For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases
Abstract
:1. Eukaryotic DNA Polymerases
1.1. B Family
1.2. Y Family
1.3. X Family
1.4. A Family
2. Metal Ions in DNA Polymerization
Mutagenic Effect of Manganese
3. Manganese Empowering DNA Polymerases
3.1. Polβ
3.2. Polλ
3.3. Polµ
3.4. Polι
3.5. Polη
4. Conclusions and Future Perspectives
Author Contributions
Funding
Conflicts of Interest
Abbreviations
8-oxoG | 8-oxoguanine |
A | adenine |
AP | apurinic/apyrimidinic: (abasic) |
ATPase | adenosine-triphosphatase |
BER | base excision repair |
BPDE | benzo(a)pyrene diol epoxide |
C | cytosine |
cdA | 8:5′-cyclo-2′-deoxyadenosine |
CPDs | cyclobutane pyrimidine dimers |
dAMP | deoxyadenosine monophosphate |
dATP | deoxyadenosine triphosphate |
dCMP | deoxycytidine monophosphate |
dCTP | deoxycytidine triphosphate |
ddNTP | 2′3′dideoxyribonucleoside triphosphate |
dGMP | deoxyguanosine monophosphate |
dGTP | deoxyguanosine triphosphate |
DNA | deoxyribonucleic acid |
dNMP | deoxyribonucleoside monophosphate |
dNTP | deoxyribonucleotide triphosphate |
dRP | deoxyribophosphate |
DSB | double-strand break |
dTMP | deoxythymidine monophosphate |
dTTP | deoxythymidine triphosphate |
G | guanine |
HR | homologous recombination |
Mre11 | Meiotic Recombination 11 gene |
N7BnG | N7-benzylguanine |
N7mG | N7-methylguanine |
NER | nucleotide excision repair |
NHEJ | nonhomologous end-joining |
NHMG | N7-nitrogen half-mustard |
nt | nucleotide |
O6mG | O6-methylguanine |
OH | hydoxyl |
Pol | DNA polymerase |
rAMP | adenosine monophosphate |
rATP | adenosine triphosphate |
rCMP | cytidine monophosphate |
rCTP | cytidine triphosphate |
rGMP | guanosine monophosphate |
rGTP | guanosine triphosphate |
Rev1 | Reversionless 1 gene |
RNA | ribonucleic acid |
rNMP | ribonucleoside monophosphate |
rNTP | ribonucleotide triphosphate |
rUMP | uridine monophosphate |
rUTP | uridine triphosphate |
T | thymine |
TdT | terminal deoxynucleotidyl transferase |
TLS | translesion synthesis |
U | uracil |
V(D)J | variable: diversity and joining segments of immunoglobulin genes |
References
- Delagoutte, E. DNA polymerases: Mechanistic insight from biochemical and biophysical studies. Front. Biosci. 2012, 17, 509–544. [Google Scholar] [CrossRef] [PubMed]
- Kuznetsova, A.A.; Fedorova, O.S.; Kuznetsov, N.A. Structural and Molecular Kinetic Features of Activities of DNA Polymerases. Int. J. Mol. Sci. 2022, 23, 6373. [Google Scholar] [CrossRef] [PubMed]
- Hoitsma, N.M.; Whitaker, A.M.; Schaich, M.A.; Smith, M.R.; Fairlamb, M.S.; Freudenthal, B.D. Structure and function relationships in mammalian DNA polymerases. Cell Mol. Life Sci. 2020, 77, 35–59. [Google Scholar] [CrossRef]
- Jain, R.; Aggarwal, A.K.; Rechkoblit, O. Eukaryotic DNA polymerases. Curr. Opin. Struct. Biol. 2018, 53, 77–87. [Google Scholar] [CrossRef]
- Braithwaite, D.K.; Ito, J. Compilation, alignment, and phylogenetic relationships of DNA polymerases. Nucleic Acids Res. 1993, 21, 787–802. [Google Scholar] [CrossRef] [PubMed]
- Sehnal, D.; Bittrich, S.; Deshpande, M.; Svobodová, R.; Berka, K.; Bazgier, V.; Velankar, S.; Burley, S.K.; Koča, J.; Rose, A.S. Mol* Viewer: Modern web app for 3D visualization and analysis of large biomolecular structures. Nucleic Acids Res. 2021, 49, W431–W437. [Google Scholar] [CrossRef] [PubMed]
- Zahn, K.A.; Averill, A.M.; Aller, P.; Wood, R.D.; Doublié, S. Human DNA polymerase θ grasps the primer terminus to mediate DNA repair. Nat. Struct. Mol. Biol. 2015, 22, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Swan, M.K.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase δ. Nat. Struct. Mol. Biol. 2009, 16, 979–986. [Google Scholar] [CrossRef]
- Freudenthal, B.D.; Beard, W.A.; Shock, D.D.; Wilson, S.H. Observing a DNA polymerase choose right from wrong. Cell 2013, 154, 157–168. [Google Scholar] [CrossRef]
- Biertümpfel, C.; Zhao, Y.; Kondo, Y.; Ramón-Maiques, S.; Gregory, M.; Lee, J.Y.; Masutani, C.; Lehmann, A.R.; Hanaoka, F.; Yang, W. Structure and mechanism of human DNA polymerase η. Nature 2010, 465, 1044–1048. [Google Scholar] [CrossRef]
- Acharya, N.; Khandagale, P.; Thakur, S.; Sahu, J.K.; Utkalaja, B.G. Quaternary structural diversity in eukaryotic DNA polymerases: Monomeric to multimeric form. Curr. Genet. 2020, 66, 635–655. [Google Scholar] [CrossRef] [PubMed]
- Vaisman, A.; Woodgate, R. Translesion DNA polymerases in eukaryotes: What makes them tick? Crit. Rev. Biochem. Mol. Biol. 2017, 52, 274–303. [Google Scholar] [CrossRef]
- Yang, W.; Gao, Y. Translesion and Repair DNA Polymerases: Diverse Structure and Mechanism. Annu. Rev. Biochem. 2018, 87, 239–261. [Google Scholar] [CrossRef] [PubMed]
- Benedict, C.L.; Gilfillan, S.; Thai, T.-H.; Kearney, J.F. Terminal deoxynucleotidyl transferase and repertoire development. Immunol. Rev. 2000, 175, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Wood, R.D.; Doublié, S. DNA polymerase θ (POLQ), double-strand break repair, and cancer. DNA Repair 2016, 44, 22–32. [Google Scholar] [CrossRef]
- Joyce, C.M.; Benkovic, S.J. DNA polymerase fidelity: Kinetics, structure, and checkpoints. Biochemistry 2004, 43, 14317–14324. [Google Scholar] [CrossRef]
- Yang, W.; Lee, J.Y.; Nowotny, M. Making and Breaking Nucleic Acids: Two-Mg2+-Ion Catalysis and Substrate Specificity. Mol. Cell 2006, 22, 5–13. [Google Scholar] [CrossRef]
- Weaver, T.M.; Washington, M.T.; Freudenthal, B.D. New insights into DNA polymerase mechanisms provided by time-lapse crystallography. Curr. Opin. Struct. Biol. 2022, 77, 102465. [Google Scholar] [CrossRef]
- Gao, Y.; Yang, W. Capture of a third Mg 2+ is essential for catalyzing DNA synthesis. Science 2016, 352, 1334–1337. [Google Scholar] [CrossRef]
- Wang, J.; Smithline, Z.B. Crystallographic evidence for two-metal-ion catalysis in human pol η. Protein Sci. 2019, 28, 439–447. [Google Scholar] [CrossRef]
- Tholey, G.; Ledig, M.; Mandel, P.; Sargentini, L.; Frivold, A.H.; Leroy, M.; Grippo, A.A.; Wedler, F.C. Concentrations of physiologically important metal ions in glial cells cultured from chick cerebral cortex. Neurochem. Res. 1988, 13, 45–50. [Google Scholar] [CrossRef]
- Romani, A.; Scarpa, A. Regulation of cell magnesium. Arch. Biochem. Biophys. 1992, 298, 1–12. [Google Scholar] [CrossRef]
- Rozenberg, J.M.; Kamynina, M.; Sorokin, M.; Zolotovskaia, M.; Koroleva, E.; Kremenchutckaya, K.; Gudkov, A.; Buzdin, A.; Borisov, N. The Role of the Metabolism of Zinc and Manganese Ions in Human Cancerogenesis. Biomedicines 2022, 10, 1072. [Google Scholar] [CrossRef]
- Sirover, M.A.; Loeb, L.A. Metal activation of DNA synthesis. Biochem. Biophys. Res. Commun. 1976, 70, 812–817. [Google Scholar] [CrossRef]
- Kunkel, T.A.; Loeb, L.A. On the fidelity of DNA replication. Effect of divalent metal ion activators and deoxyrionucleoside triphosphate pools on in vitro mutagenesis. J. Biol. Chem. 1979, 254, 5718–5725. [Google Scholar] [CrossRef]
- Goodman, M.F.; Keener, S.; Guidotti, S.; Branscomb, E.W. On the enzymatic basis for mutagenesis by manganese. J. Biol. Chem. 1983, 258, 3469–3475. [Google Scholar] [CrossRef]
- El-Deiry, W.S.; Downey, K.M.; So, A.G. Molecular mechanisms of manganese mutagenesis. Proc. Natl. Acad. Sci. USA 1984, 81, 7378–7382. [Google Scholar] [CrossRef]
- Sawyer, D.L.; Sweasy, J.B. DNA Polymerase β in the Context of Cancer. Crit. Rev. Oncog. 2022, 27, 17–33. [Google Scholar] [CrossRef]
- Sawaya, M.R.; Prasad, R.; Wilson, S.H.; Kraut, J.; Pelletier, H. Crystal structures of human DNA polymerase β complexed with gapped and nicked DNA: Evidence for an induced fit mechanism. Biochemistry 1997, 36, 11205–11215. [Google Scholar] [CrossRef]
- Beard, W.A.; Wilson, S.H. Structure and mechanism of DNA polymerase β. Biochemistry 2014, 53, 2768–2780. [Google Scholar] [CrossRef]
- Caldecott, K.W. Mammalian DNA base excision repair: Dancing in the moonlight. DNA Repair 2020, 93, 102921. [Google Scholar] [CrossRef] [PubMed]
- Kladova, O.A.; Tyugashev, T.E.; Mikushina, E.S.; Soloviev, N.O.; Kuznetsov, N.A.; Novopashina, D.S.; Kuznetsova, A.A. Human Polβ Natural Polymorphic Variants G118V and R149I Affects Substate Binding and Catalysis. Int. J. Mol. Sci. 2023, 24, 5892. [Google Scholar] [CrossRef] [PubMed]
- Kladova, O.A.; Fedorova, O.S.; Kuznetsov, N.A. The Role of Natural Polymorphic Variants of DNA Polymerase β in DNA Repair. Int. J. Mol. Sci. 2022, 23, 2390. [Google Scholar] [CrossRef] [PubMed]
- Gu, H.; Marth, J.D.; Orban, P.C.; Mossmann, H.; Rajewsky, K. Deletion of a DNA polymerase β gene segment in T cells using cell type-specific gene targeting. Science 1994, 265, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Starcevic, D.; Dalal, S.; Sweasy, J.B. Is There a Link Between DNA Polymerase Beta and Cancer? Cell Cycle 2004, 3, 996–999. [Google Scholar] [CrossRef] [PubMed]
- Donigan, K.A.; Sun, K.-W.; Nemec, A.A.; Murphy, D.L.; Cong, X.; Northrup, V.; Zelterman, D.; Sweasy, J.B. Human POLB gene is mutated in high percentage of colorectal tumors. J. Biol. Chem. 2012, 287, 23830–23839. [Google Scholar] [CrossRef] [PubMed]
- Miller, H.; Prasad, R.; Wilson, S.H.; Johnson, F.; Grollman, A.P. 8-OxodGTP Incorporation by DNA Polymerase β Is Modified by Active-Site Residue Asn279. Biochemistry 2000, 39, 1029–1033. [Google Scholar] [CrossRef] [PubMed]
- Kaminski, A.M.; Kunkel, T.A.; Pedersen, L.C.; Bebenek, K. Structural Insights into the Specificity of 8-Oxo-7,8-dihydro-2′-deoxyguanosine Bypass by Family X DNA Polymerases. Genes 2021, 13, 15. [Google Scholar] [CrossRef]
- Reha-Krantz, L.J.; Nonay, R.L.; Day, R.S.; Wilson, S.H. Replication of O6-Methylguanine-containing DNA by Repair and Replicative DNA Polymerases. J. Biol. Chem. 1996, 271, 20088–20095. [Google Scholar] [CrossRef]
- Singh, J.; Su, L.; Snow, E.T. Replication across O6-methylguanine by human dna polymerase β in vitro. J. Biol. Chem. 1996, 271, 28391–28398. [Google Scholar] [CrossRef]
- Koag, M.-C.; Kou, Y.; Ouzon-Shubeita, H.; Lee, S. Transition-state destabilization reveals how human DNA polymerase β proceeds across the chemically unstable lesion N7-methylguanine. Nucleic Acids Res. 2014, 42, 8755–8766. [Google Scholar] [CrossRef] [PubMed]
- Efrati, E.; Tocco, G.; Eritja, R.; Wilson, S.H.; Goodman, M.F. Abasic Translesion Synthesis by DNA Polymerase β Violates the “A-rule”. J. Biol. Chem. 1997, 272, 2559–2569. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.S.; Pillaire, M.J.; Maga, G.; Podust, V.; Hübscher, U.; Villani, G. DNA polymerase β bypasses in vitro a single d(GpG)-cisplatin adduct placed on codon 13 of the HRAS gene. Proc. Natl. Acad. Sci. USA 1995, 92, 5356–5360. [Google Scholar] [CrossRef]
- Vaisman, A.; Chaney, S.G. The efficiency and fidelity of translesion synthesis past cisplatin and oxaliplatin gpg adducts by human dna polymerase β. J. Biol. Chem. 2000, 275, 13017–13025. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, J.-S.; Pillaire, M.-J.; Garcia-Estefania, D.; Lapalu, S.; Villani, G. Bypass replication of the cisplatin-d(GPG) lesion by calf thymus dna polymerase β and human immunodeficiency virus type i reverse transcriptase is highly mutagenic. J. Biol. Chem. 1996, 271, 15386–15392. [Google Scholar] [CrossRef]
- Vaisman, A.; Lim, S.E.; Patrick, S.M.; Copeland, W.C.; Hinkle, D.C.; Turchi, J.J.; Chaney, S.G. Effect of DNA Polymerases and High Mobility Group Protein 1 on the Carrier Ligand Specificity for Translesion Synthesis past Platinum−DNA Adducts. Biochemistry 1999, 38, 11026–11039. [Google Scholar] [CrossRef]
- Blanca, G.; Shevelev, I.; Ramadan, K.; Villani, G.; Spadari, S.; Hübscher, U.; Maga, G. Human DNA Polymerase λ Diverged in Evolution from DNA Polymerase β toward Specific Mn++ Dependence: A Kinetic and Thermodynamic Study. Biochemistry 2003, 42, 7467–7476. [Google Scholar] [CrossRef]
- Koag, M.-C.; Nam, K.; Lee, S. The spontaneous replication error and the mismatch discrimination mechanisms of human DNA polymerase β. Nucleic Acids Res. 2014, 42, 11233–11245. [Google Scholar] [CrossRef]
- Batra, V.K.; Beard, W.A.; Shock, D.D.; Pedersen, L.C.; Wilson, S.H. Structures of DNA Polymerase β with Active-Site Mismatches Suggest a Transient Abasic Site Intermediate during Misincorporation. Mol. Cell 2008, 30, 315–324. [Google Scholar] [CrossRef]
- Beard, W.A.; Shock, D.D.; Wilson, S.H. Influence of DNA Structure on DNA Polymerase β Active Site Function. J. Biol. Chem. 2004, 279, 31921–31929. [Google Scholar] [CrossRef]
- Pelletier, H.; Sawaya, M.R.; Wolfle, W.; Wilson, S.H.; Kraut, J. A Structural basis for metal ion mutagenicity and nucleotide selectivity in human dna polymerase β. Biochemistry 1996, 35, 12762–12777. [Google Scholar] [CrossRef] [PubMed]
- Shtygasheva, A.A.; Belousova, E.A.; Rechkunova, N.I.; Lebedeva, N.A.; Lavrik, O.I. DNA polymerases β and λ as potential participants of TLS during genomic DNA replication on the lagging strand. Biochemistry 2008, 73, 1207–1213. [Google Scholar] [CrossRef] [PubMed]
- Vaisman, A.; Warren, M.W.; Chaney, S.G. The Effect of DNA Structure on the Catalytic Efficiency and Fidelity of Human DNA Polymerase β on Templates with Platinum-DNA Adducts. J. Biol. Chem. 2001, 276, 18999–19005. [Google Scholar] [CrossRef] [PubMed]
- Koag, M.-C.; Lai, L.; Lee, S. Structural Basis for the Inefficient Nucleotide Incorporation Opposite Cisplatin-DNA Lesion by Human DNA Polymerase β. J. Biol. Chem. 2014, 289, 31341–31348. [Google Scholar] [CrossRef] [PubMed]
- Koag, M.-C.; Lee, S. Metal-Dependent Conformational Activation Explains Highly Promutagenic Replication across O6-Methylguanine by Human DNA Polymerase β. J. Am. Chem. Soc. 2014, 136, 5709–5721. [Google Scholar] [CrossRef] [PubMed]
- Belousova, E.A.; Maga, G.; Fan, Y.; Kubareva, E.A.; Romanova, E.A.; Lebedeva, N.A.; Oretskaya, T.S.; Lavrik, O.I. DNA Polymerases β and λ Bypass Thymine Glycol in Gapped DNA Structures. Biochemistry 2010, 49, 4695–4704. [Google Scholar] [CrossRef] [PubMed]
- Vaisman, A.; Masutani, C.; Hanaoka, F.; Chaney, S.G. Efficient translesion replication past oxaliplatin and cisplatin GPG adducts by human DNA polymerase η. Biochemistry 2000, 39, 4575–4580. [Google Scholar] [CrossRef]
- Mentegari, E.; Kissova, M.; Bavagnoli, L.; Maga, G.; Crespan, E. DNA Polymerases λ and β: The Double-Edged Swords of DNA Repair. Genes 2016, 7, 57. [Google Scholar] [CrossRef]
- van Loon, B.; Hübscher, U.; Maga, G. Living on the Edge: DNA Polymerase Lambda between Genome Stability and Mutagenesis. Chem. Res. Toxicol. 2017, 30, 1936–1941. [Google Scholar] [CrossRef]
- Garcia-Diaz, M.; Domínguez, O.; López-Fernández, L.A.; de Lera, L.T.; Saníger, M.L.; Ruiz, J.F.; Párraga, M.; García-Ortiz, M.J.; Kirchhoff, T.; del Mazo, J.; et al. DNA polymerase lambda (Pol λ), a novel eukaryotic DNA polymerase with a potential role in meiosis. J. Mol. Biol. 2000, 301, 851–867. [Google Scholar] [CrossRef]
- García-Díaz, M.; Bebenek, K.; Kunkel, T.A.; Blanco, L. Identification of an Intrinsic 5′-Deoxyribose-5-phosphate Lyase Activity in Human DNA Polymerase λ. J. Biol. Chem. 2001, 276, 34659–34663. [Google Scholar] [CrossRef]
- Ramadan, K.; Shevelev, I.V.; Maga, G.; Hübscher, U. De Novo DNA Synthesis by Human DNA Polymerase λ, DNA Polymerase μ and Terminal Deoxyribonucleotidyl Transferase. J. Mol. Biol. 2004, 339, 395–404. [Google Scholar] [CrossRef]
- Garcia-Diaz, M.; Bebenek, K.; Krahn, J.M.; Kunkel, T.A.; Pedersen, L.C. A closed conformation for the Pol λ catalytic cycle. Nat. Struct. Mol. Biol. 2005, 12, 97–98. [Google Scholar] [CrossRef]
- Picher, A.J. Promiscuous mismatch extension by human DNA polymerase lambda. Nucleic Acids Res. 2006, 34, 3259–3266. [Google Scholar] [CrossRef]
- Liu, M.-S.; Tsai, H.-Y.; Liu, X.-X.; Ho, M.-C.; Wu, W.-J.; Tsai, M.-D. Structural Mechanism for the Fidelity Modulation of DNA Polymerase λ. J. Am. Chem. Soc. 2016, 138, 2389–2398. [Google Scholar] [CrossRef]
- Bebenek, K.; Garcia-Diaz, M.; Blanco, L.; Kunkel, T.A. The Frameshift Infidelity of Human DNA Polymerase λ. J. Biol. Chem. 2003, 278, 34685–34690. [Google Scholar] [CrossRef]
- Brown, J.A.; Pack, L.R.; Sanman, L.E.; Suo, Z. Efficiency and fidelity of human DNA polymerases λ and β during gap-filling DNA synthesis. DNA Repair 2011, 10, 24–33. [Google Scholar] [CrossRef]
- Braithwaite, E.K.; Kedar, P.S.; Stumpo, D.J.; Bertocci, B.; Freedman, J.H.; Samson, L.D.; Wilson, S.H. DNA polymerases β and λ mediate overlapping and independent roles in base excision repair in mouse embryonic fibroblasts. PLoS ONE 2010, 5, e12229. [Google Scholar] [CrossRef]
- Lee, J.W.; Blanco, L.; Zhou, T.; Garcia-Diaz, M.; Bebenek, K.; Kunkel, T.A.; Wang, Z.; Povirk, L.F. Implication of DNA Polymerase λ in Alignment-based Gap Filling for Nonhomologous DNA End Joining in Human Nuclear Extracts. J. Biol. Chem. 2004, 279, 805–811. [Google Scholar] [CrossRef]
- Belousova, E.; Lavrik, O. DNA polymerases β and λ and their roles in Cell DNA Repair 2015, 29, 112–126. DNA Repair 2015, 29, 112–126. [Google Scholar] [CrossRef]
- Pryor, J.M.; Waters, C.A.; Aza, A.; Asagoshi, K.; Strom, C.; Mieczkowski, P.A.; Blanco, L.; Ramsden, D.A. Essential role for polymerase specialization in cellular nonhomologous end joining. Proc. Natl. Acad. Sci. USA 2015, 112, E4537–E4545. [Google Scholar] [CrossRef]
- Ramadan, K.; Shevelev, I.V.; Maga, G.; Hübscher, U. DNA Polymerase λ from Calf Thymus Preferentially Replicates Damaged DNA. J. Biol. Chem. 2002, 277, 18454–18458. [Google Scholar] [CrossRef]
- Maga, G.; Villani, G.; Crespan, E.; Wimmer, U.; Ferrari, E.; Bertocci, B.; Hübscher, U. 8-oxo-guanine bypass by human DNA polymerases in the presence of auxiliary proteins. Nature 2007, 447, 606–608. [Google Scholar] [CrossRef]
- Picher, A.J.; Blanco, L. Human DNA polymerase lambda is a proficient extender of primer ends paired to 7,8-dihydro-8-oxoguanine. DNA Repair 2007, 6, 1749–1756. [Google Scholar] [CrossRef]
- Brown, J.A.; Duym, W.W.; Fowler, J.D.; Suo, Z. Single-turnover Kinetic Analysis of the Mutagenic Potential of 8-Oxo-7,8-dihydro-2′-deoxyguanosine during Gap-filling Synthesis Catalyzed by Human DNA Polymerases λ and β. J. Mol. Biol. 2007, 367, 1258–1269. [Google Scholar] [CrossRef]
- Crespan, E.; Hübscher, U.; Maga, G. Error-free bypass of 2-hydroxyadenine by human DNA polymerase with Proliferating Cell Nuclear Antigen and Replication Protein A in different sequence contexts. Nucleic Acids Res. 2007, 35, 5173–5181. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Basu, D.; Sellamuthu, K.; Johnson, R.E.; Prakash, S.; Prakash, L. A novel role of DNA polymerase λ in translesion synthesis in conjunction with DNA polymerase ζ. Life Sci. Alliance 2021, 4, e202000900. [Google Scholar] [CrossRef]
- Yoon, J.-H.; Basu, D.; Choudhury, J.R.; Prakash, S.; Prakash, L. DNA polymerase λ promotes error-free replication through Watson–Crick impairing N1-methyl-deoxyadenosine adduct in conjunction with DNA polymerase ζ. J. Biol. Chem. 2021, 297, 100868. [Google Scholar] [CrossRef]
- Maga, G. Human replication protein A can suppress the intrinsic in vitro mutator phenotype of human DNA polymerase. Nucleic Acids Res. 2006, 34, 1405–1415. [Google Scholar] [CrossRef]
- Bertocci, B.; De Smet, A.; Berek, C.; Weill, J.-C.; Reynaud, C.-A. Immunoglobulin κ Light Chain Gene Rearrangement Is Impaired in Mice Deficient for DNA Polymerase Mu. Immunity 2003, 19, 203–211. [Google Scholar] [CrossRef]
- Bertocci, B.; De Smet, A.; Weill, J.-C.; Reynaud, C.-A. Nonoverlapping Functions of DNA Polymerases Mu, Lambda, and Terminal Deoxynucleotidyltransferase during Immunoglobulin V(D)J Recombination In Vivo. Immunity 2006, 25, 31–41. [Google Scholar] [CrossRef]
- McElhinny, S.A.N.; Havener, J.M.; Garcia-Diaz, M.; Juárez, R.; Bebenek, K.; Kee, B.L.; Blanco, L.; Kunkel, T.A.; Ramsden, D.A. A Gradient of Template Dependence Defines Distinct Biological Roles for Family X Polymerases in Nonhomologous End Joining. Mol. Cell 2005, 19, 357–366. [Google Scholar] [CrossRef]
- Ghosh, D.; Raghavan, S.C. 20 years of DNA Polymerase μ, the polymerase that still surprises. FEBS J. 2021, 288, 7230–7242. [Google Scholar] [CrossRef]
- Domínguez, O.; Ruiz, J.F.; de Lera, T.L.; García-Díaz, M.; González, M.A.; Kirchhoff, T.; Martínez-A, C.; Bernad, A.; Blanco, L. DNA polymerase mu (Pol micro), homologous to TdT, could act as a DNA mutator in eukaryotic cells. EMBO J. 2000, 19, 1731–1742. [Google Scholar] [CrossRef]
- Juárez, R.; Ruiz, J.F.; McElhinny, S.A.N.; Ramsden, D.; Blanco, L. A specific loop in human DNA polymerase mu allows switching between creative and DNA-instructed synthesis. Nucleic Acids Res. 2006, 34, 4572–4582. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Yuan, F.; Xie, Z.; Wang, Z. Highly Frequent Frameshift DNA Synthesis by Human DNA Polymerase μ. Mol. Cell Biol. 2001, 21, 7995–8006. [Google Scholar] [CrossRef]
- Moon, A.F.; Gosavi, R.A.; Kunkel, T.A.; Pedersen, L.C.; Bebenek, K. Creative template-dependent synthesis by human polymerase mu. Proc. Natl. Acad. Sci. USA 2015, 112, E4530–E4536. [Google Scholar] [CrossRef]
- Moon, A.F.; Pryor, J.M.; Ramsden, D.A.; Kunkel, T.A.; Bebenek, K.; Pedersen, L.C. Sustained active site rigidity during synthesis by human DNA polymerase μ. Nat. Struct. Mol. Biol. 2014, 21, 253–260. [Google Scholar] [CrossRef]
- Ruiz, J.F. Lack of sugar discrimination by human Pol requires a single glycine residue. Nucleic Acids Res. 2003, 31, 4441–4449. [Google Scholar] [CrossRef]
- McElhinny, S.A.N.; Ramsden, D.A. Polymerase Mu Is a DNA-Directed DNA/RNA Polymerase. Mol. Cell Biol. 2003, 23, 2309–2315. [Google Scholar] [CrossRef]
- Moon, A.F.; Pryor, J.M.; Ramsden, D.A.; Kunkel, T.A.; Bebenek, K.; Pedersen, L.C. Structural accommodation of ribonucleotide incorporation by the DNA repair enzyme polymerase Mu. Nucleic Acids Res. 2017, 45, 9138–9148. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, X.; Guo, D.; Rechkoblit, O.; Taylor, J.-S.; Geacintov, N.E.; Wang, Z. Lesion bypass activities of human DNA polymerase μ. J. Biol. Chem. 2002, 277, 44582–44587. [Google Scholar] [CrossRef]
- Havener, J.M.; McElhinny, S.A.N.; Bassett, E.; Gauger, M.; Ramsden, D.A.; Chaney, S.G. Translesion synthesis past platinum DNA adducts by human DNA polymerase μ. Biochemistry 2003, 42, 1777–1788. [Google Scholar] [CrossRef]
- Kaminski, A.M.; Chiruvella, K.K.; Ramsden, D.A.; Kunkel, T.A.; Bebenek, K.; Pedersen, L.C. Unexpected behavior of DNA polymerase Mu opposite template 8-oxo-7,8-dihydro-2′-guanosine. Nucleic Acids Res. 2019, 47, 9410–9422. [Google Scholar] [CrossRef]
- Martin, M.J.; Garcia-Ortiz, M.V.; Esteban, V.; Blanco, L. Ribonucleotides and manganese ions improve non-homologous end joining by human Polµ. Nucleic Acids Res. 2013, 41, 2428–2436. [Google Scholar] [CrossRef]
- Jamsen, J.A.; Beard, W.A.; Pedersen, L.C.; Shock, D.D.; Moon, A.F.; Krahn, J.M.; Bebenek, K.; Kunkel, T.A.; Wilson, S.H. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nat. Commun. 2017, 8, 253. [Google Scholar] [CrossRef]
- Jamsen, J.A.; Sassa, A.; Perera, L.; Shock, D.D.; Beard, W.A.; Wilson, S.H. Structural basis for proficient oxidized ribonucleotide insertion in double strand break repair. Nat. Commun. 2021, 12, 5055. [Google Scholar] [CrossRef]
- Jamsen, J.A.; Sassa, A.; Shock, D.D.; Beard, W.A.; Wilson, S.H. Watching a double strand break repair polymerase insert a pro-mutagenic oxidized nucleotide. Nat. Commun. 2021, 12, 2059. [Google Scholar] [CrossRef]
- Guo, M.; Wang, Y.; Tang, Y.; Chen, Z.; Hou, J.; Dai, J.; Wang, Y.; Wang, L.; Xu, H.; Tian, B.; et al. Mechanism of genome instability mediated by human DNA polymerase mu misincorporation. Nat. Commun. 2021, 12, 1–9. [Google Scholar] [CrossRef]
- Chang, Y.-K.; Huang, Y.-P.; Liu, X.-X.; Ko, T.-P.; Bessho, Y.; Kawano, Y.; Maestre-Reyna, M.; Wu, W.-J.; Tsai, M.-D. Human DNA Polymerase μ Can Use a Noncanonical Mechanism for Multiple Mn2+-Mediated Functions. J. Am. Chem. Soc. 2019, 141, 8489–8502. [Google Scholar] [CrossRef] [PubMed]
- Pryor, J.M.; Conlin, M.P.; Carvajal-Garcia, J.; Luedeman, M.E.; Luthman, A.J.; Small, G.W.; Ramsden, D.A. Ribonucleotide incorporation enables repair of chromosome breaks by nonhomologous end joining. Science 2018, 361, 1126–1129. [Google Scholar] [CrossRef] [PubMed]
- Çağlayan, M. Pol μ ribonucleotide insertion opposite 8-oxodG facilitates the ligation of premutagenic DNA repair intermediate. Sci. Rep. 2020, 10, 1–14. [Google Scholar] [CrossRef]
- McIntyre, J. Polymerase iota—An odd sibling among Y family polymerases. DNA Repair 2020, 86, 102753. [Google Scholar] [CrossRef] [PubMed]
- Bebenek, K.; Tissier, A.; Frank, E.G.; McDonald, J.P.; Prasad, R.; Wilson, S.H.; Woodgate, R.; Kunkel, T.A. 5′-Deoxyribose Phosphate lyase activity of human DNA polymerase ι in vitro. Science 2001, 291, 2156–2159. [Google Scholar] [CrossRef] [PubMed]
- Tissier, A.; McDonald, J.P.; Frank, E.G.; Woodgate, R. polι, a remarkably error-prone human DNA polymerase. Minerva Anestesiol. 2000, 14, 1642–1650. [Google Scholar] [CrossRef]
- Johnson, R.E.; Washington, M.T.; Haracska, L.; Prakash, S.; Prakash, L. Eukaryotic polymerases ι and ζ act sequentially to bypass DNA lesions. Nature 2000, 406, 1015–1019. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yuan, F.; Wu, X.; Wang, Z. Preferential Incorporation of G Opposite Template T by the Low-Fidelity Human DNA Polymerase ι. Mol. Cell Biol. 2000, 20, 7099–7108. [Google Scholar] [CrossRef]
- Nair, D.T.; Johnson, R.E.; Prakash, S.; Prakash, L.; Aggarwal, A.K. Replication by human DNA polymerase-ι occurs by Hoogsteen base-pairing. Nature 2004, 430, 377–380. [Google Scholar] [CrossRef]
- Choi, J.-Y.; Lim, S.; Eoff, R.L.; Guengerich, F.P. Kinetic Analysis of Base-Pairing Preference for Nucleotide Incorporation Opposite Template Pyrimidines by Human DNA Polymerase ι. J. Mol. Biol. 2009, 389, 264–274. [Google Scholar] [CrossRef]
- Zhang, Y. Response of human DNA polymerase iota to DNA lesions. Nucleic Acids Res. 2001, 29, 928–935. [Google Scholar] [CrossRef]
- Tissier, A.; Frank, E.G.; McDonald, J.P.; Iwai, S.; Hanaoka, F.; Woodgate, R. Misinsertion and bypass of thymine–thymine dimers by human DNA polymerase ι. EMBO J. 2000, 19, 5259–5266. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.; Choudhury, J.R.; Buku, A.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Mechanism of error-free DNA synthesis across N1-methyl-deoxyadenosine by human DNA polymerase-ι. Sci. Rep. 2017, 7, 43904. [Google Scholar] [CrossRef] [PubMed]
- Plosky, B.S.; Frank, E.G.; Berry, D.A.; Vennall, G.P.; McDonald, J.P.; Woodgate, R. Eukaryotic Y-family polymerases bypass a 3-methyl-2′-deoxyadenosine analog in vitro and methyl methanesulfonate-induced DNA damage in vivo. Nucleic Acids Res. 2008, 36, 2152–2162. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-H.; Choudhury, J.R.; Park, J.; Prakash, S.; Prakash, L. Translesion synthesis DNA polymerases promote error-free replication through the minor-groove DNA adduct 3-deaza-3-methyladenine. J. Biol. Chem. 2017, 292, 18682–18688. [Google Scholar] [CrossRef] [PubMed]
- Yoon, J.-H.; Choudhury, J.R.; Prakash, L.; Prakash, S. Translesion synthesis DNA polymerases η, ι, and ν promote mutagenic replication through the anticancer nucleoside cytarabine. J. Biol. Chem. 2019, 294, 19048–19054. [Google Scholar] [CrossRef] [PubMed]
- Frank, E.G.; Woodgate, R. Increased catalytic activity and altered fidelity of human DNA polymerase ι in the presence of manganese. J. Biol. Chem. 2007, 282, 24689–24696. [Google Scholar] [CrossRef] [PubMed]
- Donigan, K.A.; McLenigan, M.P.; Yang, W.; Goodman, M.F.; Woodgate, R. The Steric Gate of DNA Polymerase ι Regulates Ribonucleotide Incorporation and Deoxyribonucleotide Fidelity. J. Biol. Chem. 2014, 289, 9136–9145. [Google Scholar] [CrossRef]
- Pence, M.G.; Blans, P.; Zink, C.N.; Hollis, T.; Fishbein, J.C.; Perrino, F.W. Lesion bypass of N2-ethylguanine by human DNA polymerase ι. J. Biol. Chem. 2009, 284, 1732–1740. [Google Scholar] [CrossRef]
- Poltoratsky, V.; Woo, C.J.; Tippin, B.; Martin, A.; Goodman, M.F.; Scharff, M.D. Expression of error-prone polymerases in BL2 cells activated for Ig somatic hypermutation. Proc. Natl. Acad. Sci. USA 2001, 98, 7976–7981. [Google Scholar] [CrossRef]
- Faili, A.; Aoufouchi, S.; Flatter, E.; Guéranger, Q.; Reynaud, C.-A.; Weill, J.-C. Induction of somatic hypermutation in immunoglobulin genes is dependent on DNA polymerase iota. Nature 2002, 419, 944–947. [Google Scholar] [CrossRef]
- McDonald, J.P.; Frank, E.G.; Plosky, B.S.; Rogozin, I.B.; Masutani, C.; Hanaoka, F.; Woodgate, R.; Gearhart, P.J. 129-Derived strains of mice are deficient in DNA polymerase ι and have normal immunoglobulin hypermutation. J. Exp. Med. 2003, 198, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, T.; Azuma, T.; Ishiguro, M.; Kanjo, N.; Yamada, S.; Ohmori, H. Normal immunoglobulin gene somatic hypermutation in Polκ–Polι double-deficient mice. Immunol. Lett. 2005, 98, 259–264. [Google Scholar] [CrossRef] [PubMed]
- Gueranger, Q.; Stary, A.; Aoufouchi, S.; Faili, A.; Sarasin, A.; Reynaud, C.-A.; Weill, J.-C. Role of DNA polymerases η, ι and ζ in UV resistance and UV-induced mutagenesis in a human cell line. DNA Repair 2008, 7, 1551–1562. [Google Scholar] [CrossRef] [PubMed]
- Ziv, O.; Geacintov, N.; Nakajima, S.; Yasui, A.; Livneh, Z. DNA polymerase ζ cooperates with polymerases κ and ι in translesion DNA synthesis across pyrimidine photodimers in cells from XPV patients. Proc. Natl. Acad. Sci. USA 2009, 106, 11552–11557. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.E.; Washington, M.T.; Prakash, S.; Prakash, L. Fidelity of human DNA polymerase η. J. Biol. Chem. 2000, 275, 7447–7450. [Google Scholar] [CrossRef] [PubMed]
- Washington, M.T.; Johnson, R.E.; Prakash, S.; Prakash, L. Fidelity and processivity of saccharomyces cerevisiae DNA polymerase η. J. Biol. Chem. 1999, 274, 36835–36838. [Google Scholar] [CrossRef] [PubMed]
- Feltes, B.C.; Menck, C.F.M. Current state of knowledge of human DNA polymerase eta protein structure and disease-causing mutations. Mutat. Res. Mol. Mech. Mutagen. 2022, 790, 108436. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.E.; Prakash, S.; Prakash, L. Efficient bypass of a thymine-thymine dimer by yeast DNA polymerase, polη. Science 1999, 283, 1001–1004. [Google Scholar] [CrossRef]
- Washington, M.T.; Johnson, R.E.; Prakash, S.; Prakash, L. Accuracy of thymine-thymine dimer bypass by Saccharomyces cerevisiae DNA polymerase η. Proc. Natl. Acad. Sci. USA 2000, 97, 3094–3099. [Google Scholar] [CrossRef]
- Trincao, J.; Johnson, R.E.; Escalante, C.R.; Prakash, S.; Prakash, L.; Aggarwal, A.K. Structure of the Catalytic Core of S. cerevisiae DNA Polymerase η: Implications for Translesion DNA Synthesis. Mol. Cell 2001, 8, 417–426. [Google Scholar] [CrossRef]
- Silverstein, T.D.; Jain, R.; Johnson, R.E.; Prakash, L.; Prakash, S.; Aggarwal, A.K. Structural Basis for Error-free Replication of Oxidatively Damaged DNA by Yeast DNA Polymerase η. Structure 2010, 18, 1463–1470. [Google Scholar] [CrossRef] [PubMed]
- Haracska, L.; Yu, S.-L.; Johnson, R.E.; Prakash, L.; Prakash, S. Efficient and accurate replication in the presence of 7,8-dihydro-8-oxoguanine by DNA polymerase η. Nat. Genet. 2000, 25, 458–461. [Google Scholar] [CrossRef] [PubMed]
- Weng, P.J.; Gao, Y.; Gregory, M.T.; Wang, P.; Wang, Y.; Yang, W. Bypassing a 8,5′-cyclo-2′-deoxyadenosine lesion by human DNA polymerase η at atomic resolution. Proc. Natl. Acad. Sci. USA 2018, 115, 10660–10665. [Google Scholar] [CrossRef] [PubMed]
- Koag, M.-C.; Jung, H.; Lee, S. Mutagenesis mechanism of the major oxidative adenine lesion 7,8-dihydro-8-oxoadenine. Nucleic Acids Res. 2020, 48, 5119–5134. [Google Scholar] [CrossRef]
- Haracska, L.; Washington, M.T.; Prakash, S.; Prakash, L. Inefficient Bypass of an Abasic Site by DNA Polymerase η. J. Biol. Chem. 2001, 276, 6861–6866. [Google Scholar] [CrossRef]
- Patra, A.; Zhang, Q.; Lei, L.; Su, Y.; Egli, M.; Guengerich, F.P. Structural and kinetic analysis of nucleoside triphosphate incorporation opposite an abasic site by human translesion DNA polymerase η. J. Biol. Chem. 2015, 290, 8028–8038. [Google Scholar] [CrossRef]
- Haracska, L.; Prakash, S.; Prakash, L. Replication past O6-Methylguanine by Yeast and Human DNA Polymerase η. Mol. Cell Biol. 2000, 20, 8001–8007. [Google Scholar] [CrossRef]
- Patra, A.; Zhang, Q.; Guengerich, F.P.; Egli, M. Mechanisms of insertion of dCTP and dTTP opposite the DNA lesion O6-Methyl-26-deoxyguanosine by Human DNA polymerase η. J. Biol. Chem. 2016, 291, 24304–24313. [Google Scholar] [CrossRef]
- Koag, M.-C.; Jung, H.; Kou, Y.; Lee, S. Bypass of the major alkylative DNA lesion by human DNA polymerase η. Molecules 2019, 24, 3928. [Google Scholar] [CrossRef]
- Jung, H.; Hawkins, M.A.; Lee, S. Structural insights into the bypass of the major deaminated purines by translesion synthesis DNA polymerase. Biochem. J. 2020, 477, 4797–4810. [Google Scholar] [CrossRef]
- Jung, H.; Rayala, N.K.; Lee, S. Effects of N7-Alkylguanine Conformation and Metal Cofactors on the Translesion Synthesis by Human DNA Polymerase η. Chem. Res. Toxicol. 2022, 35, 512–521. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Biertümpfel, C.; Gregory, M.T.; Hua, Y.-J.; Hanaoka, F.; Yang, W. Structural basis of human DNA polymerase η-mediated chemoresistance to cisplatin. Proc. Natl. Acad. Sci. USA 2012, 109, 7269–7274. [Google Scholar] [CrossRef] [PubMed]
- Gregory, M.T.; Park, G.Y.; Johnstone, T.C.; Lee, Y.-S.; Yang, W.; Lippard, S.J. Structural and mechanistic studies of polymerase η bypass of phenanthriplatin DNA damage. Proc. Natl. Acad. Sci. USA 2014, 111, 9133–9138. [Google Scholar] [CrossRef] [PubMed]
- Ouzon-Shubeita, H.; Baker, M.; Koag, M.-C.; Lee, S. Structural basis for the bypass of the major oxaliplatin–DNA adducts by human DNA polymerase η. Biochem. J. 2019, 476, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Ghodke, P.P.; Guengerich, F.P. DNA polymerases η and κ bypass N2-guanine-O6-alkylguanine DNA alkyltransferase cross-linked DNA-peptides. J. Biol. Chem. 2021, 297, 101124. [Google Scholar] [CrossRef] [PubMed]
- Su, Y.; Egli, M.; Guengerich, F.P. Mechanism of Ribonucleotide Incorporation by Human DNA Polymerase η. J. Biol. Chem. 2016, 291, 3747–3756. [Google Scholar] [CrossRef] [PubMed]
- Gali, V.K.; Balint, E.; Serbyn, N.; Frittmann, O.; Stutz, F.; Unk, I. Translesion synthesis DNA polymerase η exhibits a specific RNA extension activity and a transcription-associated function. Sci. Rep. 2017, 7, 13055. [Google Scholar] [CrossRef] [PubMed]
- Sassa, A.; Çağlayan, M.; Rodriguez, Y.; Beard, W.A.; Wilson, S.H.; Nohmi, T.; Honma, M.; Yasui, M. Impact of ribonucleotide backbone on translesion synthesis and repair of 7,8-Dihydro-8-oxoguanine. J. Biol. Chem. 2016, 291, 24314–24323. [Google Scholar] [CrossRef]
- Su, Y.; Ghodke, P.P.; Egli, M.; Li, L.; Wang, Y.; Guengerich, F.P. Human DNA polymerase η has reverse transcriptase activity in cellular environments. J. Biol. Chem. 2019, 294, 6073–6081. [Google Scholar] [CrossRef]
- Su, Y.; Egli, M.; Guengerich, F.P. Human DNA polymerase η accommodates RNA for strand extension. J. Biol. Chem. 2017, 292, 18044–18051. [Google Scholar] [CrossRef]
- Mentegari, E.; Crespan, E.; Bavagnoli, L.; Kissova, M.; Bertoletti, F.; Sabbioneda, S.; Imhof, R.; Sturla, S.J.; Nilforoushan, A.; Hübscher, U.; et al. Ribonucleotide incorporation by human DNA polymerase η impacts translesion synthesis and RNase H2 activity. Nucleic Acids Res. 2017, 45, 2600–2614. [Google Scholar] [CrossRef] [PubMed]
- Balint, E.; Unk, I. Selective Metal Ion Utilization Contributes to the Transformation of the Activity of Yeast Polymerase η from DNA Polymerization toward RNA Polymerization. Int. J. Mol. Sci. 2020, 21, 8248. [Google Scholar] [CrossRef] [PubMed]
- Balint, E.; Unk, I. Manganese is a strong specific activator of the RNA synthetic activity of human polη. Int. J. Mol. Sci. 2022, 23, 230. [Google Scholar] [CrossRef] [PubMed]
- Acharya, N.; Manohar, K.; Peroumal, D.; Khandagale, P.; Patel, S.K.; Sahu, S.R.; Kumari, P. Multifaceted activities of DNA polymerase η: Beyond translesion DNA synthesis. Curr. Genet. 2018, 65, 649–656. [Google Scholar] [CrossRef]
Substrate, Templating Nucleotide | Incoming Nucleotide | Cation | Velocity Constant | Affinity Constant | Efficiency | Magnitude of Stimulation, Mn2+/Mg2+ a | Misinsertion Frequency b | Reference |
---|---|---|---|---|---|---|---|---|
1 nt gapped DNA, G | kcat (10−3 s−1) c | Km (μM) c | kcat/Km (10−3 s−1 μM−1) | [48] | ||||
dCTP | 5 mM Mg2+ | 212.0 ± 19.9 | 0.6 ± 0.1 | 353.3 | 1 | 1 | ||
dCTP | 5 mM Mn2+ | 30.3 ± 1.5 | 0.08 ± 0.01 | 383.7 | 1.08 | 1 | ||
dTTP | 5 mM Mg2+ | 2.8 ± 0.4 | 56.1 ± 4.6 | 0.049 | 1 | 1.4 × 10−4 | ||
dTTP | 5 mM Mn2+ | 19.1 ± 0.8 | 11.2 ± 0.5 | 1.71 | 34 | 4.5 × 10−3 | ||
1 nt gapped DNA, O6MedG | dCTP | 5 mM Mg2+ | 14.5 ± 1.2 | 234.2 ± 24.5 | 0.062 | 1 | 1 | [55] |
dCTP | 5 mM Mn2+ | 20.4 ± 1.6 | 193.3 ± 7.6 | 0.11 | 1.7 | 1 | ||
dTTP | 5 mM Mg2+ | 62.4 ± 11.0 | 56.2 ± 4.7 | 1.1 | 1 | 17 | ||
dTTP | 5 mM Mn2+ | 431.8 ± 53.2 | 38.7 ± 4.1 | 11.2 | 10 | 100 | ||
1 nt gapped DNA, Pt-GG | dCTP | 5 mM Mg2+ | 15.76 ± 1.24 | 5.22 ± 1.01 | 3.0 | 1 | [54] | |
dCTP | 5 mM Mn2+ | 27.60 ± 1.62 | 1.14 ± 0.05 | 24.2 | 8 | |||
kcat (s−1) | Km (μM) | kcat/Km (μM−1 s−1) | [56] | |||||
5 nt gapped DNA, T | dATP | 1 mM Mg2+ | 0.084 | 0.019 | 4.4 | 1 | ||
dATP | 1 mM Mn2+ | 0.078 | 0.085 | 0.92 | 0.2 | |||
5 nt gapped DNA, Thymine glycol | dATP | 1 mM Mg2+ | 0.038 | 11.3 | 0.0034 | 1 | 1 | |
dATP | 1 mM Mn2+ | 0.084 | 0.07 | 1.2 | 360 | 1 | ||
dGTP | 1 mM Mg2+ | 0.0064 | 12.5 | 0.0005 | 1 | 1.5 × 10−1 | ||
dGTP | 1 mM Mn2+ | 0.064 | 3.51 | 0.018 | 36 | 1.5 × 10−2 | ||
2 nt gapped DNA, Thymine glycol | dATP | 1 mM Mg2+ | 0.068 | 0.322 | 0.21 | 1 | 1 | |
dATP | 1 mM Mn2+ | 0.093 | 0.043 | 2.2 | 10 | 1 | ||
dGTP | 1 mM Mg2+ | 0.0073 | 0.162 | 0.045 | 1 | 2.1 × 10−1 | ||
dGTP | 1 mM Mn2+ | 0.083 | 0.653 | 0.13 | 2.8 | 6 × 10−2 | ||
1 nt gapped DNA, Thymine glycol | dATP | 1 mM Mg2+ | 0.090 | 0.371 | 0.24 | 1 | 1 | |
dATP | 1 mM Mn2+ | 0.092 | 0.006 | 15 | 63 | 1 | ||
dGTP | 1 mM Mg2+ | 0.070 | 61.73 | 0.0011 | 1 | 4.7 × 10−3 | ||
dGTP | 1 mM Mn2+ | 0.076 | 0.337 | 0.23 | 200 | 1.4 × 10−2 |
Substrate (Primer/Template), Templating Nucleotide | Incoming Nucleotide | Cation | Velocity Constant | Affinity Constant | Efficiency | Magnitude of Stimulation, Mn2+/Mg2+ a | Misinsertion Frequency b | Reference |
---|---|---|---|---|---|---|---|---|
kcat (s−1) c | Km (μM) c | kcat/Km (s−1 M−1) c | [47] | |||||
oligo(dT)/poly(dA), A | dTTP | 1 mM Mg2+ | 0.006 | 4.7 | 1.2 × 103 | 1 | ||
dTTP | 1 mM Mn2+ | 0.016 | 3.2 | 5 × 103 | 4 | |||
kcat (min−1) d | Kd (μM) d | kcat/Kd (min−1 mM−1) b | ||||||
19/40-mer, T | dATP | 1 mM Mg2+ | 0.05 ± 0.01 | 0.8 ± 0.1 | 0.0625 ± 0.01 | 1 | 1 | [79] |
dATP | 0.1 mM Mn2+ | 0.12 ± 0.02 | 1.2 ± 0.1 | 0.1 ± 0.05 | 1.6 | 1 | ||
dCTP | 1 mM Mg2+ | 0.002 ± 0.0005 | 4.5 ± 0.5 | 0.0004 ± 0.0001 | 1 | 6.4 × 10−3 | ||
dCTP | 0.1 mM Mn2+ | 0.01 ± 0.003 | 4.5 ± 0.5 | 0.0022 ± 0.0002 | 5.5 | 2.2 × 10−2 | ||
dGTP | 1 mM Mg2+ | 0.008 ± 0.004 | 3 ± 0.3 | 0.002 ± 0.0003 | 1 | 3.2 × 10−2 | ||
dGTP | 0.1 mM Mn2+ | 0.02 ± 0.01 | 2.5 ± 0.2 | 0.008 ± 0.01 | 4 | 8.0 × 10−2 | ||
ATP | 1 mM Mg2+ | 0.01 ± 0.002 | 12 ± 2 | 0.0008 ± 0.0001 | 1 | 1.3 × 10−2 | ||
ATP | 0.1 mM Mn2+ | 0.015 ± 0.005 | 3.7 ± 2 | 0.004 ± 0.001 | 5 | 4.0 × 10−2 | ||
20/40-mer, G | dCTP | 1 mM Mg2+ | 0.2 ± 0.08 | 0.9 ± 0.1 | 0.22 ± 0.03 | 1 | 1 | [79] |
dCTP | 0.1 mM Mn2+ | 0.5 ± 0.2 | 1.5 ± 0.1 | 0.33 ± 0.04 | 1.5 | 1 | ||
dGTP | 1 mM Mg2+ | 0.004 ± 0.001 | 0.8 ± 0.2 | 0.005 ± 0.001 | 1 | 2.3 × 10−2 | ||
dGTP | 0.1 mM Mn2+ | 0.04 ± 0.003 | 1.4 ± 0.1 | 0.028 ± 0.006 | 5.6 | 8.5 × 10−2 | ||
CTP | 1 mM Mg2+ | 0.01 ± 0.003 | 9 ± 2 | 0.0011 ± 0.0002 | 1 | 5 × 10−3 | ||
CTP | 0.1 mM Mn2+ | 0.08 ± 0.01 | 2.7 ± 0.5 | 0.029 ± 0.004 | 26 | 8.8 × 10−3 | ||
21/40-mer, C | dGTP | 1 mM Mg2+ | 0.08 ± 0.01 | 3 ± 0.4 | 0.026 ± 0.002 | 1 | 1 | [79] |
dGTP | 0.1 mM Mn2+ | 0.2 ± 0.03 | 2.5 ± 0.2 | 0.08 ± 0.02 | 3 | 1 | ||
GTP | 1 mM Mg2+ | 0.003 ± 0.001 | 10 ± 1 | 0.0003 ± 0.0001 | 1 | 1.1 × 10−2 | ||
GTP | 0.1 mM Mn2+ | 0.03 ± 0.01 | 6.5 ± 0.7 | 0.0046 ± 0.001 | 15 | 5.8 × 10−2 | ||
kcat (s−1) c | Km (μM) c | kcat/Km (μM−1 s−1) | [56] | |||||
5 nt gapped DNA, T | dATP | Mg2+ | 0.026 | 6.44 | 0.0041 | 1 | ||
dATP | Mn2+ | 0.060 | 0.144 | 0.42 | 100 | |||
2 nt gapped DNA, Thymineglycol | dATP | Mg2+ | 0.006 | 0.091 | 0.069 | 1 | 1 | |
dATP | Mn2+ | 0.027 | 0.012 | 2.3 | 34 | 1 | ||
dGTP | Mg2+ | 0.011 | 1.42 | 0.008 | 1 | 1.2 × 10−1 | ||
dGTP | Mn2+ | 0.043 | 0.083 | 0.52 | 67 | 2.3 × 10−1 |
Substrate, Templating Nucleotide | Incoming Nucleotide | Cation | Velocity Constant | Affinity Constant | Efficiency | Magnitude of Stimulation, Mn2+/Mg2+ a | Misinsertion Frequency b | Reference |
---|---|---|---|---|---|---|---|---|
1 nt gapped DNA, A | kpol (s−1) d | Kd (μM) d | kpol/Kd (μM−1 s−1) c | [96] | ||||
dTTP | 10 mM Mg2+ | 6.0 ± 0.2 | 192 ± 21 | 0.031 ± 0.004 | 1 | |||
dTTP | 1 mM Mn2+ | 81 ± 7 | 54 ± 18 | 1.5 ± 0.5 | 48 | |||
kcat (min−1) c | Km (μM) c | kcat/Km (min−1 μM−1) | [98] | |||||
1 nt gapped DNA, C | dGTP | 10 mM Mg2+ | 5.70 ± 0.21 | 3.48 ± 0.31 | 1.64 ± 0.16 | 1 | 1 | |
dGTP | 1 mM Mn2+ | 0.16 ± 0.01 | 0.006 ± 0.001 | 26.9 ± 4.7 | 16 | 1 | ||
1 nt gapped DNA, A | dGTP | 10 mM Mg2+ | 0.04 ± 0.01 | 55.6 ± 5.9 | 0.0007 ± 0.0002 | 1 | 4.3 × 10−4 e | |
dGTP | 1 mM Mn2+ | 2.98 ± 0.01 | 21.3 ± 2.3 | 0.14 ± 0.02 | 200 | 5.2 × 10−3 e | ||
1 nt gapped DNA, T | kcat (10−3 min−1) c | Km (μM) c | kcat/Km (min−1 μM−1) | [99] | ||||
dATP | 10 mM Mg2+ | 236.2 ± 5.3 | 3.1 ± 0.3 | 76.6 × 10−3 | ||||
dGTP | 10 mM Mg2+ | 28.3 ± 0.6 | 5.7 ± 0.5 | 4.9 × 10−3 | 1 | 6.4 × 10−2 | ||
dGTP | 10 mM Mn2+ | 100.1 ± 2.6 | 5.2 ± 0.6 | 19.2 × 10−3 | 3.9 | n.d. |
Substrate (Primer/Template), Templating Nucleotide | Incoming Nucleotide | Cation | Velocity Constant | Affinity Constant | Efficiency | Magnitude of Stimulation, Mn2+/Mg2+ a | Misinsertion Frequency b | Reference |
---|---|---|---|---|---|---|---|---|
Vmax (% min−1) c | Km (μM) c | Vmax/Km (% min−1 μM−1) | [116] | |||||
16/48-mer, T | dATP | 5 mM Mg2+ | 5 ± 0.8 | 2.7 ± 0.5 | 1.85 | 1 | 1 | |
dATP | 0.075 mM Mn2+ | 7.1 ± 0.5 | 0.0011 ± 0.0002 | 6450 | 3486 | 1 | ||
dGTP | 5 mM Mg2+ | 8.3 ± 0.9 | 1.8 ± 0.3 | 4.6 | 1 | 2.5 | ||
dGTP | 0.075 mM Mn2+ | 6.3 ± 1 | 0.0022 ± 0.0003 | 2860 | 622 | 4.4 × 10−1 | ||
20/50-mer, A | dTTP | 5 mM Mg2+ | 10 ± 2 | 0.06 ± 0.01 | 167 | 1 | 1 | |
dTTP | 0.075 mM Mn2+ | 2.6 ± 0.5 | 0.00053 ± 0.0001 | 4900 | 30 | 1 | ||
dATP | 5 mM Mg2+ | 5 ± 1.1 | 90 ± 17 | 0.06 | 1 | 3.6 × 10−4 | ||
dATP | 0.075 mM Mn2+ | 1.1 ± 0.3 | 0.003 ± 0.0008 | 370 | 6600 | 7.5 × 10−2 | ||
kcat (min−1) c | Km (μM)c | kcat/Km (min−1 μM−1) | [118] | |||||
14/32-mer, G | dCTP | 2 mM Mg2+ | 112 ± 18 | 49 ± 4 | 2.3 | 1 | 1 | |
dCTP | 0.075 mM Mn2+ | 700 ± 40 | 0.15 ± 0.020 | 4700 | 2040 | 1 | ||
dTTP | 2 mM Mg2+ | 50 ± 6 | 220 ± 60 | 0.23 | 1 | 1.0 × 10−1 | ||
dTTP | 0.075 mM Mn2+ | 200 ± 15 | 0.085 ± 0.020 | 2350 | 10,000 | 5.0 × 10−1 | ||
14/32-mer, N2-ethyl-G | dCTP | 2 mM Mg2+ | 74 ± 12 | 36 ±3 | 2.1 | 1 | 1 | |
dCTP | 0.075 mM Mn2+ | 425 ± 15 | 0.10 ± 0.012 | 4250 | 2020 | 1 | ||
dTTP | 2 mM Mg2+ | 115 ± 18 | 650 ± 180 | 0.18 | 1 | 8.6 × 10−2 | ||
dTTP | 0.075 mM Mn2+ | 225 ± 25 | 0.030 ± 0.014 | 7500 | 41,700 | 1.7 |
Substrate (Primer/Template), Templating Nucleotide | Incoming Nucleotide | Cation | Velocity Constant | Affinity Constant | Efficiency | Magnitude of Stimulation, Mn2+/Mg2+ a | Misinsertion Frequency b | Reference |
---|---|---|---|---|---|---|---|---|
kcat (min−1) c | Km (µM) c | kcat/Km (min−1 µM−1) | [152] | |||||
30-mer RNA/50-mer DNA, T | rATP | 5 mM Mg2+ | 0.24 ± 0.01 | 466± 47.3 | 5.15 × 10−4 | 1 | ||
rATP | 5 mM Mn2+ | 2.61 ± 0.14 | 2.51 ± 0.64 | 1.04 | 2019 | 1 | ||
rCTP | 5 mM Mn2+ | 1.72 ± 0.06 | 19.4 ± 3.14 | 9 × 10−2 | 8.7 × 10−4 | |||
30-mer RNA/50-mer DNA, G | rCTP | 5 mM Mg2+ | 2.76 ± 0.06 | 438 ± 37.5 | 6.30 × 10−3 | 1 | ||
rCTP | 5 mM Mn2+ | 4.68 ± 0.22 | 1.89 ± 0.42 | 2.48 | 394 | 1 | ||
rGTP | 5 mM Mn2+ | 0.31 ± 0.02 | 68.9 ± 14.9 | 4.5 × 10−3 | 1.8 × 10−3 | |||
30-mer RNA/50-mer DNA, C | rGTP | 5 mM Mg2+ | 0.45 ± 0.01 | 394 ± 52 | 1.14 × 10−3 | 1 | ||
rGTP | 5 mM Mn2+ | 5.07 ± 0.27 | 2.55 ± 0.63 | 1.99 | 1746 | 1 | ||
rCTP | 5 mM Mn2+ | 1.03 ± 0.04 | 19.9 ± 3.74 | 5.2 × 10−2 | 2.6 × 10−2 | |||
30-mer RNA/50-mer DNA, A | rUTP | 5 mM Mg2+ | 0.10 ± 0.01 | 423 ± 90.4 | 2.36 × 10−4 | 1 | ||
rUTP | 5 mM Mn2+ | 3.51 ± 0.19 | 12.8 ± 2.25 | 2.74 × 10−1 | 1161 | 1 | ||
rCTP | 5 mM Mn2+ | 1.03 ± 0.07 | 17.5 ± 4.92 | 5.9 × 10−2 | 2.2 × 10−1 | |||
31-mer RNA/75-mer DNA, 8-oxoG | rCTP | 5 mM Mg2+ | 0.034 ± 0.004 | 974 ± 270 | 3.52 × 10−5 | 1 | ||
rCTP | 5 mM Mn2+ | 0.275 ± 0.01 | 1.25 ± 0.28 | 2.20 × 10−1 | 6286 | |||
13-mer RNA/29-mer DNA, TT dimer | rATP | 5 mM Mg2+ | 0.0083 ± 0.001 | 1678 ± 445 | 4.94 × 10−6 | 1 | ||
rATP | 5 mM Mn2+ | 0.174 ± 0.005 | 11.3 ± 1.35 | 1.54 × 10−2 | 3117 |
Substrate (Primer/Template), Templating Nucleotide | Incoming Nucleotide | Cation | Velocity Constant | Affinity Constant | Efficiency | Magnitude of Stimulation, Mn2+/Mg2+ a | Misinsertion Frequency b | Reference |
---|---|---|---|---|---|---|---|---|
kcat (min−1) c | Km (μM) c | kcat/Km (min−1 μM−1) | [133] | |||||
8-mer/11-mer, A | dTTP | 5 mM Mg2+ | 109 ± 13 | 5.4 ± 0.7 | 20 | 1 | ||
dTTP | Mn2+ | 82 ± 5 | 0.44 ± 0.04 | 186 | 9.2 | |||
8-mer/11-mer, cdA | dTTP | 5 mM Mg2+ | 8.6 ± 0.5 | 570 ± 70 | 0.015 | 1 | ||
dTTP | Mn2+ | 10.1 ± 0.2 | 0.49 ± 0.07 | 21 | 1370 | |||
kcat (10−3 s−1) c | Km (μM) c | kcat/Km (10−3 s−1 μM−1) | [141] | |||||
18-mer DNA/25-mer DNA, N7BnG | dCTP | 5 mM Mg2+ | 20.6 ± 3.6 | 10.2 ± 2.4 | 2.1 | 1 | ||
dCTP | 1 mM Mn2+ | 38.7 ± 4.4 | 5.6 ± 0.9 | 6.9 | 3.3 | |||
dTTP | 5 mM Mg2+ | 11.5 ± 0.3 | 51.7 ± 5.3 | 0.2 | 1 | 1.0 × 10−1 | ||
dTTP | 1 mM Mn2+ | 17.8 ± 2.1 | 18.6 ± 1.9 | 1.0 | 5 | 1.4 × 10−1 | ||
kcat (min−1) c | Km (µM) c | kcat/Km (min−1 µM−1) | [153] | |||||
30-mer RNA/50-mer DNA, G | rCTP | 4 mM Mg2+ | 0.86 ± 0.05 | 1427 ± 202 | 6.0 × 10−4 | 1 | ||
rCTP | 4 mM Mn2+ | 1.27 ± 0.04 | 4.9 ± 0.6 | 2.6 × 10−1 | 430 | 1 | ||
rUTP | 4 mM Mn2+ | 0.064 ± 0.004 | 995 ± 226 | 6.5 × 10−5 | 2.5× 10−4 | |||
30-mer RNA/50-mer DNA, C | rGTP | 4 mM Mg2+ | 0.34 ± 0.06 | 6260 ± 1564 | 5.5 × 10−5 | 1 | ||
rGTP | 4 mM Mn2+ | 0.54 ± 0.02 | 7.9 ± 0.9 | 6.9 × 10−2 | 1260 | 1 | ||
rUTP | 4 mM Mn2+ | 0.030 ± 0.004 | 1274 ± 519 | 2.4 × 10−5 | 3.4 × 10−4 | |||
30-mer RNA/50-mer DNA, A | rUTP | 4 mM Mg2+ | 0.37 ± 0.04 | 4820 ± 860 | 7.6 × 10−5 | 1 | ||
rUTP | 4 mM Mn2+ | 0.89 ± 0.03 | 5 1 ± 2.0 | 5.9 × 10−2 | 780 | |||
13-mer RNA/29-mer DNA, TT dimer | rATP | 4 mM Mg2+ | 0.54 ± 0.04 | 630 ± 124 | 8.3 × 10−4 | 1 | ||
rATP | 4 mM Mn2+ | 0.54 ± 0.02 | 3.6 ± 0.6 | 1.5 × 10−1 | 180 | |||
31-mer RNA/75-mer DNA, 8-oxoG | rCTP | 4 mM Mg2+ | 0.11 ± 0.01 | 590 ± 123 | 1.8 × 10−4 | 1 | ||
rCTP | 4 mM Mn2+ | 0.18 ± 0.01 | 4.0 ± 0.5 | 4.6 × 10−2 | 260 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balint, E.; Unk, I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. Int. J. Mol. Sci. 2024, 25, 363. https://doi.org/10.3390/ijms25010363
Balint E, Unk I. For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. International Journal of Molecular Sciences. 2024; 25(1):363. https://doi.org/10.3390/ijms25010363
Chicago/Turabian StyleBalint, Eva, and Ildiko Unk. 2024. "For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases" International Journal of Molecular Sciences 25, no. 1: 363. https://doi.org/10.3390/ijms25010363
APA StyleBalint, E., & Unk, I. (2024). For the Better or for the Worse? The Effect of Manganese on the Activity of Eukaryotic DNA Polymerases. International Journal of Molecular Sciences, 25(1), 363. https://doi.org/10.3390/ijms25010363