | 0.055 | 0.528 | 0.105 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Drinčić, T.; van Dalfsen, J.H.; Kamphuis, J.; Jentsch, M.C.; van Belkum, S.M.; Meddens, M.J.M.; Penninx, B.W.J.H.; Schoevers, R.A. The Relationship between Insomnia and the Pathophysiology of Major Depressive Disorder: An Evaluation of a Broad Selection of Serum and Urine Biomarkers. Int. J. Mol. Sci. 2023, 24, 8437. https://doi.org/10.3390/ijms24098437
Drinčić T, van Dalfsen JH, Kamphuis J, Jentsch MC, van Belkum SM, Meddens MJM, Penninx BWJH, Schoevers RA. The Relationship between Insomnia and the Pathophysiology of Major Depressive Disorder: An Evaluation of a Broad Selection of Serum and Urine Biomarkers. International Journal of Molecular Sciences. 2023; 24(9):8437. https://doi.org/10.3390/ijms24098437
Chicago/Turabian StyleDrinčić, Tina, Jens H. van Dalfsen, Jeanine Kamphuis, Mike C. Jentsch, Sjoerd M. van Belkum, Marcus J. M. Meddens, Brenda W. J. H. Penninx, and Robert A. Schoevers. 2023. "The Relationship between Insomnia and the Pathophysiology of Major Depressive Disorder: An Evaluation of a Broad Selection of Serum and Urine Biomarkers" International Journal of Molecular Sciences 24, no. 9: 8437. https://doi.org/10.3390/ijms24098437
APA StyleDrinčić, T., van Dalfsen, J. H., Kamphuis, J., Jentsch, M. C., van Belkum, S. M., Meddens, M. J. M., Penninx, B. W. J. H., & Schoevers, R. A. (2023). The Relationship between Insomnia and the Pathophysiology of Major Depressive Disorder: An Evaluation of a Broad Selection of Serum and Urine Biomarkers. International Journal of Molecular Sciences, 24(9), 8437. https://doi.org/10.3390/ijms24098437