Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals
Abstract
:1. Introduction
2. Systems for Targeted Gene Silencing
2.1. RNA Interference
2.1.1. Application of RNAi in Plants
Virus-Induced Gene Silencing (VIGS)
Host-Induced Gene Silencing (HIGS)
Exogenous RNAi and Spray-Induced Gene Silencing (SIGS)
2.1.2. Application of RNAi in Animals
2.2. The Chimeric Transcription Factors
2.2.1. The Gal4/UAS System
Application of the Gal4/UAS System in Plants
Application of the Gal4/UAS System in Animals
2.2.2. Chimeric Transcription Factors
Application of the Chimeric Repressors in Plants
Application of the Chimeric Repressors in Animals
2.2.3. Small Interfering Peptides (siPEPs)
Application of siPEPs in Plants
Application of siPEPs in Animals
2.3. Optogenetic Approaches
2.3.1. Application of Optogenetic Systems in Plants
2.3.2. Application of Optogenetic Systems in Animals
2.4. Zinc Finger Proteins (ZFPs)
2.4.1. Application of ZFPs in Plants
2.4.2. Application of Zinc Finger Proteins in Animals
2.5. Transcription Activator-like Effectors (TALEs)
2.5.1. Application of TALEs in Plants
2.5.2. Application of TALEs in Animals
2.6. CRISPR/Cas-Based Transcription Regulation Systems
2.6.1. Application of CRISPRi in Plants
2.6.2. Application of CRISPRi in Animals
3. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gripp, K.W.; Morse, L.A.; Axelrad, M.; Chatfield, K.C.; Chidekel, A.; Dobyns, W.; Doyle, D.; Kerr, B.; Lin, A.E.; Schwartz, D.D.; et al. Costello Syndrome: Clinical Phenotype, Genotype, and Management Guidelines. Am. J. Med. Genet. Pt A 2019, 179, 1725–1744. [Google Scholar] [CrossRef]
- Aoi, Y.; Shilatifard, A. Transcriptional Elongation Control in Developmental Gene Expression, Aging, and Disease. Mol. Cell 2023, 83, 3972–3999. [Google Scholar] [CrossRef] [PubMed]
- Omelina, E.S.; Yushkova, A.A.; Motorina, D.M.; Volegov, G.A.; Kozhevnikova, E.N.; Pindyurin, A.V. Optogenetic and Chemical Induction Systems for Regulation of Transgene Expression in Plants: Use in Basic and Applied Research. Int. J. Mol. Sci. 2022, 23, 1737. [Google Scholar] [CrossRef] [PubMed]
- Naidoo, J.; Young, D. Gene Regulation Systems for Gene Therapy Applications in the Central Nervous System. Neurol. Res. Int. 2012, 2012, 595410. [Google Scholar] [CrossRef] [PubMed]
- Thakore, P.I.; Kwon, J.B.; Nelson, C.E.; Rouse, D.C.; Gemberling, M.P.; Oliver, M.L.; Gersbach, C.A. RNA-Guided Transcriptional Silencing in Vivo with S. Aureus CRISPR-Cas9 Repressors. Nat. Commun. 2018, 9, 1674. [Google Scholar] [CrossRef] [PubMed]
- Moreno, A.M.; Alemán, F.; Catroli, G.F.; Hunt, M.; Hu, M.; Dailamy, A.; Pla, A.; Woller, S.A.; Palmer, N.; Parekh, U.; et al. Long-Lasting Analgesia via Targeted in Situ Repression of NaV 1.7 in Mice. Sci. Transl. Med. 2021, 13, eaay9056. [Google Scholar] [CrossRef] [PubMed]
- Nuñez, J.K.; Chen, J.; Pommier, G.C.; Cogan, J.Z.; Replogle, J.M.; Adriaens, C.; Ramadoss, G.N.; Shi, Q.; Hung, K.L.; Samelson, A.J.; et al. Genome-Wide Programmable Transcriptional Memory by CRISPR-Based Epigenome Editing. Cell 2021, 184, 2503–2519.e17. [Google Scholar] [CrossRef] [PubMed]
- Saunderson, E.A.; Stepper, P.; Gomm, J.J.; Hoa, L.; Morgan, A.; Allen, M.D.; Jones, J.L.; Gribben, J.G.; Jurkowski, T.P.; Ficz, G. Hit-and-Run Epigenetic Editing Prevents Senescence Entry in Primary Breast Cells from Healthy Donors. Nat. Commun. 2017, 8, 1450. [Google Scholar] [CrossRef] [PubMed]
- Stepper, P.; Kungulovski, G.; Jurkowska, R.Z.; Chandra, T.; Krueger, F.; Reinhardt, R.; Reik, W.; Jeltsch, A.; Jurkowski, T.P. Efficient Targeted DNA Methylation with Chimeric dCas9–Dnmt3a–Dnmt3L Methyltransferase. Nucleic Acids Res. 2017, 45, 1703–1713. [Google Scholar] [CrossRef]
- Klaus, L.; De Almeida, B.P.; Vlasova, A.; Nemčko, F.; Schleiffer, A.; Bergauer, K.; Hofbauer, L.; Rath, M.; Stark, A. Systematic Identification and Characterization of Repressive Domains in Drosophila Transcription Factors. EMBO J. 2023, 42, e112100. [Google Scholar] [CrossRef]
- Matsui, K.; Umemura, Y.; Ohme-Takagi, M. AtMYBL2, a Protein with a Single MYB Domain, Acts as a Negative Regulator of Anthocyanin Biosynthesis in Arabidopsis. Plant J. 2008, 55, 954–967. [Google Scholar] [CrossRef] [PubMed]
- Denli, A.M.; Hannon, G.J. RNAi: An Ever-Growing Puzzle. Trends Biochem. Sci. 2003, 28, 196–201. [Google Scholar] [CrossRef] [PubMed]
- Provost, P. Ribonuclease Activity and RNA Binding of Recombinant Human Dicer. EMBO J. 2002, 21, 5864–5874. [Google Scholar] [CrossRef]
- Pratt, A.J.; MacRae, I.J. The RNA-Induced Silencing Complex: A Versatile Gene-Silencing Machine. J. Biol. Chem. 2009, 284, 17897–17901. [Google Scholar] [CrossRef] [PubMed]
- Iwakawa, H.; Tomari, Y. Life of RISC: Formation, Action, and Degradation of RNA-Induced Silencing Complex. Mol. Cell 2022, 82, 30–43. [Google Scholar] [CrossRef]
- Sontheimer, E.J. Assembly and Function of RNA Silencing Complexes. Nat. Rev. Mol. Cell Biol. 2005, 6, 127–138. [Google Scholar] [CrossRef]
- Napoli, C.; Lemieux, C.; Jorgensen, R. Introduction of a Chimeric Chalcone Synthase Gene into Petunia Results in Reversible Co-Suppression of Homologous Genes in Trans. Plant Cell 1990, 2, 279–289. [Google Scholar] [CrossRef]
- Vaucheret, H.; Béclin, C.; Fagard, M. Post-Transcriptional Gene Silencing in Plants. J. Cell Sci. 2001, 114, 3083–3091. [Google Scholar] [CrossRef] [PubMed]
- Dommes, A.B.; Gross, T.; Herbert, D.B.; Kivivirta, K.I.; Becker, A. Virus-Induced Gene Silencing: Empowering Genetics in Non-Model Organisms. J. Exp. Bot. 2019, 70, 757–770. [Google Scholar] [CrossRef]
- Van Kammen, A. Virus-Induced Gene Silencing in Infected and Transgenic Plants. Trends Plant Sci. 1997, 2, 409–411. [Google Scholar] [CrossRef]
- Szittya, G.; Burgyán, J. RNA Interference-Mediated Intrinsic Antiviral Immunity in Plants. In Intrinsic Immunity; Cullen, B.R., Ed.; Current Topics in Microbiology and Immunology; Springer: Berlin/Heidelberg, Germany, 2013; Volume 371, pp. 153–181. ISBN 978-3-642-37764-8. [Google Scholar]
- Becker, A.; Lange, M. VIGS—Genomics Goes Functional. Trends Plant Sci. 2010, 15, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.; Page, J.E. Optimized cDNA Libraries for Virus-Induced Gene Silencing (VIGS) Using Tobacco Rattle Virus. Plant Methods 2008, 4, 5. [Google Scholar] [CrossRef] [PubMed]
- Aregger, M.; Borah, B.K.; Seguin, J.; Rajeswaran, R.; Gubaeva, E.G.; Zvereva, A.S.; Windels, D.; Vazquez, F.; Blevins, T.; Farinelli, L.; et al. Primary and Secondary siRNAs in Geminivirus-Induced Gene Silencing. PLoS Pathog. 2012, 8, e1002941. [Google Scholar] [CrossRef] [PubMed]
- Kumagai, M.H.; Donson, J.; della-Cioppa, G.; Harvey, D.; Hanley, K.; Grill, L.K. Cytoplasmic Inhibition of Carotenoid Biosynthesis with Virus-Derived RNA. Proc. Natl. Acad. Sci. USA 1995, 92, 1679–1683. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, M.; Wang, P.; Cox, K.L.; Duan, L.; Dever, J.K.; Shan, L.; Li, Z.; He, P. Regulation of Cotton (Gossypium hirsutum) Drought Responses by Mitogen-activated Protein (MAP) Kinase Cascade-mediated Phosphorylation of Gh WRKY 59. New Phytol. 2017, 215, 1462–1475. [Google Scholar] [CrossRef] [PubMed]
- Shaban, M.; Ahmed, M.M.; Sun, H.; Ullah, A.; Zhu, L. Genome-Wide Identification of Lipoxygenase Gene Family in Cotton and Functional Characterization in Response to Abiotic Stresses. BMC Genom. 2018, 19, 599. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Guo, S.; Lian, Z.; Chen, F.; Yang, Y.; Chen, T.; Ling, X.; Liu, A.; Wang, R.; Zhang, B. A P4-ATPase Gene GbPATP of Cotton Confers Chilling Tolerance in Plants. Plant Cell Physiol. 2015, 56, 549–557. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yu, W.; Ran, L.; Chen, Z.; Wang, C.; Dou, Y.; Qin, Y.; Suo, Q.; Li, Y.; Zeng, J.; et al. DELLA-NAC Interactions Mediate GA Signaling to Promote Secondary Cell Wall Formation in Cotton Stem. Front. Plant Sci. 2021, 12, 655127. [Google Scholar] [CrossRef]
- Li, J.; Zhu, L.; Hull, J.J.; Liang, S.; Daniell, H.; Jin, S.; Zhang, X. Transcriptome Analysis Reveals a Comprehensive Insect Resistance Response Mechanism in Cotton to Infestation by the Phloem Feeding Insect Bemisia tabaci (Whitefly). Plant Biotechnol. J. 2016, 14, 1956–1975. [Google Scholar] [CrossRef]
- Hernández-Soto, A.; Chacón-Cerdas, R. RNAi Crop Protection Advances. Int. J. Mol. Sci. 2021, 22, 12148. [Google Scholar] [CrossRef]
- Ghag, S.B.; Ganapathi, T.R. RNAi-Mediated Protection against Banana Diseases and Pests. 3 Biotech 2019, 9, 112. [Google Scholar] [CrossRef] [PubMed]
- Jain, R.G.; Robinson, K.E.; Asgari, S.; Mitter, N. Current Scenario of RNAi -based Hemipteran Control. Pest Manag. Sci. 2021, 77, 2188–2196. [Google Scholar] [CrossRef] [PubMed]
- Yan, S.; Ren, B.; Zeng, B.; Shen, J. Improving RNAi Efficiency for Pest Control in Crop Species. BioTechniques 2020, 68, 283–290. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liu, X.; Lu, W.; Yin, X.; An, S. Application Progress of Plant-Mediated RNAi in Pest Control. Front. Bioeng. Biotechnol. 2022, 10, 963026. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, S.; Yamagishi, N.; Yoshikawa, N. Efficient Virus-Induced Gene Silencing in Apple, Pear and Japanese Pear Using Apple Latent Spherical Virus Vectors. Plant Methods 2011, 7, 15. [Google Scholar] [CrossRef] [PubMed]
- Cui, H.; Wang, A. An Efficient Viral Vector for Functional Genomic Studies of Prunus Fruit Trees and Its Induced Resistance to Plum Pox Virus via Silencing of a Host Factor Gene. Plant Biotechnol. J. 2017, 15, 344–356. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, F.; Senthil-Kumar, M.; Dai, X.; Ramu, V.S.; Lee, S.; Mysore, K.S.; Zhao, P.X. pssRNAit: A Web Server for Designing Effective and Specific Plant siRNAs with Genome-Wide Off-Target Assessment. Plant Physiol. 2020, 184, 65–81. [Google Scholar] [CrossRef] [PubMed]
- Wege, S.; Scholz, A.; Gleissberg, S.; Becker, A. Highly Efficient Virus-Induced Gene Silencing (VIGS) in California Poppy (Eschscholzia Californica): An Evaluation of VIGS as a Strategy to Obtain Functional Data from Non-Model Plants. Ann. Bot. 2007, 100, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Fu, D.-Q.; Zhu, B.-Z.; Zhu, H.-L.; Zhang, H.-X.; Xie, Y.-H.; Jiang, W.-B.; Zhao, X.-D.; Luo, Y.-B. Enhancement of Virus-Induced Gene Silencing in Tomato by Low Temperature and Low Humidity. Mol. Cells 2006, 21, 153–160. [Google Scholar] [CrossRef]
- Kotakis, C.; Vrettos, N.; Kotsis, D.; Tsagris, M.; Kotzabasis, K.; Kalantidis, K. Light Intensity Affects RNA Silencing of a Transgene in Nicotiana Benthamiana Plants. BMC Plant Biol. 2010, 10, 220. [Google Scholar] [CrossRef]
- Zulfiqar, S.; Farooq, M.A.; Zhao, T.; Wang, P.; Tabusam, J.; Wang, Y.; Xuan, S.; Zhao, J.; Chen, X.; Shen, S.; et al. Virus-Induced Gene Silencing (VIGS): A Powerful Tool for Crop Improvement and Its Advancement towards Epigenetics. Int. J. Mol. Sci. 2023, 24, 5608. [Google Scholar] [CrossRef]
- Koch, A.; Wassenegger, M. Host-induced Gene Silencing—Mechanisms and Applications. New Phytol. 2021, 231, 54–59. [Google Scholar] [CrossRef]
- Zand Karimi, H.; Innes, R.W. Molecular Mechanisms Underlying Host-Induced Gene Silencing. Plant Cell 2022, 34, 3183–3199. [Google Scholar] [CrossRef]
- Boutla, A. Induction of RNA Interference in Caenorhabditis Elegans by RNAs Derived from Plants Exhibiting Post-Transcriptional Gene Silencing. Nucleic Acids Res. 2002, 30, 1688–1694. [Google Scholar] [CrossRef]
- Huang, G.; Allen, R.; Davis, E.L.; Baum, T.J.; Hussey, R.S. Engineering Broad Root-Knot Resistance in Transgenic Plants by RNAi Silencing of a Conserved and Essential Root-Knot Nematode Parasitism Gene. Proc. Natl. Acad. Sci. USA 2006, 103, 14302–14306. [Google Scholar] [CrossRef] [PubMed]
- Govindarajulu, M.; Epstein, L.; Wroblewski, T.; Michelmore, R.W. Host-induced Gene Silencing Inhibits the Biotrophic Pathogen Causing Downy Mildew of Lettuce. Plant Biotechnol. J. 2015, 13, 875–883. [Google Scholar] [CrossRef] [PubMed]
- Raruang, Y.; Omolehin, O.; Hu, D.; Wei, Q.; Han, Z.-Q.; Rajasekaran, K.; Cary, J.W.; Wang, K.; Chen, Z.-Y. Host Induced Gene Silencing Targeting Aspergillus Flavus aflM Reduced Aflatoxin Contamination in Transgenic Maize Under Field Conditions. Front. Microbiol. 2020, 11, 754. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Shi, X.; Chen, D.; Yang, N.; Yin, C.; Yang, J.; Wang, G.; Huang, W.; Peng, H.; Peng, D.; et al. Host-induced Silencing of a Nematode Chitin Synthase Gene Enhances Resistance of Soybeans to Both Pathogenic Heterodera glycines and Fusarium oxysporum. Plant Biotechnol. J. 2022, 20, 809–811. [Google Scholar] [CrossRef]
- Mamta; Reddy, K.R.K.; Rajam, M.V. Targeting Chitinase Gene of Helicoverpa Armigera by Host-Induced RNA Interference Confers Insect Resistance in Tobacco and Tomato. Plant Mol. Biol. 2016, 90, 281–292. [Google Scholar] [CrossRef]
- Dubrovina, A.S.; Kiselev, K.V. Exogenous RNAs for Gene Regulation and Plant Resistance. Int. J. Mol. Sci. 2019, 20, 2282. [Google Scholar] [CrossRef]
- Das, P.R.; Sherif, S.M. Application of Exogenous dsRNAs-Induced RNAi in Agriculture: Challenges and Triumphs. Front. Plant Sci. 2020, 11, 946. [Google Scholar] [CrossRef] [PubMed]
- Hoang, B.T.L.; Fletcher, S.J.; Brosnan, C.A.; Ghodke, A.B.; Manzie, N.; Mitter, N. RNAi as a Foliar Spray: Efficiency and Challenges to Field Applications. Int. J. Mol. Sci. 2022, 23, 6639. [Google Scholar] [CrossRef] [PubMed]
- Koch, A.; Biedenkopf, D.; Furch, A.; Weber, L.; Rossbach, O.; Abdellatef, E.; Linicus, L.; Johannsmeier, J.; Jelonek, L.; Goesmann, A.; et al. An RNAi-Based Control of Fusarium Graminearum Infections Through Spraying of Long dsRNAs Involves a Plant Passage and Is Controlled by the Fungal Silencing Machinery. PLoS Pathog. 2016, 12, e1005901. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Weiberg, A.; Lin, F.-M.; Thomma, B.P.H.J.; Huang, H.-D.; Jin, H. Bidirectional Cross-Kingdom RNAi and Fungal Uptake of External RNAs Confer Plant Protection. Nat. Plants 2016, 2, 16151. [Google Scholar] [CrossRef] [PubMed]
- McLoughlin, A.G.; Wytinck, N.; Walker, P.L.; Girard, I.J.; Rashid, K.Y.; De Kievit, T.; Fernando, W.G.D.; Whyard, S.; Belmonte, M.F. Identification and Application of Exogenous dsRNA Confers Plant Protection against Sclerotinia Sclerotiorum and Botrytis Cinerea. Sci. Rep. 2018, 8, 7320. [Google Scholar] [CrossRef]
- Marcianò, D.; Ricciardi, V.; Marone Fassolo, E.; Passera, A.; Bianco, P.A.; Failla, O.; Casati, P.; Maddalena, G.; De Lorenzis, G.; Toffolatti, S.L. RNAi of a Putative Grapevine Susceptibility Gene as a Possible Downy Mildew Control Strategy. Front. Plant Sci. 2021, 12, 667319. [Google Scholar] [CrossRef]
- Werner, B.T.; Gaffar, F.Y.; Schuemann, J.; Biedenkopf, D.; Koch, A.M. RNA-Spray-Mediated Silencing of Fusarium Graminearum AGO and DCL Genes Improve Barley Disease Resistance. Front. Plant Sci. 2020, 11, 476. [Google Scholar] [CrossRef]
- Holeva, M.C.; Sklavounos, A.; Rajeswaran, R.; Pooggin, M.M.; Voloudakis, A.E. Topical Application of Double-Stranded RNA Targeting 2b and CP Genes of Cucumber Mosaic Virus Protects Plants against Local and Systemic Viral Infection. Plants 2021, 10, 963. [Google Scholar] [CrossRef] [PubMed]
- Koeppe, S.; Kawchuk, L.; Kalischuk, M. RNA Interference Past and Future Applications in Plants. Int. J. Mol. Sci. 2023, 24, 9755. [Google Scholar] [CrossRef]
- Nerva, L.; Guaschino, M.; Pagliarani, C.; De Rosso, M.; Lovisolo, C.; Chitarra, W. Spray-induced Gene Silencing Targeting a Glutathione S-transferase Gene Improves Resilience to Drought in Grapevine. Plant Cell Environ. 2022, 45, 347–361. [Google Scholar] [CrossRef]
- Kiselev, K.V.; Suprun, A.R.; Aleynova, O.A.; Ogneva, Z.V.; Kalachev, A.V.; Dubrovina, A.S. External dsRNA Downregulates Anthocyanin Biosynthesis-Related Genes and Affects Anthocyanin Accumulation in Arabidopsis thaliana. Int. J. Mol. Sci. 2021, 22, 6749. [Google Scholar] [CrossRef] [PubMed]
- Suprun, A.R.; Kiselev, K.V.; Dubrovina, A.S. Exogenously Induced Silencing of Four MYB Transcription Repressor Genes and Activation of Anthocyanin Accumulation in Solanum Lycopersicum. Int. J. Mol. Sci. 2023, 24, 9344. [Google Scholar] [CrossRef] [PubMed]
- Mitter, N.; Worrall, E.A.; Robinson, K.E.; Li, P.; Jain, R.G.; Taochy, C.; Fletcher, S.J.; Carroll, B.J.; Lu, G.Q.; Xu, Z.P. Clay Nanosheets for Topical Delivery of RNAi for Sustained Protection against Plant Viruses. Nat. Plants 2017, 3, 16207. [Google Scholar] [CrossRef] [PubMed]
- Worrall, E.A.; Bravo-Cazar, A.; Nilon, A.T.; Fletcher, S.J.; Robinson, K.E.; Carr, J.P.; Mitter, N. Exogenous Application of RNAi-Inducing Double-Stranded RNA Inhibits Aphid-Mediated Transmission of a Plant Virus. Front. Plant Sci. 2019, 10, 265. [Google Scholar] [CrossRef] [PubMed]
- Kaldis, A.; Berbati, M.; Melita, O.; Reppa, C.; Holeva, M.; Otten, P.; Voloudakis, A. Exogenously Applied dsRNA Molecules Deriving from the Zucchini Yellow Mosaic Virus (ZYMV) Genome Move Systemically and Protect Cucurbits against ZYMV. Mol. Plant Pathol. 2018, 19, 883–895. [Google Scholar] [CrossRef] [PubMed]
- Dubrovina, A.; Aleynova, O.; Kalachev, A.; Suprun, A.; Ogneva, Z.; Kiselev, K. Induction of Transgene Suppression in Plants via External Application of Synthetic dsRNA. Int. J. Mol. Sci. 2019, 20, 1585. [Google Scholar] [CrossRef] [PubMed]
- Dalakouras, A.; Papadopoulou, K.K. Epigenetic Modifications: An Unexplored Facet of Exogenous RNA Application in Plants. Plants 2020, 9, 673. [Google Scholar] [CrossRef] [PubMed]
- Dalakouras, A.; Wassenegger, M.; Dadami, E.; Ganopoulos, I.; Pappas, M.L.; Papadopoulou, K. Genetically Modified Organism-Free RNA Interference: Exogenous Application of RNA Molecules in Plants. Plant Physiol. 2020, 182, 38–50. [Google Scholar] [CrossRef]
- Caplen, N.J.; Fleenor, J.; Fire, A.; Morgan, R.A. dsRNA-Mediated Gene Silencing in Cultured Drosophila Cells: A Tissue Culture Model for the Analysis of RNA Interference. Gene 2000, 252, 95–105. [Google Scholar] [CrossRef]
- Ui-Tei, K.; Zenno, S.; Miyata, Y.; Saigo, K. Sensitive Assay of RNA Interference in Drosophila and Chinese Hamster Cultured Cells Using Firefly Luciferase Gene as Target. FEBS Lett. 2000, 479, 79–82. [Google Scholar] [CrossRef]
- Stark, G.R.; Kerr, I.M.; Williams, B.R.G.; Silverman, R.H.; Schreiber, R.D. How Cells Respond to Interferons. Annu. Rev. Biochem. 1998, 67, 227–264. [Google Scholar] [CrossRef] [PubMed]
- Elbashir, S.M.; Harborth, J.; Lendeckel, W.; Yalcin, A.; Weber, K.; Tuschl, T. Duplexes of 21-Nucleotide RNAs Mediate RNA Interference in Cultured Mammalian Cells. Nature 2001, 411, 494–498. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, N.; Dasaradhi, P.V.N.; Mohmmed, A.; Malhotra, P.; Bhatnagar, R.K.; Mukherjee, S.K. RNA Interference: Biology, Mechanism, and Applications. Microbiol. Mol. Biol. Rev. 2003, 67, 657–685. [Google Scholar] [CrossRef] [PubMed]
- Kamath, R.S.; Fraser, A.G.; Dong, Y.; Poulin, G.; Durbin, R.; Gotta, M.; Kanapin, A.; Le Bot, N.; Moreno, S.; Sohrmann, M.; et al. Systematic Functional Analysis of the Caenorhabditis Elegans Genome Using RNAi. Nature 2003, 421, 231–237. [Google Scholar] [CrossRef] [PubMed]
- Clemens, J.C.; Worby, C.A.; Simonson-Leff, N.; Muda, M.; Maehama, T.; Hemmings, B.A.; Dixon, J.E. Use of Double-Stranded RNA Interference in Drosophila Cell Lines to Dissect Signal Transduction Pathways. Proc. Natl. Acad. Sci. USA 2000, 97, 6499–6503. [Google Scholar] [CrossRef]
- Wilda, M.; Fuchs, U.; Wössmann, W.; Borkhardt, A. Killing of Leukemic Cells with a BCR/ABL Fusion Gene by RNA Interference (RNAi). Oncogene 2002, 21, 5716–5724. [Google Scholar] [CrossRef] [PubMed]
- Semizarov, D.; Frost, L.; Sarthy, A.; Kroeger, P.; Halbert, D.N.; Fesik, S.W. Specificity of Short Interfering RNA Determined through Gene Expression Signatures. Proc. Natl. Acad. Sci. USA 2003, 100, 6347–6352. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Lee, S.-K.; Wang, J.; Ince, N.; Ouyang, N.; Min, J.; Chen, J.; Shankar, P.; Lieberman, J. RNA Interference Targeting Fas Protects Mice from Fulminant Hepatitis. Nat. Med. 2003, 9, 347–351. [Google Scholar] [CrossRef]
- Brummelkamp, T.R.; Bernards, R.; Agami, R. A System for Stable Expression of Short Interfering RNAs in Mammalian Cells. Science 2002, 296, 550–553. [Google Scholar] [CrossRef]
- Paddison, P.J.; Caudy, A.A.; Bernstein, E.; Hannon, G.J.; Conklin, D.S. Short Hairpin RNAs (shRNAs) Induce Sequence-Specific Silencing in Mammalian Cells. Genes Dev. 2002, 16, 948–958. [Google Scholar] [CrossRef]
- Brake, O.T.; Hooft, K.T.; Liu, Y.P.; Centlivre, M.; Jasmijn Von Eije, K.; Berkhout, B. Lentiviral Vector Design for Multiple shRNA Expression and Durable HIV-1 Inhibition. Mol. Ther. 2008, 16, 557–564. [Google Scholar] [CrossRef] [PubMed]
- Czauderna, F. Inducible shRNA Expression for Application in a Prostate Cancer Mouse Model. Nucleic Acids Res. 2003, 31, e127. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Schoer, R.A.; Egan, J.E.; Hannon, G.J.; Mittal, V. Inducible, Reversible, and Stable RNA Interference in Mammalian Cells. Proc. Natl. Acad. Sci. USA 2004, 101, 1927–1932. [Google Scholar] [CrossRef]
- Feng, C.; Cao, L.; Zuo, Z. RNA Interference-produced Autoregulation of Inducible Nitric Oxide Synthase Expression. FEBS Lett. 2011, 585, 2488–2492. [Google Scholar] [CrossRef] [PubMed]
- Giering, J.C.; Grimm, D.; Storm, T.A.; Kay, M.A. Expression of shRNA From a Tissue-Specific Pol II Promoter is an Effective and Safe RNAi Therapeutic. Mol. Ther. 2008, 16, 1630–1636. [Google Scholar] [CrossRef] [PubMed]
- Ko, J.; Choi, K.; Zhao, X.; Komazaki, S.; Pan, Z.; Weisleder, N.; Ma, J. A Versatile Single-plasmid System for Tissue-specific and Inducible Control of Gene Expression in Transgenic Mice. FASEB J. 2011, 25, 2638–2649. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lu, J.-X.; Shen, X.-F. shRNA Driven by Pol II/T7 Dual-Promoter System Effectively Induce Cell-Specific RNA Interference in Mammalian Cells. Biochem. Biophys. Res. Commun. 2007, 360, 496–500. [Google Scholar] [CrossRef]
- Yi, R.; Qin, Y.; Macara, I.G.; Cullen, B.R. Exportin-5 Mediates the Nuclear Export of Pre-microRNAs and Short Hairpin RNAs. Genes Dev. 2003, 17, 3011–3016. [Google Scholar] [CrossRef] [PubMed]
- Hashizume, O.; Kawabe, T.; Funato, Y.; Miki, H. Intestinal Mg2+ Accumulation Induced by Cnnm Mutations Decreases the Body Size by Suppressing TORC2 Signaling in Caenorhabditis Elegans. Dev. Biol. 2024, 509, 59–69. [Google Scholar] [CrossRef]
- Jain, R.G.; Robinson, K.E.; Fletcher, S.J.; Mitter, N. RNAi-Based Functional Genomics in Hemiptera. Insects 2020, 11, 557. [Google Scholar] [CrossRef]
- Kelleher, A.D.; Cortez-Jugo, C.; Cavalieri, F.; Qu, Y.; Glanville, A.R.; Caruso, F.; Symonds, G.; Ahlenstiel, C.L. RNAi Therapeutics: An Antiviral Strategy for Human Infections. Curr. Opin. Pharmacol. 2020, 54, 121–129. [Google Scholar] [CrossRef] [PubMed]
- Setten, R.L.; Rossi, J.J.; Han, S. The Current State and Future Directions of RNAi-Based Therapeutics. Nat. Rev. Drug Discov. 2019, 18, 421–446. [Google Scholar] [CrossRef] [PubMed]
- Adamson, B.; Smogorzewska, A.; Sigoillot, F.D.; King, R.W.; Elledge, S.J. A Genome-Wide Homologous Recombination Screen Identifies the RNA-Binding Protein RBMX as a Component of the DNA-Damage Response. Nat. Cell Biol. 2012, 14, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Jackson, A.L.; Bartz, S.R.; Schelter, J.; Kobayashi, S.V.; Burchard, J.; Mao, M.; Li, B.; Cavet, G.; Linsley, P.S. Expression Profiling Reveals Off-Target Gene Regulation by RNAi. Nat. Biotechnol. 2003, 21, 635–637. [Google Scholar] [CrossRef] [PubMed]
- Sigoillot, F.D.; Lyman, S.; Huckins, J.F.; Adamson, B.; Chung, E.; Quattrochi, B.; King, R.W. A Bioinformatics Method Identifies Prominent Off-Targeted Transcripts in RNAi Screens. Nat. Methods 2012, 9, 363–366. [Google Scholar] [CrossRef] [PubMed]
- Hathaway, N.A.; Bell, O.; Hodges, C.; Miller, E.L.; Neel, D.S.; Crabtree, G.R. Dynamics and Memory of Heterochromatin in Living Cells. Cell 2012, 149, 1447–1460. [Google Scholar] [CrossRef] [PubMed]
- Cong, L.; Zhou, R.; Kuo, Y.; Cunniff, M.; Zhang, F. Comprehensive Interrogation of Natural TALE DNA-Binding Modules and Transcriptional Repressor Domains. Nat. Commun. 2012, 3, 968. [Google Scholar] [CrossRef] [PubMed]
- Deuschle, U.; Meyer, W.K.-H.; Thiesen, H.-J. Tetracycline-Reversible Silencing of Eukaryotic Promoters. Mol. Cell. Biol. 1995, 15, 1907–1914. [Google Scholar] [CrossRef]
- Gossen, M.; Bujard, H. Tight Control of Gene Expression in Mammalian Cells by Tetracycline-Responsive Promoters. Proc. Natl. Acad. Sci. USA 1992, 89, 5547–5551. [Google Scholar] [CrossRef]
- Webster, N.; Jin, J.R.; Green, S.; Hollis, M.; Chambon, P. The Yeast UASG is a Transcriptional Enhancer in Human Hela Cells in the Presence of the GAL4 Trans-Activator. Cell 1988, 52, 169–178. [Google Scholar] [CrossRef]
- Kakidani, H.; Ptashne, M. GAL4 Activates Gene Expression in Mammalian Cells. Cell 1988, 52, 161–167. [Google Scholar] [CrossRef] [PubMed]
- Brand, A.H.; Perrimon, N. Targeted Gene Expression as a Means of Altering Cell Fates and Generating Dominant Phenotypes. Development 1993, 118, 401–415. [Google Scholar] [CrossRef] [PubMed]
- Duffy, J.B. GAL4 System in Drosophila: A Fly Geneticist’s Swiss Army Knife. Genesis 2002, 34, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Busson, D.; Pret, A.-M. GAL4/UAS Targeted Gene Expression for Studying Drosophila Hedgehog Signaling. In Hedgehog Signaling Protocols; Horabin, J.I., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2007; Volume 397, pp. 161–201. ISBN 978-1-58829-692-4. [Google Scholar]
- Poulton, B.C.; Colman, F.; Anthousi, A.; Grigoraki, L.; Adolfi, A.; Lynd, A.; Lycett, G.J. Using the GAL4-UAS System for Functional Genetics in Anopheles gambiae. JoVE 2021, 170, e62131. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ouyang, J.; Qie, J.; Zhang, G.; Liu, L.; Yang, P. Optimization of the Gal4/UAS Transgenic Tools in Zebrafish. Appl. Microbiol. Biotechnol. 2019, 103, 1789–1799. [Google Scholar] [CrossRef] [PubMed]
- Iacopino, S.; Licausi, F.; Giuntoli, B. Exploiting the Gal4/UAS System as Plant Orthogonal Molecular Toolbox to Control Reporter Expression in Arabidopsis Protoplasts. In Plant Synthetic Biology; Zurbriggen, M.D., Ed.; Methods in Molecular Biology; Springer: New York, NY, USA, 2022; Volume 2379, pp. 99–111. ISBN 978-1-07-161790-8. [Google Scholar]
- Lai, S.-L.; Lee, T. Genetic Mosaic with Dual Binary Transcriptional Systems in Drosophila. Nat. Neurosci. 2006, 9, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Lee, T.; Luo, L. Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis. Neuron 1999, 22, 451–461. [Google Scholar] [CrossRef] [PubMed]
- McGuire, S.E.; Le, P.T.; Osborn, A.J.; Matsumoto, K.; Davis, R.L. Spatiotemporal Rescue of Memory Dysfunction in Drosophila. Science 2003, 302, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Suster, M.L.; Seugnet, L.; Bate, M.; Sokolowski, M.B. Refining GAL4-driven Transgene Expression in Drosophila with a GAL80 Enhancer-trap. Genesis 2004, 39, 240–245. [Google Scholar] [CrossRef]
- Ma, J.; Ptashne, M. The Carboxy-Terminal 30 Amino Acids of GAL4 Are Recognized by GAL80. Cell 1987, 50, 137–142. [Google Scholar] [CrossRef]
- Nogi, Y.; Fukasawa, T. Functional Domains of a Negative Regulatory Protein, GAL80, of Saccharomyces cerevisiae. Mol. Cell. Biol. 1989, 9, 3009–3017. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Reece, R.J.; Ptashne, M. Quantitation of Putative Activator-Target Affinities Predicts Transcriptional Activating Potentials. EMBO J. 1996, 15, 3951–3963. [Google Scholar] [CrossRef] [PubMed]
- Barwell, T.; DeVeale, B.; Poirier, L.; Zheng, J.; Seroude, F.; Seroude, L. Regulating the UAS/GAL4 System in Adult Drosophila with Tet-off GAL80 Transgenes. PeerJ 2017, 5, e4167. [Google Scholar] [CrossRef] [PubMed]
- Barwell, T.; Geld, S.; Seroude, L. Comparison of GAL80ts and Tet-off GAL80 Transgenes. Micropublication Biol. 2023, 2023, 770. [Google Scholar] [CrossRef] [PubMed]
- Ikeda, M.; Ohme-Takagi, M. A Novel Group of Transcriptional Repressors in Arabidopsis. Plant Cell Physiol. 2009, 50, 970–975. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.; Tian, L.; Malik, K.; Brown, D.; Miki, B. Functional Analysis of HD2 Histone Deacetylase Homologues in Arabidopsis thaliana. Plant J. 2000, 22, 19–27. [Google Scholar] [CrossRef]
- Wu, K.; Tian, L.; Zhou, C.; Brown, D.; Miki, B. Repression of Gene Expression by Arabidopsis HD2 Histone Deacetylases. Plant J. 2003, 34, 241–247. [Google Scholar] [CrossRef]
- McGuire, S.E.; Mao, Z.; Davis, R.L. Spatiotemporal Gene Expression Targeting with the TARGET and Gene-Switch Systems in Drosophila. Sci. STKE 2004, 2004, pl6. [Google Scholar] [CrossRef]
- Abram, P.K.; Boivin, G.; Moiroux, J.; Brodeur, J. Behavioural Effects of Temperature on Ectothermic Animals: Unifying Thermal Physiology and Behavioural Plasticity. Biol. Rev. 2017, 92, 1859–1876. [Google Scholar] [CrossRef]
- Kogenaru, V.; Isalan, M.; Kogenaru, M. A Drug Stabilizable GAL80ds for Conditional Control of Gene Expression via GAL4-UAS and CRISPR-Cas9 Systems in Drosophila. Sci. Rep. 2024, 14, 5893. [Google Scholar] [CrossRef]
- McClure, C.D.; Hassan, A.; Aughey, G.N.; Butt, K.; Estacio-Gómez, A.; Duggal, A.; Ying Sia, C.; Barber, A.F.; Southall, T.D. An Auxin-Inducible, GAL4-Compatible, Gene Expression System for Drosophila. eLife 2022, 11, e67598. [Google Scholar] [CrossRef]
- Dharmasiri, N.; Dharmasiri, S.; Estelle, M. The F-Box Protein TIR1 Is an Auxin Receptor. Nature 2005, 435, 441–445. [Google Scholar] [CrossRef]
- Zhang, X.-R.; Zhao, L.; Suo, F.; Gao, Y.; Wu, Q.; Qi, X.; Du, L.-L. An Improved Auxin-Inducible Degron System for Fission Yeast. G3 Genes Genomes Genet. 2022, 12, jkab393. [Google Scholar] [CrossRef]
- Li, S.; Prasanna, X.; Salo, V.T.; Vattulainen, I.; Ikonen, E. An Efficient Auxin-Inducible Degron System with Low Basal Degradation in Human Cells. Nat. Methods 2019, 16, 866–869. [Google Scholar] [CrossRef]
- Hiratsu, K.; Matsui, K.; Koyama, T.; Ohme-Takagi, M. Dominant Repression of Target Genes by Chimeric Repressors That Include the EAR Motif, a Repression Domain, in Arabidopsis. Plant J. 2003, 34, 733–739. [Google Scholar] [CrossRef]
- Matsui, K.; Hiratsu, K.; Koyama, T.; Tanaka, H.; Ohme-Takagi, M. A Chimeric AtMYB23 Repressor Induces Hairy Roots, Elongation of Leaves and Stems, and Inhibition of the Deposition of Mucilage on Seed Coats in Arabidopsis. Plant Cell Physiol. 2005, 46, 147–155. [Google Scholar] [CrossRef]
- Mitsuda, N.; Matsui, K.; Ikeda, M.; Nakata, M.; Oshima, Y.; Nagatoshi, Y.; Ohme-Takagi, M. CRES-T, An Effective Gene Silencing System Utilizing Chimeric Repressors. In Plant Transcription Factors; Yuan, L., Perry, S.E., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2011; Volume 754, pp. 87–105. ISBN 978-1-61779-153-6. [Google Scholar]
- Kazama, D.; Itakura, M.; Kurusu, T.; Mitsuda, N.; Ohme-Takagi, M.; Tada, Y. Identification of Chimeric Repressors That Confer Salt and Osmotic Stress Tolerance in Arabidopsis. Plants 2013, 2, 769–785. [Google Scholar] [CrossRef]
- Shin, J.M.; Chung, K.; Sakamoto, S.; Kojima, S.; Yeh, C.-M.; Ikeda, M.; Mitsuda, N.; Ohme-Takagi, M. The Chimeric Repressor for the GATA4 Transcription Factor Improves Tolerance to Nitrogen Deficiency in Arabidopsis. Plant Biotechnol. 2017, 34, 151–158. [Google Scholar] [CrossRef]
- Otani, M.; Aoyagi, K.; Nakano, M. Suppression of B Function by Chimeric Repressor Gene-Silencing Technology (CRES-T) Reduces the Petaloid Tepal Identity in Transgenic Lilium sp. PLoS ONE 2020, 15, e0237176. [Google Scholar] [CrossRef]
- De Haan, G.; Chusacultanachai, S.; Mao, C.; Katzenellenbogen, B.S.; Shapiro, D.J. Estrogen Receptor-KRAB Chimeras are Potent Ligand-Dependent Repressors of Estrogen-Regulated Gene Expression. J. Biol. Chem. 2000, 275, 13493–13501. [Google Scholar] [CrossRef]
- Klemm, J.D.; Schreiber, S.L.; Crabtree, G.R. Dimerization as a Regulatory Mechanism in Signal Transduction. Annu. Rev. Immunol. 1998, 16, 569–592. [Google Scholar] [CrossRef]
- Perk, J.; Iavarone, A.; Benezra, R. Id Family of Helix-Loop-Helix Proteins in Cancer. Nat. Rev. Cancer 2005, 5, 603–614. [Google Scholar] [CrossRef]
- Amoutzias, G.D.; Robertson, D.L.; Van De Peer, Y.; Oliver, S.G. Choose Your Partners: Dimerization in Eukaryotic Transcription Factors. Trends Biochem. Sci. 2008, 33, 220–229. [Google Scholar] [CrossRef]
- Seo, P.J.; Hong, S.-Y.; Kim, S.-G.; Park, C.-M. Competitive Inhibition of Transcription Factors by Small Interfering Peptides. Trends Plant Sci. 2011, 16, 541–549. [Google Scholar] [CrossRef]
- Kim, Y.-S.; Kim, S.-G.; Lee, M.; Lee, I.; Park, H.-Y.; Seo, P.J.; Jung, J.-H.; Kwon, E.-J.; Suh, S.W.; Paek, K.-H.; et al. HD-ZIP III Activity is Modulated by Competitive Inhibitors via a Feedback Loop in Arabidopsis Shoot Apical Meristem Development. Plant Cell 2008, 20, 920–933. [Google Scholar] [CrossRef]
- Wenkel, S.; Emery, J.; Hou, B.-H.; Evans, M.M.S.; Barton, M.K. A Feedback Regulatory Module Formed by Little Zipper and HD-ZIPIII Genes. Plant Cell 2007, 19, 3379–3390. [Google Scholar] [CrossRef]
- Liscum, E.; Reed, J.W. Genetics of Aux/IAA and ARF Action in Plant Growth and Development. Plant Mol. Biol. 2002, 49, 387–400. [Google Scholar] [CrossRef]
- Weijers, D.; Benkova, E.; Jäger, K.E.; Schlereth, A.; Hamann, T.; Kientz, M.; Wilmoth, J.C.; Reed, J.W.; Jürgens, G. Developmental Specificity of Auxin Response by Pairs of ARF and Aux/IAA Transcriptional Regulators. EMBO J. 2005, 24, 1874–1885. [Google Scholar] [CrossRef]
- Szemenyei, H.; Hannon, M.; Long, J.A. TOPLESS Mediates Auxin-Dependent Transcriptional Repression During Arabidopsis Embryogenesis. Science 2008, 319, 1384–1386. [Google Scholar] [CrossRef]
- Ploense, S.E.; Wu, M.-F.; Nagpal, P.; Reed, J.W. A Gain-of-Function Mutation in IAA18 Alters Arabidopsis Embryonic Apical Patterning. Development 2009, 136, 1509–1517. [Google Scholar] [CrossRef]
- Hu, W.; Ma, H. Characterization of a Novel Putative Zinc Finger Gene MIF1: Involvement in Multiple Hormonal Regulation of Arabidopsis Development. Plant J. 2006, 45, 399–422. [Google Scholar] [CrossRef]
- Hong, S.-Y.; Kim, O.-K.; Kim, S.-G.; Yang, M.-S.; Park, C.-M. Nuclear Import and DNA Binding of the ZHD5 Transcription Factor is Modulated by a Competitive Peptide Inhibitor in Arabidopsis. J. Biol. Chem. 2011, 286, 1659–1668. [Google Scholar] [CrossRef]
- Sorolla, A.; Wang, E.; Golden, E.; Duffy, C.; Henriques, S.T.; Redfern, A.D.; Blancafort, P. Precision Medicine by Designer Interference Peptides: Applications in Oncology and Molecular Therapeutics. Oncogene 2020, 39, 1167–1184. [Google Scholar] [CrossRef]
- Deisseroth, K. Optogenetics. Nat. Methods 2011, 8, 26–29. [Google Scholar] [CrossRef]
- Adamantidis, A.R.; Tsai, H.-C.; Boutrel, B.; Zhang, F.; Stuber, G.D.; Budygin, E.A.; Tourino, C.; Bonci, A.; Deisseroth, K.; De Lecea, L. Optogenetic Interrogation of Dopaminergic Modulation of the Multiple Phases of Reward-Seeking Behavior. J. Neurosci. 2011, 31, 10829–10835. [Google Scholar] [CrossRef]
- Shcherbakova, D.M.; Shemetov, A.A.; Kaberniuk, A.A.; Verkhusha, V.V. Natural Photoreceptors as a Source of Fluorescent Proteins, Biosensors, and Optogenetic Tools. Annu. Rev. Biochem. 2015, 84, 519–550. [Google Scholar] [CrossRef]
- Hartsough, L.A.; Park, M.; Kotlajich, M.V.; Lazar, J.T.; Han, B.; Lin, C.-C.J.; Musteata, E.; Gambill, L.; Wang, M.C.; Tabor, J.J. Optogenetic Control of Gut Bacterial Metabolism to Promote Longevity. eLife 2020, 9, e56849. [Google Scholar] [CrossRef]
- Kitajima, K.; Kawahira, N.; Lee, S.; Tamura, K.; Morishita, Y.; Ohtsuka, D. Light-induced Local Gene Expression in Primary Chick Cell Culture System. Dev. Growth Differ. 2021, 63, 189–198. [Google Scholar] [CrossRef]
- Li, T.; Chen, X.; Qian, Y.; Shao, J.; Li, X.; Liu, S.; Zhu, L.; Zhao, Y.; Ye, H.; Yang, Y. A Synthetic BRET-Based Optogenetic Device for Pulsatile Transgene Expression Enabling Glucose Homeostasis in Mice. Nat. Commun. 2021, 12, 615. [Google Scholar] [CrossRef]
- Yang, C.; Cui, M.; Zhang, Y.; Pan, H.; Liu, J.; Wang, S.; Ma, N.; Chang, J.; Sun, T.; Wang, H. Upconversion Optogenetic Micro-Nanosystem Optically Controls the Secretion of Light-Responsive Bacteria for Systemic Immunity Regulation. Commun. Biol. 2020, 3, 561. [Google Scholar] [CrossRef]
- Chernov, K.G.; Redchuk, T.A.; Omelina, E.S.; Verkhusha, V.V. Near-Infrared Fluorescent Proteins, Biosensors, and Optogenetic Tools Engineered from Phytochromes. Chem. Rev. 2017, 117, 6423–6446. [Google Scholar] [CrossRef]
- Ochoa-Fernandez, R.; Abel, N.B.; Wieland, F.-G.; Schlegel, J.; Koch, L.-A.; Miller, J.B.; Engesser, R.; Giuriani, G.; Brandl, S.M.; Timmer, J.; et al. Optogenetic Control of Gene Expression in Plants in the Presence of Ambient White Light. Nat. Methods 2020, 17, 717–725. [Google Scholar] [CrossRef] [PubMed]
- Motta-Mena, L.B.; Reade, A.; Mallory, M.J.; Glantz, S.; Weiner, O.D.; Lynch, K.W.; Gardner, K.H. An Optogenetic Gene Expression System with Rapid Activation and Deactivation Kinetics. Nat. Chem. Biol. 2014, 10, 196–202. [Google Scholar] [CrossRef]
- Redchuk, T.A.; Omelina, E.S.; Chernov, K.G.; Verkhusha, V.V. Near-Infrared Optogenetic Pair for Protein Regulation and Spectral Multiplexing. Nat. Chem. Biol. 2017, 13, 633–639. [Google Scholar] [CrossRef]
- Bonger, K.M.; Rakhit, R.; Payumo, A.Y.; Chen, J.K.; Wandless, T.J. General Method for Regulating Protein Stability with Light. ACS Chem. Biol. 2014, 9, 111–115. [Google Scholar] [CrossRef]
- Ngwa, C.J.; Farrukh, A.; Pradel, G. Zinc Finger Proteins of Plasmodium falciparum. Cell. Microbiol. 2021, 23, e13387. [Google Scholar] [CrossRef] [PubMed]
- Beerli, R.R.; Barbas, C.F. Engineering Polydactyl Zinc-Finger Transcription Factors. Nat. Biotechnol. 2002, 20, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Wolf, G.; Greenberg, D.; Macfarlan, T.S. Spotting the Enemy within: Targeted Silencing of Foreign DNA in Mammalian Genomes by the Krüppel-Associated Box Zinc Finger Protein Family. Mob. DNA 2015, 6, 17. [Google Scholar] [CrossRef]
- Emerson, R.O.; Thomas, J.H. Adaptive Evolution in Zinc Finger Transcription Factors. PLoS Genet. 2009, 5, e1000325. [Google Scholar] [CrossRef]
- Liu, Q.; Segal, D.J.; Ghiara, J.B.; Barbas, C.F. Design of Polydactyl Zinc-Finger Proteins for Unique Addressing within Complex Genomes. Proc. Natl. Acad. Sci. USA 1997, 94, 5525–5530. [Google Scholar] [CrossRef]
- Beerli, R.R.; Segal, D.J.; Dreier, B.; Barbas, C.F. Toward Controlling Gene Expression at Will: Specific Regulation of the erbB-2/HER-2 Promoter by Using Polydactyl Zinc Finger Proteins Constructed from Modular Building Blocks. Proc. Natl. Acad. Sci. USA 1998, 95, 14628–14633. [Google Scholar] [CrossRef]
- Beerli, R.R.; Dreier, B.; Barbas, C.F. Positive and Negative Regulation of Endogenous Genes by Designed Transcription Factors. Proc. Natl. Acad. Sci. USA 2000, 97, 1495–1500. [Google Scholar] [CrossRef]
- Sander, J.D.; Reyon, D.; Maeder, M.L.; Foley, J.E.; Thibodeau-Beganny, S.; Li, X.; Regan, M.R.; Dahlborg, E.J.; Goodwin, M.J.; Fu, F.; et al. Predicting Success of Oligomerized Pool Engineering (OPEN) for Zinc Finger Target Site Sequences. BMC Bioinform. 2010, 11, 543. [Google Scholar] [CrossRef] [PubMed]
- Mackay, J.P.; Segal, D.J. (Eds.) Engineered Zinc Finger Proteins: Methods and Protocols; Methods in Molecular Biology; Humana Press: New York, NY, USA, 2010; ISBN 978-1-60761-752-5. [Google Scholar]
- Thibodeau-Beganny, S.; Keith Joung, J. Engineering Cys2His2 Zinc Finger Domains Using a Bacterial Cell-Based Two-Hybrid Selection System. In Gene Function Analysis; Ochs, M.F., Ed.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2007; Volume 408, pp. 317–334. ISBN 978-1-58829-734-1. [Google Scholar]
- Maeder, M.L.; Thibodeau-Beganny, S.; Sander, J.D.; Voytas, D.F.; Joung, J.K. Oligomerized Pool Engineering (OPEN): An “open-Source” Protocol for Making Customized Zinc-Finger Arrays. Nat. Protoc. 2009, 4, 1471–1501. [Google Scholar] [CrossRef]
- Guan, X.; Stege, J.; Kim, M.; Dahmani, Z.; Fan, N.; Heifetz, P.; Barbas, C.F.; Briggs, S.P. Heritable Endogenous Gene Regulation in Plants with Designed Polydactyl Zinc Finger Transcription Factors. Proc. Natl. Acad. Sci. USA 2002, 99, 13296–13301. [Google Scholar] [CrossRef]
- Sánchez, J.P.; Ullman, C.; Moore, M.; Choo, Y.; Chua, N. Regulation of Arabidopsis Thaliana 4-coumarate:coenzyme-A Ligase-1 Expression by Artificial Zinc Finger Chimeras. Plant Biotechnol. J. 2006, 4, 103–114. [Google Scholar] [CrossRef]
- Johnson, L.M.; Du, J.; Hale, C.J.; Bischof, S.; Feng, S.; Chodavarapu, R.K.; Zhong, X.; Marson, G.; Pellegrini, M.; Segal, D.J.; et al. SRA- and SET-Domain-Containing Proteins Link RNA Polymerase V Occupancy to DNA Methylation. Nature 2014, 507, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Snowden, A.W.; Gregory, P.D.; Case, C.C.; Pabo, C.O. Gene-Specific Targeting of H3K9 Methylation is Sufficient for Initiating Repression In Vivo. Curr. Biol. 2002, 12, 2159–2166. [Google Scholar] [CrossRef]
- Siddique, A.N.; Nunna, S.; Rajavelu, A.; Zhang, Y.; Jurkowska, R.Z.; Reinhardt, R.; Rots, M.G.; Ragozin, S.; Jurkowski, T.P.; Jeltsch, A. Targeted Methylation and Gene Silencing of VEGF-A in Human Cells by Using a Designed Dnmt3a–Dnmt3L Single-Chain Fusion Protein with Increased DNA Methylation Activity. J. Mol. Biol. 2013, 425, 479–491. [Google Scholar] [CrossRef]
- Rivenbark, A.G.; Stolzenburg, S.; Beltran, A.S.; Yuan, X.; Rots, M.G.; Strahl, B.D.; Blancafort, P. Epigenetic Reprogramming of Cancer Cells via Targeted DNA Methylation. Epigenetics 2012, 7, 350–360. [Google Scholar] [CrossRef]
- Li, F.; Papworth, M.; Minczuk, M.; Rohde, C.; Zhang, Y.; Ragozin, S.; Jeltsch, A. Chimeric DNA Methyltransferases Target DNA Methylation to Specific DNA Sequences and Repress Expression of Target Genes. Nucleic Acids Res. 2007, 35, 100–112. [Google Scholar] [CrossRef] [PubMed]
- Garriga-Canut, M.; Agustín-Pavón, C.; Herrmann, F.; Sánchez, A.; Dierssen, M.; Fillat, C.; Isalan, M. Synthetic Zinc Finger Repressors Reduce Mutant Huntingtin Expression in the Brain of R6/2 Mice. Proc. Natl. Acad. Sci. USA 2012, 109, E3136–E3145. [Google Scholar] [CrossRef] [PubMed]
- Zeitler, B.; Froelich, S.; Marlen, K.; Shivak, D.A.; Yu, Q.; Li, D.; Pearl, J.R.; Miller, J.C.; Zhang, L.; Paschon, D.E.; et al. Allele-Selective Transcriptional Repression of Mutant HTT for the Treatment of Huntington’s Disease. Nat. Med. 2019, 25, 1131–1142. [Google Scholar] [CrossRef] [PubMed]
- Lei, H.; Sun, J.; Baldwin, E.P.; Segal, D.J.; Duan, Y. Conformational Elasticity Can Facilitate TALE–DNA Recognition. In Advances in Protein Chemistry and Structural Biology; Elsevier: Amsterdam, The Netherlands, 2014; Volume 94, pp. 347–364. ISBN 978-0-12-800168-4. [Google Scholar]
- Omelina, E.S.; Pindyurin, A.V. Optogenetic Regulation of Endogenous Gene Transcription in Mammals. Vestn. VOGiS 2019, 23, 219–225. [Google Scholar] [CrossRef]
- Kay, S.; Boch, J.; Bonas, U. Characterization of AvrBs3-Like Effectors from a Brassicaceae Pathogen Reveals Virulence and Avirulence Activities and a Protein with a Novel Repeat Architecture. Mol. Plant-Microbe Interact. 2005, 18, 838–848. [Google Scholar] [CrossRef] [PubMed]
- Mahfouz, M.M.; Li, L.; Piatek, M.; Fang, X.; Mansour, H.; Bangarusamy, D.K.; Zhu, J.-K. Targeted Transcriptional Repression Using a Chimeric TALE-SRDX Repressor Protein. Plant Mol. Biol. 2012, 78, 311–321. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wu, E.; Qian, Z.; Wu, W.S. A Multicolor Panel of TALE-KRAB Based Transcriptional Repressor Vectors Enabling Knockdown of Multiple Gene Targets. Sci. Rep. 2014, 4, 7338. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Moore, R.; Guinn, M.; Bleris, L. Transcription Activator-like Effector Hybrids for Conditional Control and Rewiring of Chromosomal Transgene Expression. Sci. Rep. 2012, 2, 897. [Google Scholar] [CrossRef]
- Garg, A.; Lohmueller, J.J.; Silver, P.A.; Armel, T.Z. Engineering Synthetic TAL Effectors with Orthogonal Target Sites. Nucleic Acids Res. 2012, 40, 7584–7595. [Google Scholar] [CrossRef]
- Masuda, J.; Kawamoto, H.; Strober, W.; Takayama, E.; Mizutani, A.; Murakami, H.; Ikawa, T.; Kitani, A.; Maeno, N.; Shigehiro, T.; et al. Transient Tcf3 Gene Repression by TALE-Transcription Factor Targeting. Appl. Biochem. Biotechnol. 2016, 180, 1559–1573. [Google Scholar] [CrossRef]
- Uhde-Stone, C.; Cheung, E.; Lu, B. TALE Activators Regulate Gene Expression in a Position- and Strand-Dependent Manner in Mammalian Cells. Biochem. Biophys. Res. Commun. 2014, 443, 1189–1194. [Google Scholar] [CrossRef] [PubMed]
- Konermann, S.; Brigham, M.D.; Trevino, A.E.; Hsu, P.D.; Heidenreich, M.; Le, C.; Platt, R.J.; Scott, D.A.; Church, G.M.; Zhang, F. Optical Control of Mammalian Endogenous Transcription and Epigenetic States. Nature 2013, 500, 472–476. [Google Scholar] [CrossRef] [PubMed]
- Leben, K.; Strmšek, Ž.; Lebar, T.; Verbič, A.; Dragovan, M.; Omersa, N.; Anderluh, G.; Jerala, R. Binding of the Transcription Activator-like Effector Augments Transcriptional Regulation by Another Transcription Factor. Nucleic Acids Res. 2022, 50, 6562–6574. [Google Scholar] [CrossRef] [PubMed]
- Barrangou, R. The Roles of CRISPR–Cas Systems in Adaptive Immunity and Beyond. Curr. Opin. Immunol. 2015, 32, 36–41. [Google Scholar] [CrossRef]
- Redman, M.; King, A.; Watson, C.; King, D. What Is CRISPR/Cas9? Arch. Dis. Child. -Educ. Pract. 2016, 101, 213–215. [Google Scholar] [CrossRef] [PubMed]
- Hille, F.; Richter, H.; Wong, S.P.; Bratovič, M.; Ressel, S.; Charpentier, E. The Biology of CRISPR-Cas: Backward and Forward. Cell 2018, 172, 1239–1259. [Google Scholar] [CrossRef] [PubMed]
- Heler, R.; Samai, P.; Modell, J.W.; Weiner, C.; Goldberg, G.W.; Bikard, D.; Marraffini, L.A. Cas9 Specifies Functional Viral Targets during CRISPR–Cas Adaptation. Nature 2015, 519, 199–202. [Google Scholar] [CrossRef] [PubMed]
- Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J.A.; Charpentier, E. A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science 2012, 337, 816–821. [Google Scholar] [CrossRef]
- Harrison, M.M.; Jenkins, B.V.; O’Connor-Giles, K.M.; Wildonger, J. A CRISPR View of Development. Genes Dev. 2014, 28, 1859–1872. [Google Scholar] [CrossRef]
- Qi, L.S.; Larson, M.H.; Gilbert, L.A.; Doudna, J.A.; Weissman, J.S.; Arkin, A.P.; Lim, W.A. Repurposing CRISPR as an RNA-Guided Platform for Sequence-Specific Control of Gene Expression. Cell 2013, 152, 1173–1183. [Google Scholar] [CrossRef]
- Okada, K.; Aoki, K.; Tabei, T.; Sugio, K.; Imai, K.; Bonkohara, Y.; Kamachi, Y. Key Sequence Features of CRISPR RNA for Dual-Guide CRISPR-Cas9 Ribonucleoprotein Complexes Assembled with Wild-Type or HiFi Cas9. Nucleic Acids Res. 2022, 50, 2854–2871. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L.A.; Horlbeck, M.A.; Adamson, B.; Villalta, J.E.; Chen, Y.; Whitehead, E.H.; Guimaraes, C.; Panning, B.; Ploegh, H.L.; Bassik, M.C.; et al. Genome-Scale CRISPR-Mediated Control of Gene Repression and Activation. Cell 2014, 159, 647–661. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, L.A.; Larson, M.H.; Morsut, L.; Liu, Z.; Brar, G.A.; Torres, S.E.; Stern-Ginossar, N.; Brandman, O.; Whitehead, E.H.; Doudna, J.A.; et al. CRISPR-Mediated Modular RNA-Guided Regulation of Transcription in Eukaryotes. Cell 2013, 154, 442–451. [Google Scholar] [CrossRef]
- Choudhary, E.; Thakur, P.; Pareek, M.; Agarwal, N. Gene Silencing by CRISPR Interference in Mycobacteria. Nat. Commun. 2015, 6, 6267. [Google Scholar] [CrossRef]
- Lin, S.; Ewen-Campen, B.; Ni, X.; Housden, B.E.; Perrimon, N. In Vivo Transcriptional Activation Using CRISPR/Cas9 in Drosophila. Genetics 2015, 201, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, L.; Xie, K. CRISPR/dCas9-Mediated Gene Silencing in Two Plant Fungal Pathogens. mSphere 2023, 8, e00594-22. [Google Scholar] [CrossRef]
- Karlson, C.K.S.; Mohd-Noor, S.N.; Nolte, N.; Tan, B.C. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. Plants 2021, 10, 2055. [Google Scholar] [CrossRef]
- Smith, J.D.; Suresh, S.; Schlecht, U.; Wu, M.; Wagih, O.; Peltz, G.; Davis, R.W.; Steinmetz, L.M.; Parts, L.; St.Onge, R.P. Quantitative CRISPR Interference Screens in Yeast Identify Chemical-Genetic Interactions and New Rules for Guide RNA Design. Genome Biol. 2016, 17, 45. [Google Scholar] [CrossRef]
- Zetsche, B.; Gootenberg, J.S.; Abudayyeh, O.O.; Slaymaker, I.M.; Makarova, K.S.; Essletzbichler, P.; Volz, S.E.; Joung, J.; van der Oost, J.; Regev, A.; et al. Cpf1 is a Single RNA-Guided Endonuclease of a Class 2 CRISPR-Cas System. Cell 2015, 163, 759–771. [Google Scholar] [CrossRef]
- Yamano, T.; Nishimasu, H.; Zetsche, B.; Hirano, H.; Slaymaker, I.M.; Li, Y.; Fedorova, I.; Nakane, T.; Makarova, K.S.; Koonin, E.V.; et al. Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell 2016, 165, 949–962. [Google Scholar] [CrossRef]
- Swarts, D.C.; Jinek, M. Mechanistic Insights into the Cis- and Trans-Acting DNase Activities of Cas12a. Mol. Cell 2019, 73, 589–600.e4. [Google Scholar] [CrossRef]
- Zhang, L.; Sun, R.; Yang, M.; Peng, S.; Cheng, Y.; Chen, C. Conformational Dynamics and Cleavage Sites of Cas12a are Modulated by Complementarity between crRNA and DNA. iScience 2019, 19, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Pickar-Oliver, A.; Gersbach, C.A. The next Generation of CRISPR–Cas Technologies and Applications. Nat. Rev. Mol. Cell Biol. 2019, 20, 490–507. [Google Scholar] [CrossRef] [PubMed]
- Gentzel, I.N.; Park, C.H.; Bellizzi, M.; Xiao, G.; Gadhave, K.R.; Murphree, C.; Yang, Q.; LaMantia, J.; Redinbaugh, M.G.; Balint-Kurti, P.; et al. A CRISPR/dCas9 Toolkit for Functional Analysis of Maize Genes. Plant Methods 2020, 16, 133. [Google Scholar] [CrossRef] [PubMed]
- Piatek, A.; Ali, Z.; Baazim, H.; Li, L.; Abulfaraj, A.; Al-Shareef, S.; Aouida, M.; Mahfouz, M.M. RNA-guided Transcriptional Regulation in Planta via Synthetic dCas9-based Transcription Factors. Plant Biotechnol. J. 2015, 13, 578–589. [Google Scholar] [CrossRef] [PubMed]
- Lowder, L.G.; Paul, J.W.; Qi, Y. Multiplexed Transcriptional Activation or Repression in Plants Using CRISPR-dCas9-Based Systems. In Plant Gene Regulatory Networks; Kaufmann, K., Mueller-Roeber, B., Eds.; Methods in Molecular Biology; Springer: New York, NY, USA, 2017; Volume 1629, pp. 167–184. ISBN 978-1-4939-7124-4. [Google Scholar]
- Tang, X.; Lowder, L.G.; Zhang, T.; Malzahn, A.A.; Zheng, X.; Voytas, D.F.; Zhong, Z.; Chen, Y.; Ren, Q.; Li, Q.; et al. A CRISPR–Cpf1 System for Efficient Genome Editing and Transcriptional Repression in Plants. Nat. Plants 2017, 3, 17018. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Sun, B.; Liu, S.; Gao, X.; Zhou, H.; Li, F.; Li, Y. The Evaluation of Active Transcriptional Repressor Domain for CRISPRi in Plants. Gene 2023, 851, 146967. [Google Scholar] [CrossRef] [PubMed]
- Rauch, B.J.; Silvis, M.R.; Hultquist, J.F.; Waters, C.S.; McGregor, M.J.; Krogan, N.J.; Bondy-Denomy, J. Inhibition of CRISPR-Cas9 with Bacteriophage Proteins. Cell 2017, 168, 150–158.e10. [Google Scholar] [CrossRef] [PubMed]
- Calvache, C.; Vazquez-Vilar, M.; Selma, S.; Uranga, M.; Fernández-del-Carmen, A.; Daròs, J.; Orzáez, D. Strong and Tunable anti-CRISPR/Cas Activities in Plants. Plant Biotechnol. J. 2022, 20, 399–408. [Google Scholar] [CrossRef]
- Ghosh, S.; Tibbit, C.; Liu, J.-L. Effective Knockdown of Drosophila Long Non-Coding RNAs by CRISPR Interference. Nucleic Acids Res. 2016, 44, e84. [Google Scholar] [CrossRef]
- Smith, I.; Greenside, P.G.; Natoli, T.; Lahr, D.L.; Wadden, D.; Tirosh, I.; Narayan, R.; Root, D.E.; Golub, T.R.; Subramanian, A.; et al. Evaluation of RNAi and CRISPR Technologies by Large-Scale Gene Expression Profiling in the Connectivity Map. PLoS Biol. 2017, 15, e2003213. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Marla, S.; Zheng, W.; Mishra, D.; Huang, J.; Zhang, W.; Morris, G.P.; Cook, D.E. CRISPR Guides Induce Gene Silencing in Plants in the Absence of Cas. Genome Biol. 2022, 23, 6. [Google Scholar] [CrossRef] [PubMed]
- Tian, P.; Wang, J.; Shen, X.; Rey, J.F.; Yuan, Q.; Yan, Y. Fundamental CRISPR-Cas9 Tools and Current Applications in Microbial Systems. Synth. Syst. Biotechnol. 2017, 2, 219–225. [Google Scholar] [CrossRef]
- Minkenberg, B.; Wheatley, M.; Yang, Y. CRISPR/Cas9-Enabled Multiplex Genome Editing and Its Application. In Progress in Molecular Biology and Translational Science; Elsevier: Amsterdam, The Netherlands, 2017; Volume 149, pp. 111–132. ISBN 978-0-12-811743-9. [Google Scholar]
Feature | RNAi | Gal4/UAS | Chimeric TFs | Optogenetic Systems | ZFPs | TALEs | CRISPRi |
---|---|---|---|---|---|---|---|
Off-target effects’ probability | high | low | low | low | medium | low | low |
Off-target space | transcriptome | nearby genes | nearby genes | nearby genes | genome, nearby genes | nearby genes | genome, nearby genes |
Ease of experiment design | easy | easy | moderate | moderate | difficult | difficult | moderate |
Repression efficiency | often low in animals | high | high | high | high | high | high |
Ability to repress multiple genes | moderate | low | low | low | low | low | high |
Application in plants | possible | possible | possible | has limitations due to nonspecific activation under ambient light | possible | possible | has limitations due to gRNA-mediated Cas-independent gene silencing |
Application in animals | has a risk of immune response | possible | uncontrollable activity of chimeric TFs may cause adverse effects | has limitations in whole organisms due to low penetration depth of short-wavelength light | possible | possible | possible |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motorina, D.M.; Galimova, Y.A.; Battulina, N.V.; Omelina, E.S. Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals. Int. J. Mol. Sci. 2024, 25, 5231. https://doi.org/10.3390/ijms25105231
Motorina DM, Galimova YA, Battulina NV, Omelina ES. Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals. International Journal of Molecular Sciences. 2024; 25(10):5231. https://doi.org/10.3390/ijms25105231
Chicago/Turabian StyleMotorina, Daria M., Yuliya A. Galimova, Nadezhda V. Battulina, and Evgeniya S. Omelina. 2024. "Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals" International Journal of Molecular Sciences 25, no. 10: 5231. https://doi.org/10.3390/ijms25105231
APA StyleMotorina, D. M., Galimova, Y. A., Battulina, N. V., & Omelina, E. S. (2024). Systems for Targeted Silencing of Gene Expression and Their Application in Plants and Animals. International Journal of Molecular Sciences, 25(10), 5231. https://doi.org/10.3390/ijms25105231