NF-κB Decoy Oligodeoxynucleotide-Loaded Poly Lactic-co-glycolic Acid Nanospheres Facilitate Socket Healing in Orthodontic Tooth Movement
Abstract
:1. Introduction
2. Results
2.1. 3D Micro-Computed Tomography (CT) Analysis
2.2. Tartrate-Resistant Acid Phosphatase (TRAP) and Alkaline Phosphatase (ALP) Staining
2.3. Biochemical Analysis
2.4. Immunohistochemistry and Immunofluorescence Staining
3. Discussion
4. Materials and Methods
4.1. Decoy ODN Nuclear Medicine
4.2. Experimental Animals
4.3. OTM in a Tooth-Extraction Animal Model
4.4. In Vivo 3D Micro-CT Analysis
4.5. Tissue Preparation
4.6. Ex Vivo 3D Micro-CT
4.7. Histological Analysis
4.7.1. TRAP and ALP Staining
4.7.2. Immunohistochemistry
4.7.3. Immunofluorescence Analysis
4.8. Biochemical Evaluation
Quantitative Reverse Transcription-Polymerase Chain Reaction (RT-qPCR)
4.9. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ariffin, Z.S.; Yamamoto, Z.; Abidin, I.Z.Z.; Abdul Wahab, R.M.; Ariffin, Z. Cellular and molecular changes in orthodontic tooth movement. Sci. World J. 2011, 11, 1788–1803. [Google Scholar] [CrossRef]
- Tsai, M.H.; Megat Abdul Wahab, R.; Yazid, F. Timing of orthodontic tooth movement in bone defects repaired with synthetic scaffolds: A scoping review of animal studies. Arch. Oral Biol. 2021, 132, 105278. [Google Scholar] [CrossRef]
- Machibya, F.M.; Zhuang, Y.; Guo, W.; You, D.; Lin, S.; Wu, D.; Chen, J. Effects of bone regeneration materials and tooth movement timing on canine experimental orthodontic treatment. Angle Orthod. 2018, 88, 171–178. [Google Scholar] [CrossRef]
- Ru, N.; Liu, S.S.Y.; Bai, Y.; Li, S.; Liu, Y.; Wei, X. BoneCeramic graft regenerates alveolar defects but slows orthodontic tooth movement with less root resorption. Am. J. Orthod. Dentofacial Orthop. 2016, 149, 523–532. [Google Scholar] [CrossRef]
- Klein, Y.; Fleissig, O.; Stabholz, A.; Chaushu, S.; Polak, D. Bone regeneration with bovine bone impairs orthodontic tooth movement despite proper osseous wound healing in a novel mouse model. J. Periodontol. 2019, 90, 189–199. [Google Scholar] [CrossRef] [PubMed]
- Klein, Y.; Kunthawong, N.; Fleissig, O.; Casap, N.; Polak, D.; Chaushu, S. The impact of alloplast and allograft on bone homeostasis: Orthodontic tooth movement into regenerated bone. J. Periodontol. 2020, 91, 1067–1075. [Google Scholar] [CrossRef]
- Araújo, M.G.; Sukekava, F.; Wennström, J.L.; Lindhe, J. Ridge alterations following implant placement in fresh extraction sockets: An experimental study in the dog. J. Clin. Periodontol. 2005, 32, 645–652. [Google Scholar] [CrossRef]
- Jepsen, K.; Tietmann, C.; Kutschera, E.; Wüllenweber, P.; Jäger, A.; Cardaropoli, D.; Gaveglio, L.; Sanz Sanchez, I.; Martin, C.; Fimmers, R.; et al. The effect of timing of orthodontic therapy on the outcomes of regenerative periodontal surgery in patients with stage IV periodontitis: A multicenter randomized trial. J. Clin. Periodontol. 2021, 48, 1282–1292. [Google Scholar] [CrossRef]
- Tu, C.C.; Lo, C.Y.; Chang, P.C.; Yin, H.J. Orthodontic treatment of periodontally compromised teeth after periodontal regeneration: A restrospective study. J. Formos. Med. Assoc. 2022, 121, 2065–2073. [Google Scholar] [CrossRef] [PubMed]
- Gambari, R. New trends in the development of transcription factor decoy (TFD) pharmacotherapy. Curr. Drug Targets 2004, 5, 419–430. [Google Scholar] [CrossRef]
- Kouskoura, T.; Katsaros, C.; von Gunten, S. The potential use of pharmacological agents to modulate orthodontic tooth movement (OTM). Front. Physiol. 2017, 8, 67. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhan, Q.; Bao, M.; Yi, J.; Li, Y. Biomechanical and biological responses of periodontium in orthodontic tooth movement: Up-date in a new decade. Int. J. Oral Sci. 2021, 13, 20. [Google Scholar] [CrossRef] [PubMed]
- Herrington, F.D.; Carmody, R.J.; Goodyear, C.S. Modulation of NF-κB signaling as a therapeutic target in autoimmunity. J. Biomol. Screen. 2016, 21, 223–242. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Zhang, L.; Joo, D.; Sun, S.C. NF-κB signaling in inflammation. Signal Transduct. Target. Ther. 2017, 2, 17023. [Google Scholar] [CrossRef] [PubMed]
- Shimizu, H.; Nakagami, H.; Tsukamoto, I.; Morita, S.; Kunugiza, Y.; Tomita, T.; Yoshikawa, H.; Kaneda, Y.; Ogihara, T.; Morishita, R. NF-κB decoy oligodeoxynucleotides ameliorates osteoporosis through inhibition of activation and differentiation of osteoclasts. Gene Ther. 2006, 13, 933–941. [Google Scholar] [CrossRef] [PubMed]
- Tomita, T.; Takano, H.; Tomita, N.; Morishita, R.; Kaneko, M.; Shi, K.; Takahi, K.; Nakase, T.; Kaneda, Y.; Yoshikawa, H.; et al. Transcription factor decoy for NF-kB inhibits cytokine and adhesion molecule expressions in synovial cells derived from rheumatoid arthritis. Rheumatology 2000, 39, 749–757. [Google Scholar] [CrossRef] [PubMed]
- Huang, A.C.S.; Ishida, Y.; Li, K.; Rintanalert, D.; Hatano-Sato, K.; Oishi, S.; Hosomichi, J.; Usumi-Fujita, R.; Yamaguchi, H.; Tsujimoto, H.; et al. NF-κB decoy ODN-loaded poly(lactic-co-glycolic acid) nanospheres inhibit alveolar ridge resorption. Int. J. Mol. Sci. 2023, 24, 3699. [Google Scholar] [CrossRef] [PubMed]
- De Rosa, G.; Maiuri, M.C.; Ungaro, F.; De Stefano, D.; Quaglia, F.; La Rotonda, M.I.; Carnuccio, R. Enhanced intracellular uptake and inhibition of NF-κB activation by decoy oligonucleotide released from PLGA microspheres. J. Gene Med. 2005, 7, 771–781. [Google Scholar] [CrossRef] [PubMed]
- De Stefano, D.; De Rosa, G.; Maiuri, M.C.; Ungaro, F.; Quaglia, F.; Iuvone, T.; Cinelli, M.P.; La Rotonda, M.I.; Carnuccio, R. Oligonucleotide decoy to NF-κB slowly released from PLGA microspheres reduces chronic inflammation in rat. Pharmacol. Res. 2009, 60, 33–40. [Google Scholar] [CrossRef]
- Zere, E.; Einy, S.; Asbi, T.; Aizenbud, Y.; Gutmacher, Z.; Katzhandler, E.; Aizenbud, D. Orthodontic extraction space closure with and without socket preservation: A comparative case analysis. Quintessence Int. 2019, 50, 306–314. [Google Scholar] [CrossRef]
- Oltramari, P.V.P.; de Lima Navarro, R.; Henriques, J.F.C.; Taga, R.; Cestari, T.M.; Ceolin, D.S.; Janson, G.; Granjeiro, J.M. Orthodontic movement in bone defects filled with xenogenic graft: An experimental study in minipigs. Am. J. Orthod. Dentofacial Orthop. 2007, 131, 302.e10–302.e17. [Google Scholar] [CrossRef]
- Ahn, H.W.; Ohe, J.Y.; Lee, S.H.; Park, Y.G.; Kim, S.J. Timing of force application affects the rate of tooth movement into surgical alveolar defects with grafts in beagles. Am. J. Orthod. Dentofacial Orthop. 2014, 145, 486–495. [Google Scholar] [CrossRef]
- Naaman, N.B.A.; Chaptini, E.; Taha, H.; Mokbel, N. Combined bone grafting and orthodontic treatment of an iatrogenic periodontal defect: A case report with clinical reentry. J. Periodontol. 2004, 75, 316–321. [Google Scholar] [CrossRef]
- Zuo, J.; Archer, L.A.; Cooper, A.; Johnson, K.L.; Holliday, L.S.; Dolce, C. Nuclear factor κB p65 phosphorylation in orthodontic tooth movement. J. Dent. Res. 2007, 86, 556–559. [Google Scholar] [CrossRef]
- Lin, T.H.; Sato, T.; Barcay, K.R.; Waters, H.; Loi, F.; Zhang, R.; Pajarinen, J.; Egashira, K.; Yao, Z.; Goodman, S.B. NF-κB decoy oligodeoxynucleotide enhanced osteogenesis in mesenchymal stem cells exposed to polyethylene particle. Tissue Eng. Part A 2015, 21, 875–883. [Google Scholar] [CrossRef]
- Lin, T.; Pajarinen, J.; Nabeshima, A.; Córdova, L.A.; Loi, F.; Gibon, E.; Lu, L.; Nathan, K.; Jämsen, E.; Yao, Z.; et al. Orthopaedic wear particle-induced bone loss and exogenous macrophage infiltration is mitigated by local infusion of NF-κB decoy oligodeoxynucleotide. J. Biomed. Mater. Res. A 2017, 105, 3169–3175. [Google Scholar] [CrossRef]
- Utsunomiya, T.; Zhang, N.; Lin, T.; Kohno, Y.; Ueno, M.; Maruyama, M.; Huang, E.; Rhee, C.; Yao, Z.; Goodman, S.B. Suppression of NF-κB-induced chronic inflammation mitigates inflammatory osteolysis in the murine continuous polyethylene particle infusion model. J. Biomed. Mater. Res. A 2021, 109, 1828–1839. [Google Scholar] [CrossRef]
- Giridharan, S.; Srinivasan, M. Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J. Inflamm. Res. 2018, 11, 407–419. [Google Scholar] [CrossRef]
- Majumdar, S.; Aggarwal, B.B. Methotrexate suppresses NF-κB activation through inhibition of IκBα phosphorylation and degradation. J. Immunol. 2001, 167, 2911–2920. [Google Scholar] [CrossRef]
- Ashikawa, K.; Majumdar, S.; Banerjee, S.; Bharti, A.C.; Shishodia, S.; Aggarwal, B.B. Piceatannol inhibits TNF-induced NF-κB activation and NF-κB-mediated gene expression through suppression of IκBα kinase and p65 phosphorylation. J. Immunol. 2002, 169, 6490–6497. [Google Scholar] [CrossRef]
- Gargya, I.; Singh, B.; Talnia, S. NSAIDs (non-steroidal anti-inflammatory drugs)-their effects and side effects in orthodontic therapy—A review. Dent. J. Adv. Stud. 2017, 5, 8–13. [Google Scholar] [CrossRef]
- Morishita, R.; Tomita, N.; Kaneda, Y.; Ogihara, T. Molecular therapy to inhibit NF-κB activation by transcription factor decoy oligonucleotides. Curr. Opin. Pharmacol. 2004, 4, 139–146. [Google Scholar] [CrossRef]
- Meikle, M.C. The tissue, cellular, and molecular regulation of orthodontic tooth movement: 100 years after Carl Sandstedt. Eur. J. Orthod. 2006, 28, 221–240. [Google Scholar] [CrossRef]
- Masella, R.S.; Chung, P.L. Thinking beyond the wire: Emerging biologic relationships in orthodontics and periodontology. Semin. Orthod. 2008, 14, 290–304. [Google Scholar] [CrossRef]
- Yamaguchi, M.; Garlet, G.P. The role of inflammation in defining the type and pattern of tissue response in orthodontic tooth movement. In Biological Mechanisms of Tooth Movement; Krishnan, V., Davidovich, Z., Eds.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2015; pp. 121–137. [Google Scholar] [CrossRef]
- Lin, T.H.; Yao, Z.; Sato, T.; Keeney, M.; Li, C.; Pajarinen, J.; Yang, F.; Egashira, K.; Goodman, S.B. Suppression of wear-particle-induced pro-inflammatory cytokine and chemokine production in macrophages via NF-κB decoy oligodeoxynucleotide: A preliminary report. Acta Biomater. 2014, 10, 3747–3755. [Google Scholar] [CrossRef]
- Vansant, L.; Cadenas De Llano-Pérula, M.; Verdonck, A.; Willems, G. Expression of biological mediators during orthodontic tooth movement: A systematic review. Arch. Oral Biol. 2018, 95, 170–186. [Google Scholar] [CrossRef]
- Jeon, H.H.; Teixeira, H.; Tsai, A. Mechanistic insight into orthodontic tooth movement based on animal studies: A critical review. J. Clin. Med. 2021, 10, 1733. [Google Scholar] [CrossRef]
- Asiry, M.A. Biological aspects of orthodontic tooth movement: A review of literature. Saudi J. Biol. Sci. 2018, 25, 1027–1032. [Google Scholar] [CrossRef]
- Klein, Y.; Fleissig, O.; Polak, D.; Barenholz, Y.; Mandelboim, O.; Chaushu, S. Immunorthodontics: In vivo gene expression of orthodontic tooth movement. Sci. Rep. 2020, 10, 8172. [Google Scholar] [CrossRef]
- Klein, Y.; Shani-Kdoshim, S.; Maimon, A.; Fleissig, O.; Levin-Talmor, O.; Meirow, Y.; Garber-Berkstein, J.; Leibovich, A.; Stabholz, A.; Chaushu, S.; et al. Bovine bone promotes osseous protection via osteoclast activation. J. Dent. Res. 2020, 99, 820–829. [Google Scholar] [CrossRef]
- Tietmann, C.; Jepsen, S.; Heibrok, H.; Wenzel, S.; Jepsen, K. Long-term stability of regenerative periodontal surgery and orthodontic tooth movement in stage IV periodontitis: 10-year data of a retrospective study. J. Periodontol. 2023, 94, 1176–1186. [Google Scholar] [CrossRef] [PubMed]
- Dieterle, M.P.; Husari, A.; Steinberg, T.; Wang, X.; Ramminger, I.; Tomakidi, P. From the matrix to the nucleus and back: Mechanobiology in the light of health, pathologies, and regeneration of oral periodontal tissues. Biomolecules 2021, 11, 824. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.R.; Poser, J.W. Biomechanics of bone grafts and bone substitutes. In Orthopaedic Biomechanics in Sports Medicine; Koh, J., Zaffagnini, S., Kuroda, R., Longo, U.G., Amirouche, F., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 37–56. [Google Scholar] [CrossRef]
- Liu, J.; Dai, Q.; Weir, M.D.; Schneider, A.; Zhang, C.; Hack, G.D.; Oates, T.W.; Zhang, K.; Li, A.; Xu, H.H.K. Biocompatible nanocomposite enhanced osteogenic and cementogenic differentiation of periodontal ligament stem cells in vitro for periodontal regeneration. Materials 2020, 13, 4951. [Google Scholar] [CrossRef] [PubMed]
- Kurohama, T.; Hotokezaka, H.; Hashimoto, M.; Tajima, T.; Arita, K.; Kondo, T.; Ino, A.; Yoshida, N. Increasing the amount of corticotomy does not affect orthodontic tooth movement or root resorption, but accelerates alveolar bone resorption in rats. Eur. J. Orthod. 2017, 39, 277–286. [Google Scholar] [CrossRef] [PubMed]
- Hildebrand, T.; Rüegsegger, P. A new method for the model-independent assessment of thickness in three-dimensional images. J. Microsc. 1997, 185, 67–75. [Google Scholar] [CrossRef]
- Carter, L.E.; Kilroy, G.; Gimble, J.M.; Floyd, Z.E. An improved method for isolation of RNA from bone. BMC Biotechnol. 2012, 12, 5. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, A.c.-s.; Ishida, Y.; Hatano-sato, K.; Oishi, S.; Hosomichi, J.; Usumi-fujita, R.; Yamaguchi, H.; Tsujimoto, H.; Sasai, A.; Ochi, A.; et al. NF-κB Decoy Oligodeoxynucleotide-Loaded Poly Lactic-co-glycolic Acid Nanospheres Facilitate Socket Healing in Orthodontic Tooth Movement. Int. J. Mol. Sci. 2024, 25, 5223. https://doi.org/10.3390/ijms25105223
Huang Ac-s, Ishida Y, Hatano-sato K, Oishi S, Hosomichi J, Usumi-fujita R, Yamaguchi H, Tsujimoto H, Sasai A, Ochi A, et al. NF-κB Decoy Oligodeoxynucleotide-Loaded Poly Lactic-co-glycolic Acid Nanospheres Facilitate Socket Healing in Orthodontic Tooth Movement. International Journal of Molecular Sciences. 2024; 25(10):5223. https://doi.org/10.3390/ijms25105223
Chicago/Turabian StyleHuang, Albert chun-shuo, Yuji Ishida, Kasumi Hatano-sato, Shuji Oishi, Jun Hosomichi, Risa Usumi-fujita, Hiroyuki Yamaguchi, Hiroyuki Tsujimoto, Aiko Sasai, Ayaka Ochi, and et al. 2024. "NF-κB Decoy Oligodeoxynucleotide-Loaded Poly Lactic-co-glycolic Acid Nanospheres Facilitate Socket Healing in Orthodontic Tooth Movement" International Journal of Molecular Sciences 25, no. 10: 5223. https://doi.org/10.3390/ijms25105223