Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways
Abstract
:1. Introduction
1.1. β-1,4-GalT Family
1.2. Unity in Diversity: The Involvement of β-1,4-GalT-V in Obesity, Cancer, Inflammation, and Heart Disease
2. Post-Transcriptional Modifications (PTM) of β-1-4GalT-V by Effector Molecules
2.1. Phosphorylation
2.2. Methylation of DNA—A Common Epigenetic Change in CRC
2.3. Sp1 a Transcriptional Regulator of β-1,4-GalT-V
2.4. Role of β-1,4-GalT-V in Glycosylation—A Predominant Form of Post-Translational Modification
2.4.1. Inhibitors of β-1,4-GalT-V
2.4.2. Angiogenesis and β-1,4-GalT-V
2.5. Effects of β-1,4-GalT-V Gene Deletion and Overexpression
2.6. Oxidative Stress, Sheer Stress, and β-1,4-GalT-V
2.7. Environment/Lifestyle Habits and β-1,4-GalT-V
3. Inflammation and β-1,4-GalT-V
3.1. Inflammatory Molecules and β-1,4-GalT-V
3.2. Cell Adhesion and β-1,4-GalT-V
3.3. Lupus Erythematosus and β-1,4-GalT-V
3.4. Phagocytosis, COPD, and β-1,4-GalT-V
4. β-1,4-GalT-V and Cancer
4.1. Stem Cells and β-1,4-GalT-V
4.2. Cell Migration and β-1,4-GalT-V
4.3. Upregulation of β-1,4-GalT-V in Cell Proliferation and Tumor Growth
5. Genetic Basis of Cancer Pathways Using the OMIM Database
6. Cancer Therapies Targeting β-1,4-GalT-V
6.1. Drug Therapies
6.1.1. Chemotherapy
6.1.2. Immunotherapies
6.2. CRISPR/Cas9
6.3. Antibody–Drug Conjugate (ADC)
6.4. Cancer Immune Checkpoints
6.5. Car T-Cell Therapy
7. Perspectives
8. Conclusions
- We demonstrated that various physiologically relevant molecules, Western diet, sheer stress, and cigarette smoke all converge upon β-1,4-GalT-V to generate LacCer.
- LacCer is a bonafide bioactive signaling molecule that can increase angiogenesis, proliferation, migration, phagocytosis, and apoptosis—all the critical phenotypes in health and disease. Additionally, and most importantly, LacCer can activate the inflammatory pathway by way of activating cytosolic phospholipase A2 to generate arachidonic acid, eicosanoids, and prostaglandins, as well as neutrophil infiltration into tissues.
- The use of inhibitors of β-1,4-GalT-V and siRNA and shRNA can mitigate nearly all these phenotypes and improve cardiovascular health glucose homeostasis in type II diabetic mice and mouse models of CRC.
- 4.
- We propose that β-1,4-GalT-V protein is a central gateway, a uniter wherein multiple risk factors and growth factors converge, and that the LacCer generated consequently activates numerous signaling pathways to induce inflammation to exacerbate diverse diseases, e.g., cancer, cardiovascular disease, and inflammatory diseases.
- 5.
- Using genetic information provided by the OMIM database is another way to strengthen our information repository and further investigate β-1,4-GalT-V’s pivotal role. Moreover, since inflammation nearly always accompanies cardiovascular diseases and cancer progression, a better understanding of β-1,4-GalT-V is warranted to develop novel approaches to mitigate these diseases as well as for their early diagnosis.
Funding
Conflicts of Interest
Abbreviations
ApoE−/− | apolipoprotein |
ADC | antibody–drug conjugate |
ASMC | Airway smooth muscle cell |
β-1,4-GalT-V | β-1,4 Galactosyltransferase-V |
CAR | Chimeric antigen receptor |
CRC | colorectal cancer |
CRISPR | Clustered regularly interspaced short palindromic repeats |
Cys | Cysteine |
D-PDMP | Phenyl-2-decanoylamino-3-N-morpholino-1-propanol |
EGF | epidermal growth factor |
ELAM-1 | endothelial leukocyte adhesion molecule 1 |
ELISA | enzyme-linked immunosorbent assay |
GlcCer | Glucosylceramides |
GlcNAc | N-acetylglucosamine |
GSL | glycosphingolipids |
HUVEC | human umbilical vein endothelial cells |
ICAM-1 | intercellular adhesion molecule |
LacCer | Lactosylceramide |
LDL | low-density lipoprotein |
MEF | Mouse Embryonic Fibroblasts |
NADPH | nicotinamide adenine dinucleotide phosphate |
OMIM | Online Mendelian Inheritance in Man |
Ox-LDL | oxidized low-density lipoprotein |
MAPK | mitogen-activated protein kinases |
PDGF | platelet-derived growth factor |
PTM | post-translational modification |
ROS | reactive oxygen species |
SiRNA | small interfering ribonucleic acid |
TSC | tuberous sclerosis complex |
TM | rransmembrane |
TNF-α | Tumor necrosis factor-alpha |
TSG-6 | Tumor necrosis factor-inducible gene 6 |
Xyl | Xylose |
UDP-galactose | Uridine diphosphate galactose |
VCAM-1 | vascular cell adhesion molecule-1 |
VEGF | vascular endothelial growth factor |
References
- Qasba, P.K.; Ramakrishnan, B.; Boeggeman, E. Structure and function of beta-1,4-galactosyltransferase. Curr. Drug Targets 2008, 9, 292–309. [Google Scholar] [CrossRef] [PubMed]
- Amado, M.; Almeida, R.; Schwientek, T.; Clausen, H. Identification and characterization of large galactosyltransferase gene families: Galactosyltransferases for all functions. Biochim. Biophys. Acta 1999, 1473, 35–53. [Google Scholar] [CrossRef] [PubMed]
- Guo, S.; Sato, T.; Shirane, K.; Furukawa, K. Galactosylation of N-linked oligosaccharides by human beta-1,4-galactosyltransferases I, II, III, IV, V, and VI expressed in Sf-9 cells. Glycobiology 2001, 11, 813–820. [Google Scholar] [CrossRef] [PubMed]
- Sato, T.; Furukawa, K. Regulation of human β-1,4-galactosyltransferase V gene expression in cancer cells. Yakugaku Zasshi 2012, 132, 691–697. [Google Scholar] [CrossRef] [PubMed]
- Yadav, S.; Brew, K. Identification of a region of UDP-galactose: N-acetylglucosamine beta 4-galactosyltransferase involved in UDP-galactose binding by differential labeling. J. Biol. Chem. 1990, 265, 14163–14169. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, T.; Sato, T.; Natsuka, S.; Kobayashi, Y.; Zhou, D.; Shinkai, T.; Hayakawa, S.; Furukawa, K. Involvement of murine β-1,4-galactosyltransferase V in lactosylceramide biosynthesis. Glycoconj. J. 2010, 27, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Qasba, P.K.; Boeggeman, E.; Ramakrishnan, B. Site-specific linking of biomolecules via glycan residues using glycosyltransferases. Biotechnol. Prog. 2008, 24, 520–526. [Google Scholar] [CrossRef]
- Lo, N.W.; Shaper, J.H.; Pevsner, J.; Shaper, N.L. The expanding beta 4-galactosyltransferase gene family: Messages from the databanks. Glycobiology 1998, 8, 517–526. [Google Scholar] [CrossRef]
- Chatterjee, S.; Balram, A.; Li, W. Convergence: Lactosylceramide-Centric Signaling Pathways Induce Inflammation, Oxidative Stress, and Other Phenotypic Outcomes. Int. J. Mol. Sci. 2021, 22, 1816. [Google Scholar] [CrossRef]
- Obesity and Cancer Fact Sheet. Available online: https://www.cancer.gov/about-cancer/causes-prevention/risk/obesity/obesity-fact-sheet (accessed on 25 July 2023).
- Lange, S.J.; Kompaniyets, L.; Freedman, D.S.; Kraus, E.M.; Porter, R.; Blanck, H.M.; Goodman, A.B. Longitudinal Trends in Body Mass Index Before and During the COVID-19 Pandemic Among Persons Aged 2–19 Years—United States, 2018–2020. Morb. Mortal. Wkly. Rep. 2021, 70, 1278–1283. [Google Scholar] [CrossRef]
- Colorectal Cancer. World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/colorectalcancer#:~:text=Colon%20cancer%20is%20the%20second,and%20mortality%20rates%20were%20observed (accessed on 13 December 2023).
- Chatterjee, S.B.; Hou, J.; Bandaru, V.V.; Pezhouh, M.K.; Syed Rifat Mannan, A.A.; Sharma, R. Lactosylceramide synthase β-1,4-galt-V: A novel target for the diagnosis and therapy of human colorectal cancer. Biochem. Biophys. Res. Commun. 2019, 508, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Poeta, M.L.; Massi, E.; Parrella, P.; Pellegrini, P.; De Robertis, M.; Copetti, M.; Rabitti, C.; Perrone, G.; Muda, A.O.; Molinari, F.; et al. Aberrant promoter methylation of beta-1,4 galactosyltransferase 1 as potential cancer-specific biomarker of colorectal tumors. Genes Chromosomes Cancer 2012, 51, 1133–1143. [Google Scholar] [CrossRef] [PubMed]
- Macrae, F.A. Colorectal Cancer: Epidemiology, Risk Factors, and Protective Factors. 6 October 2023. Available online: https://www.uptodate.com/contents/colorectal-cancer-epidemiology-risk-factors-and-protectivefactors#:~:text=In%20the%20United%20States%2C%20the,in%20White%20Americans%20%5B3%5D (accessed on 13 December 2023).
- Cavenee, W.K. Accumulation of genetic defects during astrocytoma progression. Cancer 1992, 70, 1788–1793. [Google Scholar] [CrossRef] [PubMed]
- Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 2011, 75, 50–83, Erratum in Microbiol. Mol. Biol. Rev. 2012, 76, 496. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, A.K.; Han, H.; Snowden, A.; Chatterjee, S. Lactosylceramide stimulates Ras-GTP loading, kinases (MEK, Raf), p44 mitogen-activated protein kinase, and c-fos expression in human aortic smooth muscle cells. J. Biol. Chem. 1996, 271, 10660–10666. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Bhunia, A.K.; Snowden, A.; Han, H. Oxidized low density lipoproteins stimulate galactosyltransferase activity, ras activation, p44 mitogen activated protein kinase and c-fos expression in aortic smooth muscle cells. Glycobiology 1997, 7, 703–710. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Berliner, J.A.; Subbanagounder, G.G.; Bhunia, A.K.; Koh, S. Identification of a biologically active component in minimally oxidized low density lipoprotein (MM-LDL) responsible for aortic smooth muscle cell proliferation. Glycoconj. J. 2003, 20, 331–338. [Google Scholar] [CrossRef]
- Kadiyska, T.; Nossikoff, A. Stool DNA methylation assays in colorectal cancer screening. World J. Gastroenterol. 2015, 21, 10057–10061. [Google Scholar] [CrossRef]
- Sato, T.; Furukawa, K. Sequential action of Ets-1 and Sp1 in the activation of the human beta-1,4-galactosyltransferase V gene involved in abnormal glycosylation characteristic of cancer cells. J. Biol. Chem. 2007, 282, 27702–27712. [Google Scholar] [CrossRef]
- Sasidharan Nair, V.; Saleh, R.; Toor, S.M.; Taha, R.Z.; Ahmed, A.A.; Kurer, M.A.; Murshed, K.; Alajez, N.M.; Abu Nada, M.; Elkord, E. Transcriptomic profiling disclosed the role of DNA methylation and histone modifications in tumor-infiltrating myeloid-derived suppressor cell subsets in colorectal cancer. Clin. Epigenetics 2020, 12, 13. [Google Scholar] [CrossRef]
- Sato, T.; Furukawa, K. Transcriptional regulation of the human β-1,4-galactosyltransferase V gene in cancer cells. J. Biol. Chem. 2004, 279, 39574–39583. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhou, F.; Ge, Y.; Chen, H.; Cui, C.; Li, Q.; Liu, D.; Yang, Z.; Wu, G.; Sun, S.; et al. β1,4-galactosyltransferase V regulates self-renewal of glioma-initiating cell. Biochem. Biophys. Res. Commun. 2010, 396, 602–607. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.; Zhou, F.; Ge, Y.; Chen, H.; Cui, C.; Liu, D.; Yang, Z.; Wu, G.; Shen, J.; Gu, J.; et al. Regulation of the β1,4-Galactosyltransferase I promoter by E2F1. J. Biochem. 2010, 148, 263–271. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Shen, J.; Wu, T.; Wei, Y.; Chen, X.; Zong, H.; Zhang, S.; Sun, M.; Xie, J.; Kong, X.; et al. Down-regulation of β1,4-galactosyltransferase V is a critical part of etoposide-induced apoptotic process and could be mediated by decreasing Sp1 levels in human glioma cells. Glycobiology 2006, 16, 1045–1051. [Google Scholar] [CrossRef] [PubMed]
- Dall’Olio, F.; Trinchera, M. Epigenetic Bases of Aberrant Glycosylation in Cancer. Int. J. Mol. Sci. 2017, 18, 998. [Google Scholar] [CrossRef] [PubMed]
- Von Lampe, B.; Stallmach, A.; Riecken, E.O. Altered glycosylation of integrin adhesion molecules in colorectal cancer cells and decreased adhesion to the extracellular matrix. Gut 1993, 34, 829–836. [Google Scholar] [CrossRef] [PubMed]
- Shirane, K.; Sato, T.; Segawa, K.; Furukawa, K. Involvement of beta-1,4-galactosyltransferase V in malignant transformation-associated changes in glycosylation. Biochem. Biophys. Res. Commun. 1999, 265, 434–438. [Google Scholar] [CrossRef]
- Sato, T.; Shirane, K.; Kido, M.; Furukawa, K. Correlated gene expression between beta-1,4-galactosyltransferase V and N-acetylglucosaminyltransferase V in human cancer cell lines. Biochem. Biophys. Res. Commun. 2000, 276, 1019–1023. [Google Scholar] [CrossRef]
- Cadigan, K.M.; Waterman, M.L. TCF/LEFs and Wnt signaling in the nucleus. Cold Spring Harb. Perspect. Biol. 2012, 4, a007906. [Google Scholar] [CrossRef]
- Roose, J.; Clevers, H. TCF transcription factors: Molecular switches in carcinogenesis. Biochim. Biophys. Acta 1999, 1424, M23–M37. [Google Scholar] [CrossRef]
- Ohtsubo, K.; Marth, J.D. Glycosylation in cellular mechanisms of health and disease. Cell 2006, 126, 855–867. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, S.; Bedja, D.; Mishra, S.; Amuzie, C.; Avolio, A.; Kass, D.A.; Berkowitz, D.; Renehan, M. Inhibition of glycosphingolipid synthesis ameliorates atherosclerosis and arterial stiffness in apolipoprotein E−/− mice and rabbits fed a high-fat and –cholesterol diet. Circulation 2014, 129, 2403–2413. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, A.; Datta, P.P. Two conserved amino acids of juxtaposed domains of a ribosomal maturation protein CgtA sustain its optimal GTPase activity. Biochem. Biophys. Res. Commun. 2015, 461, 636–641. [Google Scholar] [CrossRef] [PubMed]
- Mishra, S.; Bedja, D.; Amuzie, C.; Avolio, A.; Chatterjee, S. Prevention of cardiac hypertrophy by the use of a glycosphingolipid synthesis inhibitor in ApoE−/− mice. Biochem. Biophys. Res. Commun. 2015, 465, 159–164. [Google Scholar] [CrossRef]
- Kolmakova, A.; Rajesh, M.; Zang, D.; Pili, R.; Chatterjee, S. VEGF recruits lactosylceramide to induce endothelial cell adhesion molecule expression and angiogenesis in vitro and in vivo. Glycoconj. J. 2009, 26, 547–558. [Google Scholar] [CrossRef]
- Odunsi, K.; Ghamande, S.; Chandrasekaran, E.V.; Ta, A.; Moysich, K.B.; Driscoll, D.; Matta, K.; Lele, S. Evaluation of beta1,4-galactosyltransferase as a potential biomarker for the detection of subclinical disease after the completion of primary therapy for ovarian cancer. Am. J. Obstet. Gynecol. 2002, 187, 575–580. [Google Scholar] [CrossRef]
- Kumagai, T.; Tanaka, M.; Yokoyama, M.; Sato, T.; Shinkai, T.; Furukawa, K. Early lethality of β-1,4-galactosyltransferase V-mutant mice by growth retardation. Biochem. Biophys. Res. Commun. 2009, 379, 456–459. [Google Scholar] [CrossRef]
- Yoshihara, T.; Satake, H.; Nishie, T.; Okino, N.; Hatta, T.; Otani, H.; Naruse, C.; Suzuki, H.; Sugihara, K.; Kamimura, E.; et al. Lactosylceramide synthases encoded by B4GALT5 and 6 genes are pivotal for neuronal generation and myelin formation in mice. PLoS Genet. 2018, 14, e1007545. [Google Scholar] [CrossRef]
- Iwabuchi, K.; Masuda, H.; Kaga, N.; Nakayama, H.; Matsumoto, R.; Iwahara, C.; Yoshizaki, F.; Tamaki, Y.; Kobayashi, T.; Hayakawa, T.; et al. Properties and functions of lactosylceramide from mouse neutrophils. Glycobiology 2015, 25, 655–668. [Google Scholar] [CrossRef]
- Novgorodov, S.A.; Gudz, T.I. Ceramide and mitochondria in ischemia/reperfusion. J. Cardiovasc. Pharmacol. 2009, 53, 198–208. [Google Scholar] [CrossRef]
- Bedja, D.; Yan, W.; Lad, V.; Iocco, D.; Sivakumar, N.; Bandaru, V.V.R.; Chatterjee, S. Inhibition of glycosphingolipid synthesis reverses skin inflammation and hair loss in ApoE−/− mice fed western diet. Sci. Rep. 2018, 8, 11463. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Su, L.; Huang, C.; Wu, S.; Qiu, X.; Zhao, X.; Meng, Q.; Meng, Y.M.; Kong, X.; Wang, M.; et al. Galactosyltransferase B4GALT1 confers chemoresistance in pancreatic ductal adenocarcinomas by upregulating N-linked glycosylation of CDK11p110. Cancer Lett. 2021, 500, 228–243. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.M.; Che, M.I.; Liao, Y.F.; Chang, H.H.; Chen, C.H.; Huang, Y.M.; Jeng, Y.M.; Huang, J.; Quon, M.J.; Lee, H.; et al. B4GALNT3 expression predicts a favorable prognosis and suppresses cell migration and invasion via β1 integrin signaling in neuroblastoma. Am. J. Pathol. 2011, 179, 1394–1404. [Google Scholar] [CrossRef]
- Singh, N.; Baby, D.; Rajguru, J.P.; Patil, P.B.; Thakkannavar, S.S.; Pujari, V.B. Inflammation and cancer. Ann. Afr. Med. 2019, 18, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Won, J.S.; Singh, A.K.; Singh, I. Lactosylceramide: A lipid second messenger in neuroinflammatory disease. J. Biochem. 2007, 103, 180–191. [Google Scholar] [CrossRef] [PubMed]
- Pannu, R.; Won, J.S.; Khan, M.; Singh, A.K.; Singh, I. A novel role of lactosylceramide in the regulation of lipopolysaccharide/interferon-gamma-mediated inducible nitric oxide synthase gene expression: Implications for neuroinflammatory diseases. J. Neurosci. 2004, 24, 5942–5954. [Google Scholar] [CrossRef] [PubMed]
- Kozol, R.A.; Abrams, A.J.; James, D.M.; Buglo, E.; Yan, Q.; Dallman, J.E. Function over form: Modeling groups of inherited neurological conditions in zebrafish. Front. Mol. Neurosci. 2016, 9, 55. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Shi, N.; Hui, M.; Jin, H.; Gao, S.; Zhou, Q.; Zhang, L.; Yan, M.; Shen, H. The Impact of β-1,4-Galactosyltransferase V on Microglial Function. Front. Cell. Neurosci. 2021, 15, 723308. [Google Scholar] [CrossRef]
- Sadras, V.; Petri, M.A.; Jones, S.R.; Peterlin, B.L.; Chatterjee, S. Glycosphingolipid-associated β-1,4 galactosyltransferase is elevated in patients with systemic lupus erythematosus. Lupus Sci. Med. 2020, 7, e000368. [Google Scholar] [CrossRef]
- Balkwill, F.; Mantovani, A. Inflammation and cancer: Back to Virchow? Lancet 2001, 357, 539–545. [Google Scholar] [CrossRef]
- Punt, S.; Dronkers, E.A.; Welters, M.J.; Goedemans, R.; Koljenović, S.; Bloemena, E.; Snijders, P.J.; Gorter, A.; van der Burg, S.H.; de Jong, R.J.B.; et al. A beneficial tumor microenvironment in oropharyngeal squamous cell carcinoma is characterized by a high T cell and low IL-17(+) cell frequency. Cancer Immunol. Immunother. 2016, 65, 393–403. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Wu, L.; Yan, G.; Chen, Y.; Zhou, M.; Wu, Y.; Li, Y. Inflammation and tumor progression: Signaling pathways and targeted intervention. Signal Transduct. Target. Ther. 2021, 6, 263. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Karin, M.; Sun, B. Targeting cancer-promoting inflammation—Have anti-inflammatory therapies come of age? Nat. Rev. Clin. Oncol. 2021, 18, 261–279. [Google Scholar] [CrossRef] [PubMed]
- Bhunia, A.K.; Arai, T.; Bulkley, G.; Chatterjee, S. Lactosylceramide mediates tumor necrosis factor-α-induced intercellular adhesion molecule-1 (ICAM-1) expression and the adhesion of neutrophil in human umbilical vein endothelial cells. J. Biol. Chem. 1998, 273, 34349–34357. [Google Scholar] [CrossRef] [PubMed]
- Dick, J.E. Stem cell concepts renew cancer research. Blood 2008, 112, 4793–4807. [Google Scholar] [CrossRef] [PubMed]
- Nakajima, K.; Kho, D.H.; Yanagawa, T.; Harazono, Y.; Gao, X.; Hogan, V.; Raz, A. Galectin-3 inhibits osteoblast differentiation through notch signaling. Neoplasia 2014, 16, 939–949. [Google Scholar] [CrossRef]
- Cui, C.; Chen, X.; Liu, Y.; Cao, B.; Xing, Y.; Liu, C.; Yang, F.; Li, Y.; Yang, T.; Hua, L.; et al. β1,4-Galactosyltransferase V activates Notch1 signaling in glioma stem-like cells and promotes their trans-differentiation into endothelial cells. J. Biol. Chem. 2018, 293, 2219–2230. [Google Scholar] [CrossRef]
- Hou, S.; Hang, Q.; Isaji, T.; Lu, J.; Fukda, T.; Gu, J. Importance of membrane-proximal N-glycosylation on integrin β1 in its activation and complex formation. FASEB J. 2016, 30, 4120–4131. [Google Scholar] [CrossRef]
- Zou, C.; Huang, C.; Yan, L.; Li, X.; Xing, M.; Li, B.; Gao, C.; Wang, H. Serum n-glycan profiling as a diagnostic biomarker for the identification and assessment of psoriasis. J. Clin. Lab. Anal. 2021, 35. [Google Scholar] [CrossRef]
- Sevilla, L.M.; Pérez, P. Glucocorticoids and Glucocorticoid-Induced-Leucine-Zipper (GILZ) in Psoriasis. Front. Immunol. 2019, 10, 2220. [Google Scholar] [CrossRef]
- Hannen, R.; Udeh-Momoh, C.; Upton, J.; Wright, M.; Michael, A.; Gulati, A.; Rajpopat, S.; Clayton, N.; Halsall, D.; Burrin, J.; et al. Dysfunctional Skin-Derived Glucocorticoid Synthesis Is a Pathogenic Mechanism of Psoriasis. J. Investig. Dermatol. 2017, 137, 1630–1637. [Google Scholar] [CrossRef] [PubMed]
- Rippa, M.; Vignali, C. The Level of Enzymes of the Oxidative Shunt and Glycolysis in Psoratic Skin. J. Investig. Dermatol. 1965, 45, 78–80. [Google Scholar] [CrossRef] [PubMed]
- Pietilä, K.; Nikkari, T. Hyperlipidemic rabbit serum reduces recovery of acidic glycosaminoglycans from tissue culture medium. Anal Biochem. 1981, 116, 317–318. [Google Scholar] [CrossRef] [PubMed]
- Brownlee, M. Glycosylation products as toxic mediators of diabetic complications. Annu. Rev. Med. 1991, 42, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Aronson, D.; Rayfield, E.J. How hyperglycemia promotes atherosclerosis: Molecular mechanisms. Cardiovasc Diabetol. 2002, 1, 1. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Cao, Y.; Chen, C.; Zhang, X.; McNabola, A.; Wilkie, D.; Wilhelm, S.; Lynch, M.; Carter, C. Sorafenib blocks the RAF/MEK/ERK pathway, inhibits tumor angiogenesis, and induces tumor cell apoptosis in hepatocellular carcinoma model PLC/PRF/5. Cancer Res. 2006, 66, 11851–11858. [Google Scholar] [CrossRef] [PubMed]
- Perez, G.I.; Knudson, C.M.; Leykin, L.; Korsmeyer, S.J.; Tilly, J.L. Apoptosis-associated signaling pathways are required for chemotherapy-mediated femalegerm cell destruction. Nat. Med. 1997, 3, 1228–1232. [Google Scholar] [CrossRef]
- Fisher-Wellman, K.H.; Kassai, M.; Hagen, J.T.; Neufer, P.D.; Kester, M.; Loughran, T.P., Jr.; Chalfant, C.E.; Feith, D.J.; Tan, S.F.; Fox, T.E.; et al. Simultaneous Inhibition of Ceramide Hydrolysis and Glycosylation Synergizes to Corrupt Mitochondrial Respiration and Signal Caspase Driven Cell Death in Drug-Resistant Acute Myeloid Leukemia. Cancers 2023, 15, 1883. [Google Scholar] [CrossRef]
- Senchenkov, A.; Litvak, D.A.; Cabot, M.C. Targeting ceramide metabolism--a strategy for overcoming drug resistance. J. Natl. Cancer Inst. 2001, 93, 347–357. [Google Scholar] [CrossRef]
- Sheridan, M.; Ogretmen, B. The Role of Ceramide Metabolism and Signaling in the Regulation of Mitophagy and Cancer Therapy. Cancers 2021, 13, 2475. [Google Scholar] [CrossRef]
- Tang, W.; Li, M.; Qi, X.; Li, J. Β1,4-galactosyltransferase V modulates breast cancer stem cells through Wnt/β-catenin signaling pathway. Cancer Res. Treat. 2020, 52, 1084–1102. [Google Scholar] [CrossRef] [PubMed]
- Moro, K.; Nagahashi, M.; Gabriel, E.; Takabe, K.; Wakai, T. Clinical application of ceramide in cancer treatment. Breast Cancer 2019, 26, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Parekh, V.V.; Lalani, S.; Kim, S.; Halder, R.; Azuma, M.; Yagita, H.; Kumar, V.; Wu, L.; Van Kaer, L. PD-1/PD-L blockade prevents anergy induction and enhances the anti-tumor activities of glycolipid-activated invariant NKT cells. J. Immunol. 2009, 182, 2816–2826. [Google Scholar] [CrossRef] [PubMed]
- Chen, E.; Lin-Shiao, E.; Trinidad, M.; Doost, M.S.; Colognori, D.; Doudna, J.A. Decorating chromatin for enhanced genome editing using CRISPR-Cas9. Proc. Natl. Acad. Sci. USA 2022, 119, e2204259119. [Google Scholar] [CrossRef]
- Rossig, C.; Bollard, C.M.; Nuchtern, J.G.; Merchant, D.A.; Brenner, M.K. Targeting of G(D2)-positive tumor cells by human T lymphocytes engineered to express chimeric T-cell receptor genes. Int. J. Cancer 2001, 94, 228–236. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, D.; Li, F.; Zhang, Z.; Wang, S.; Xuan, Y.; Ping, Y.; Zhang, Y. Targeting glycosylation of PD-1 to enhance car-T cell cytotoxicity. J. Hematol. Oncol. 2019, 12, 127. [Google Scholar] [CrossRef]
- Car T-Cell Efficacy in Solid Tumors Is Affected by N-Glycosylation. Cancer Discov. 2022, 12, 598. Available online: https://aacrjournals.org/cancerdiscovery/article/12/3/598/681906/CAR-T-cell-Efficacy-in-Solid-Tumors-Is-Affected-by (accessed on 4 August 2023). [CrossRef]
Glycogene | Role Played by Glycogene in Pathway |
---|---|
β-4-GalNT-I |
|
β-3-GalNT-II |
|
β-4-GalNT-III |
|
β-4-GalT-I |
|
β-4-GalT-III |
|
β-4-GalT-IV |
|
β-3-GalT-V |
|
β-4-GalT-V |
|
β-3-GNT-III |
|
β-III-GNT-V |
|
β-3-GNT-VI (CORE 3 SYNTHETASE) |
|
Gene | Majorly Affects These | Interactions with β-1,4-GalT-V, and Cancer Pathways |
---|---|---|
APC | Colon, thyroid, stomach, intestine |
|
CDK4 | Melanoma |
|
E-Cadherin | Stomach |
|
PTEN | Hematoma, glioma, uterus |
|
TP53 (p53) | Breast, sarcoma, adrenal, brain |
|
TSC1, TSC2 | Hamartoma, kidney |
|
WT1 | Wilms’ |
|
Disease | Role of Glycogene |
---|---|
Psoriasis |
|
Hyperlipidemia |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chatterjee, S.; Yuan, R.; Thapa, S.; Talwar, R. Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways. Int. J. Mol. Sci. 2024, 25, 483. https://doi.org/10.3390/ijms25010483
Chatterjee S, Yuan R, Thapa S, Talwar R. Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways. International Journal of Molecular Sciences. 2024; 25(1):483. https://doi.org/10.3390/ijms25010483
Chicago/Turabian StyleChatterjee, Subroto, Rebecca Yuan, Spriha Thapa, and Resham Talwar. 2024. "Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways" International Journal of Molecular Sciences 25, no. 1: 483. https://doi.org/10.3390/ijms25010483
APA StyleChatterjee, S., Yuan, R., Thapa, S., & Talwar, R. (2024). Central Role of β-1,4-GalT-V in Cancer Signaling, Inflammation, and Other Disease-Centric Pathways. International Journal of Molecular Sciences, 25(1), 483. https://doi.org/10.3390/ijms25010483