Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace
Abstract
:1. Introduction
2. Results
2.1. Characterization of the Hydroalcoholic Extract of Wet Olive Pomace
2.2. Organic Solvent Ultrafiltration
2.2.1. Productivity of the Process
2.2.2. Rejection Values Obtained in the Ultrafiltration Stage
Rejection of Undesired Organic Matter
Rejection of Phenolic Compounds
2.3. Organic Solvent Nanofiltration
2.4. Reverse Osmosis
3. Discussion
4. Materials and Methods
4.1. Extraction of Phenolic Compounds from Wet Olive Pomace
4.2. Integrated Membrane Process
4.3. Solvent-Resistant Ultrafiltration
4.4. Solvent-Resistant Nanofiltration
4.5. Solvent-Resistant Reverse Osmosis
4.6. Analysis of the Streams
4.6.1. Analysis of Organic Matter
4.6.2. Characterization of the Olive Minor Fraction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Darvishzadeh, P.; Orsat, V.; Martinez, J.L. Process Optimization for Development of a Novel Water Kefir Drink with High Antioxidant Activity and Potential Probiotic Properties from Russian Olive Fruit (Elaeagnus angustifolia). Food Bioprocess Technol. 2021, 14, 261. [Google Scholar] [CrossRef]
- Brewer, M.S. Natural Antioxidants: Sources, Compounds, Mechanisms of Action, and Potential Applications. Compr. Rev. Food Sci. Food Saf. 2011, 10, 221–247. [Google Scholar] [CrossRef]
- Sindhi, V.; Gupta, V.; Sharma, K.; Bhatnagar, S.; Kumari, R.; Dhaka, N. Potential Applications of Antioxidants—A Review. J. Pharm. Res. 2013, 7, 828–835. [Google Scholar] [CrossRef]
- Khan, R.A. Natural Products Chemistry: The Emerging Trends and Prospective Goals. Saudi Pharm. J. 2018, 26, 739–753. [Google Scholar] [CrossRef] [PubMed]
- Moorthy, M.; Chaiyakunapruk, N.; Jacob, S.A.; Palanisamy, U.D. Prebiotic Potential of Polyphenols, Its Effect on Gut Microbiota and Anthropometric/Clinical Markers: A Systematic Review of Randomised Controlled Trials. Trends Food Sci. Technol. 2020, 99, 634–649. [Google Scholar] [CrossRef]
- Robles-Almazan, M.; Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Rodriguez-Garcia, C.; Quiles, J.L.; Ramirez-Tortosa, M. Hydroxytyrosol: Bioavailability, Toxicity, and Clinical Applications. Food Res. Int. 2018, 105, 654–667. [Google Scholar] [CrossRef] [PubMed]
- Madureira, J.; Margaça, F.M.A.; Santos-Buelga, C.; Ferreira, I.C.F.R.; Verde, S.C.; Barros, L. Applications of Bioactive Compounds Extracted from Olive Industry Wastes: A Review. Compr. Rev. Food Sci. Food Saf. 2022, 21, 453–476. [Google Scholar] [CrossRef] [PubMed]
- Avila-Sosa, R.; Gastélum-Franco, M.G.; Camacho-Dávila, A.; Torres-Muñoz, J.V.; Nevárez-Moorillón, G.V. Extracts of Mexican Oregano (Lippia berlandieri Schauer) with Antioxidant and Antimicrobial Activity. Food Bioprocess Technol. 2010, 3, 434–440. [Google Scholar] [CrossRef]
- Olmo-García, L.; Kessler, N.; Neuweger, H.; Wendt, K.; Olmo-Peinado, J.M.; Fernández-Gutirrez, A.; Baessmann, C.; Carrasco-Pancorbo, A. Unravelling the Distribution of Secondary Metabolites in Olea europaea L.: Exhaustive Characterization of Eight Olive-Tree Derived Matrices by Complementary Platforms (LC-ESI/APCI-MS and GC-APCI-MS). Molecules 2018, 23, 2419. [Google Scholar] [CrossRef]
- Panzella, L.; Moccia, F.; Nasti, R.; Marzorati, S.; Verotta, L.; Napolitano, A. Bioactive Phenolic Compounds From Agri-Food Wastes: An Update on Green and Sustainable Extraction Methodologies. Front. Nutr. 2020, 7, 60. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Green Management of Wet Olive Pomace by Means of Ultrafiltration of an Aqueous Extract of Phenolic Compounds. Environ. Technol. Innov. 2023, 32, 103385. [Google Scholar] [CrossRef]
- Argyle, I.S.; Pihlajamäki, A.; Bird, M.R. Black Tea Liquor Ultrafiltration: Effect of Ethanol Pre-Treatment upon Fouling and Cleaning Characteristics. Food Bioprod. Process. 2015, 93, 289–297. [Google Scholar] [CrossRef]
- Serrano-García, I.; Olmo-García, L.; Polo-Megías, D.; Serrano, A.; León, L.; de la Rosa, R.; Gómez-Caravaca, A.M.; Carrasco-Pancorbo, A. Fruit Phenolic and Triterpenic Composition of Progenies of Olea europaea subsp. cuspidata, an Interesting Phytochemical Source to Be Included in Olive Breeding Programs. Plants 2022, 11, 1791. [Google Scholar] [CrossRef] [PubMed]
- Reig-Valor, M.-J.; Rozas-Martínez, J.; López-Borrell, A.; Lora-García, J.; López-Pérez, M.-F. Experimental Study of a Sequential Membrane Process of Ultrafiltration and Nanofiltration for Efficient Polyphenol Extraction from Wine Lees. Membranes 2024, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Tresserra-Rimbau, A.; Lamuela-Raventós, R.M. Olives and Olive Oil: A Mediterranean Source of Polyphenols. In Olives and Olive Oil as Functional Foods; John Wiley & Sons, Ltd.: Chichester, UK, 2017; pp. 417–434. ISBN 9781119135326. [Google Scholar]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive Mill Wastes: Biochemical Characterizations and Valorization Strategies. Process Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- Jebabli, H.; Nsir, H.; Taamalli, A.; Abu-Reidah, I.; Álvarez-Martínez, F.J.; Losada-Echeberria, M.; Barrajón Catalán, E.; Mhamdi, R. Industrial-Scale Study of the Chemical Composition of Olive Oil Process-Derived Matrices. Processes 2020, 8, 701. [Google Scholar] [CrossRef]
- Olmo-García, L.; Wendt, K.; Kessler, N.; Bajoub, A.; Fernández-Gutiérrez, A.; Baessmann, C.; Carrasco-Pancorbo, A. Exploring the Capability of LC-MS and GC-MS Multi-Class Methods to Discriminate Virgin Olive Oils from Different Geographical Indications and to Identify Potential Origin Markers. Eur. J. Lipid Sci. Technol. 2019, 121, 1800336. [Google Scholar] [CrossRef]
- Rajendran, S.R.C.K.; Mason, B.; Doucette, A.A. Review of Membrane Separation Models and Technologies: Processing Complex Food-Based Biomolecular Fractions. Food Bioprocess Technol. 2021, 14, 415–428. [Google Scholar] [CrossRef]
- Kumari, B.; Tiwari, B.K.; Hossain, M.B.; Brunton, N.P.; Rai, D.K. Recent Advances on Application of Ultrasound and Pulsed Electric Field Technologies in the Extraction of Bioactives from Agro-Industrial By-Products. Food Bioprocess Technol. 2018, 11, 223–241. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Y.; Qiu, D.; Liao, X. Effect of Ultrafiltration Combined with High-Pressure Processing on Safety and Quality Features of Fresh Apple Juice. Food Bioprocess Technol. 2014, 7, 3246–3258. [Google Scholar] [CrossRef]
- Yilmaz, E.; Onsekizoglu Bagci, P. Ultrafiltration of Broccoli Juice Using Polyethersulfone Membrane: Fouling Analysis and Evaluation of the Juice Quality. Food Bioprocess Technol. 2019, 12, 1273–1283. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Iborra-Clar, A.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Exploring the Extraction of the Bioactive Content from the Two-Phase Olive Mill Waste and Further Purification by Ultrafiltration. LWT Food Sci. Technol. 2022, 165, 113742. [Google Scholar] [CrossRef]
- Vandezande, P.; Gevers, L.E.M.; Vankelecom, I.F.J. Solvent Resistant Nanofiltration: Separating on a Molecular Level. Chem. Soc. Rev. 2008, 37, 365–405. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Arévalo, C.M.; Vincent-Vela, M.C.; Luján-Facundo, M.J.; Álvarez-Blanco, S. Ultrafiltration with Organic Solvents: A Review on Achieved Results, Membrane Materials and Challenges to Face. Process Saf. Environ. Prot. 2023. [Google Scholar] [CrossRef]
- Nunes, M.A.; Pawlowski, S.; Costa, A.S.G.; Alves, R.C.; Oliveira, M.B.P.P.; Velizarov, S. Valorization of Olive Pomace by a Green Integrated Approach Applying Sustainable Extraction and Membrane-Assisted Concentration. Sci. Total Environ. 2019, 652, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Saurina, J.; Granados, M.; Cortina, J.L. Integration of Membrane Processes for the Recovery and Separation of Polyphenols from Winery and Olive Mill Wastes Using Green Solvent-Based Processing. J. Environ. Manag. 2022, 307, 114555. [Google Scholar] [CrossRef] [PubMed]
- Sygouni, V.; Pantziaros, A.G.; Iakovides, I.C.; Sfetsa, E.; Bogdou, P.I.; Christoforou, E.A.; Paraskeva, C.A. Treatment of Two-Phase Olive Mill Wastewater and Recovery of Phenolic Compounds Using Membrane Technology. Membranes 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Arévalo, C.M.; Iborra-Clar, A.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Solvent-Resistant Ultrafiltration to Recover Bioactive Compounds from Wet Olive Pomace Extracts. LWT Food Sci. Technol. 2023, 196, 115167. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Croes, T.; Van der Bruggen, B.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Feasibility of Several Commercial Membranes to Recover Valuable Phenolic Compounds from Extracts of Wet Olive Pomace through Organic-Solvent Nanofiltration. Sep. Purif. Technol. 2023, 305. [Google Scholar] [CrossRef]
- Bazzarelli, F.; Piacentini, E.; Poerio, T.; Mazzei, R.; Cassano, A.; Giorno, L. Advances in Membrane Operations for Water Purification and Biophenols Recovery/Valorization from OMWWs. J. Memb. Sci. 2016, 497, 402–409. [Google Scholar] [CrossRef]
- Cifuentes-Cabezas, M.; Pavani, A.; Vincent-Vela, C.; Mendoza-Roca, A.; Álvarez-Blanco, S. Concentration of Phenolic Compounds from Olive Washing Wastewater by Forward Osmosis Using Table Olive Fermentation Brine as Draw Solution. Environ. Technol. Innov. 2023, 30, 103054. [Google Scholar] [CrossRef]
- Ghilardi, C.; Sanmartin Negrete, P.; Carelli, A.A.; Borroni, V. Evaluation of Olive Mill Waste as Substrate for Carotenoid Production by Rhodotorula Mucilaginosa. Bioresour. Bioprocess. 2020, 7, 52. [Google Scholar] [CrossRef]
- Guo, Z.; Jin, Q.; Fan, G.; Duan, Y.; Qin, C.; Wen, M. Microwave-Assisted Extraction of Effective Constituents from a Chinese Herbal Medicine Radix Puerariae. Anal. Chim. Acta 2001, 436, 41–47. [Google Scholar] [CrossRef]
- Lu, X.; Zheng, Z.; Li, H.; Cao, R.; Zheng, Y.; Yu, H.; Xiao, J.; Miao, S.; Zheng, B. Optimization of Ultrasonic-Microwave Assisted Extraction of Oligosaccharides from Lotus (Nelumbo nucifera Gaertn.) Seeds. Ind. Crops Prod. 2017, 107, 546–557. [Google Scholar] [CrossRef]
- Lončarić, A.; Pichler, A.; Rašić, N.; Vukoja, I.; Leventić, A.; Kopjar, M. Influence of Phenol and Sugar Interactions on Antioxidant Activity of Pomegranate Juice. Acta Aliment. 2018, 47, 203–209. [Google Scholar] [CrossRef]
- Usabiaga, I.; González, J.; Arnáiz, P.F.; León, I.; Cocinero, E.J.; Fernández, J.A. Modeling the Tyrosine-Sugar Interactions in Supersonic Expansions: Glucopyranose-Phenol Clusters. Phys. Chem. Chem. Phys. 2016, 18, 12457–12465. [Google Scholar] [CrossRef]
- Yangui, A.; Njimou, J.R.; Cicci, A.; Bravi, M.; Abderrabba, M.; Chianese, A. Competitive Adsorption, Selectivity and Separation of Valuable Hydroxytyrosol and Toxic Phenol from Olive Mill Wastewater. J. Environ. Chem. Eng. 2017, 5, 3581–3589. [Google Scholar] [CrossRef]
- Meschini, R.; D’Eliseo, D.; Filippi, S.; Bertini, L.; Bizzarri, B.M.; Botta, L.; Saladino, R.; Velotti, F. Tyrosinase-Treated Hydroxytyrosol-Enriched Olive Vegetation Waste with Increased Antioxidant Activity Promotes Autophagy and Inhibits the Inflammatory Response in Human THP-1 Monocytes. J. Agric. Food Chem. 2018, 66, 12274–12284. [Google Scholar] [CrossRef]
- Valanciene, E.; Jonuskiene, I.; Syrpas, M.; Augustiniene, E.; Matulis, P.; Simonavicius, A.; Malys, N. Advances and Prospects of Phenolic Acids Production, Biorefinery and Analysis. Biomolecules 2020, 10, 874. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Pérez García-Serrano, A.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Combining Ultrafiltration and Nanofiltration to Obtain a Concentrated Extract of Purified Polyphenols from Wet Olive Pomace. Membranes 2023, 13, 119. [Google Scholar] [CrossRef]
- Sánchez-Arévalo, C.M.; Jimeno-Jiménez, Á.; Carbonell-Alcaina, C.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Effect of the Operating Conditions on a Nanofiltration Process to Separate Low-Molecular-Weight Phenolic Compounds from the Sugars Present in Olive Mill Wastewaters. Process Saf. Environ. Prot. 2021, 148, 428–436. [Google Scholar] [CrossRef]
- Vieira, G.S.; Moreira, F.K.V.; Matsumoto, R.L.S.; Michelon, M.; Filho, F.M.; Hubinger, M.D. Influence of Nanofiltration Membrane Features on Enrichment of Jussara Ethanolic Extract (Euterpe edulis) in Anthocyanins. J. Food Eng. 2018, 226, 31–41. [Google Scholar] [CrossRef]
- Chandrasekara, A. Phenolic Acids. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 535–545. ISBN 9780081005965. [Google Scholar]
- Amin, F.U.; Shah, S.A.; Kim, M.O. Vanillic Acid Attenuates Aβ1-42-Induced Oxidative Stress and Cognitive Impairment in Mice. Sci. Rep. 2017, 7, 40753. [Google Scholar] [CrossRef]
- Jung, E.H.; Ran Kim, S.; Hwang, I.K.; Youl Ha, T. Hypoglycemic Effects of a Phenolic Acid Fraction of Rice Bran and Ferulic Acid in C57BL/KsJ-Db/Db Mice. J. Agric. Food Chem. 2007, 55, 9800–9804. [Google Scholar] [CrossRef]
- Tirado, D.F.; de la Fuente, E.; Calvo, L. A Selective Extraction of Hydroxytyrosol Rich Olive Oil from Alperujo. J. Food Eng. 2019, 263, 409–416. [Google Scholar] [CrossRef]
- Zrelli, H.; Matsuoka, M.; Kitazaki, S.; Araki, M.; Kusunoki, M.; Zarrouk, M.; Miyazaki, H. Hydroxytyrosol Induces Proliferation and Cytoprotection against Oxidative Injury in Vascular Endothelial Cells: Role of Nrf2 Activation and HO-1 Induction. J. Agric. Food Chem. 2011, 59, 4473–4482. [Google Scholar] [CrossRef]
- Gerson, J.E.; Cascio, F.L.; Kayed, R. The Potential of Small Molecules in Preventing Tau Oligomer Formation and Toxicity. In Neuroprotection in Alzheimer’s Disease; Elsevier: Amsterdam, The Netherlands, 2017; pp. 97–121. ISBN 9780128036907. [Google Scholar]
- de Oliveira, C.O.; Roll, A.A.P.; Medeiros Gonçalves, F.M.; Lopes, D.C.N.; Xavier, E.G. Olive Pomace for the Feeding of Commercial Poultry: Effects on Performance, Meat and Eggs Quality, Haematological Parameters, Microbiota and Immunity. Worlds. Poult. Sci. J. 2021, 77, 363–376. [Google Scholar] [CrossRef]
- Xaba, B.M.; Modise, S.J.; Okoli, B.J.; Monapathi, M.E.; Nelana, S. Characterization of Selected Polymeric Membranes Used in the Separation and Recovery of Palladium-Based Catalyst Systems. Membranes 2020, 10, 166. [Google Scholar] [CrossRef]
- Tamires Vitor Pereira, D.; Vollet Marson, G.; Fernández Barbero, G.; Gadioli Tarone, A.; Baú Betim Cazarin, C.; Dupas Hubinger, M.; Martínez, J. Concentration of Bioactive Compounds from Grape Marc Using Pressurized Liquid Extraction Followed by Integrated Membrane Processes. Sep. Purif. Technol. 2020, 250, 117206. [Google Scholar] [CrossRef]
- Cliff, K. A Study of Membrane Swelling and Transport Mechanisms in Solvent Resistant Nanofiltration. Ph.D. Thesis, Loughborough University, Loughborough, UK, 2011. [Google Scholar]
- Santafé-Moros, A.; Gonzálvez-Zafrilla, J.M.; Valencia, D. Design of a Flat Membrane Module for Fouling and Permselectivity Studies. In Proceedings of the COMSOL Conference, Paris, France, 17–19 November 2010. [Google Scholar]
- Syed, U.T.; Brazinha, C.; Crespo, J.G.; Ricardo-da-Silva, J.M. Valorisation of Grape Pomace: Fractionation of Bioactive Flavan-3-Ols by Membrane Processing. Sep. Purif. Technol. 2017, 172, 404–414. [Google Scholar] [CrossRef]
- Baker, R.W. Membrane Technology and Applications, 3rd ed.; John Wiley & Sons Ltd.: West Sussex, UK, 2012; ISBN 9781118359686. [Google Scholar]
- UNE-EN ISO 7887:2012; Method B Water Quality. Examination and Determination of Colour. Spanish Association for Normalization and Certification: Valencia, Spain, 2012.
- Singleton, V.L.; Rossi, J.A. Colorimetry of Total Phenolics Acids with Phosphomolybdic-Phosphotungstic Acid Reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar] [CrossRef]
- Dreywood, R. Qualitative Test for Carbohydrate Material. Ind. Eng. Chem. Anal. Ed. 1946, 18, 499. [Google Scholar] [CrossRef]
Parameter | Determined Concentration |
---|---|
Total phenolic content (mg/L) | 737 ± 6 |
Total sugar content (mg/L) | 663 ± 18 |
Total solids (g/L) | 7.78 ± 0.02 |
Color coefficient | 2.3 ± 0.1 |
pH | 5.9 ± 0.2 |
Conductivity (µS/cm) | 679 ± 30 |
Membrane | MWCO (kDa) 1 | Material | Manufacturer | Process |
---|---|---|---|---|
UF010104 | 20 2 | Proprietary | SolSep BV | UF |
UP005 | 5 | PES 3 | Microdyn Nadir | UF |
NF270 | 0.3–0.4 | Polyamide | DuPont | NF |
NF90 | 0.2 | Polyamide | DuPont | RO |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Arévalo, C.M.; Aldegheri, F.; Vincent-Vela, M.C.; Álvarez-Blanco, S. Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace. Int. J. Mol. Sci. 2024, 25, 5233. https://doi.org/10.3390/ijms25105233
Sánchez-Arévalo CM, Aldegheri F, Vincent-Vela MC, Álvarez-Blanco S. Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace. International Journal of Molecular Sciences. 2024; 25(10):5233. https://doi.org/10.3390/ijms25105233
Chicago/Turabian StyleSánchez-Arévalo, Carmen M., Fausto Aldegheri, M. Cinta Vincent-Vela, and Silvia Álvarez-Blanco. 2024. "Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace" International Journal of Molecular Sciences 25, no. 10: 5233. https://doi.org/10.3390/ijms25105233
APA StyleSánchez-Arévalo, C. M., Aldegheri, F., Vincent-Vela, M. C., & Álvarez-Blanco, S. (2024). Integrated Membrane Process in Organic Media: Combining Organic Solvent Ultrafiltration, Nanofiltration, and Reverse Osmosis to Purify and Concentrate the Phenolic Compounds from Wet Olive Pomace. International Journal of Molecular Sciences, 25(10), 5233. https://doi.org/10.3390/ijms25105233