The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders
Abstract
:1. Introduction
1.1. Mood and Anxiety Disorders
Goal of the Study | Methods of 5-HT4 Receptor Investigation | Models | Main Results | Reference | |
---|---|---|---|---|---|
5-HT4 receptor polymorphism | Polymorphism | Bipolar or depressed individuals | C-terminal region linked to mood disorders * | [71] | |
Major depressed individuals | Genotype GG of rs1345697 polymorphism associated with lower remission rates | [72] | |||
5-HT4 receptor expression | Binding assays | Violent suicide human victims | in frontal cortex * | [65] | |
in caudate nucleus * | |||||
Autoradiography | Rat depression model | in the hippocampus | [35] | ||
in hippocampus and basal ganglia under chronic paroxetine | |||||
in hippocampus, hypothalamus, and lateral globus pallidus after 5-HT depletion | |||||
Mouse depression models | in ventral hippocampus | [50] | |||
in caudal caudate putamen | |||||
Deletion | KO mouse | Attenuation of “dematuration” of hippocampal granule cells | [58] | ||
Anxiety and anhedonia induced and responses to antidepressant impacted | [54] | ||||
qRT-PCR, Western blot | Rat depression models | in hippocampus associated with anhedonia | [49] | ||
qRT-PCR | Casein kinase 2 KO mouse | in prefrontal cortex associated with anti-depressant-like phenotype | [55] | ||
In situ hybridization | KO mouse | Fluoxetine-induced neurogenesis abolished | [61] | ||
Overexpression | Mouse | Anti-depressant-like phenotype | [55] | ||
PET imaging | Healthy individuals | in striatum and limbic regions negatively correlated with number of first-degree relatives treated for major depression | [66] | ||
Positive correlation with high trait aggression, only in males | [70] | ||||
Anxious and depressed individuals | in global brain | [68] | |||
Depressed individuals | Negative correlation with concomitant anxiety * | [69] | |||
in global brain * | [67] | ||||
5-HT4 receptor modulation | 5-HT4 receptor agonist | Rat depression models | Depressive-like behavioral responses | [52] | |
Rat | Depressive- and anxiety-like behavioral responses | [57] | |||
Rat model of Parkinson’s disease | Depressive-like behavioral responses | [56] | |||
KO mouse | Antidepressant behavioral responses | [53] |
1.2. Cognitive Disorders
1.3. Movement Disorders
1.4. Food Disorders
1.5. Other Brain Disorders
1.6. Gastrointestinal Disorders
2. Conclusions
Funding
Conflicts of Interest
References
- Gutknecht, L.; Kriegebaum, C.; Waider, J.; Schmitt, A.; Lesch, K.-P. Spatiotemporal expression of tryptophan hydroxylase isoforms in murine and human brain: Convergent data from Tph2 knockout mice. Eur. Neuropsychopharmacol. 2009, 19, 266–282. [Google Scholar] [CrossRef] [PubMed]
- Walther, D.J.; Bader, M. A unique central tryptophan hydroxylase isoform. Biochem. Pharmacol. 2003, 66, 1673–1680. [Google Scholar] [CrossRef]
- Dahlström, A.; Fuxe, K. Localization of monoamines in the lower brain stem. Experientia 1964, 20, 398–399. [Google Scholar] [CrossRef] [PubMed]
- Hornung, J.P. The human raphe nuclei and the serotonergic system. J. Chem. Neuroanat. 2003, 26, 331–343. [Google Scholar] [CrossRef]
- Bjarkam, C.R.; Sørensen, J.C.; Geneser, F.A. Distribution and morphology of serotonin-immunoreactive neurons in the brainstem of the New Zealand white rabbit. J. Comp. Neurol. 1997, 380, 507–519. [Google Scholar] [CrossRef]
- Soares, J.G.; Cavalcanti, J.R.L.P.; Oliveira, F.G.; Pontes, A.L.B.; Sousa, T.B.; Freitas, L.M.; Cavalcante, J.S.; Nascimento, E.S.; Cavalcante, J.C.; Costa, M.S.M.O. Nuclear organization of the serotonergic system in the brain of the rock cavy (Kerodon rupestris). J. Chem. Neuroanat. 2012, 43, 112–119. [Google Scholar] [CrossRef]
- Azmitia, E.C.; Segal, M. An autoradiographic analysis of the differential ascending projections of the dorsal and median raphe nuclei in the rat. J. Comp. Neurol. 1978, 179, 641–667. [Google Scholar] [CrossRef]
- Michelsen, K.A.; Schmitz, C.; Steinbusch, H.W.M. The dorsal raphe nucleus- from silver stainings to a role in depression. Brain Res. Rev. 2007, 55, 329–342. [Google Scholar] [CrossRef] [PubMed]
- McQuade, R.; Sharp, T. Functional mapping of dorsal and median raphe 5-hydroxytryptamine pathways in forebrain of the rat using microdialysis. J. Neurochem. 1997, 69, 791–796. [Google Scholar] [CrossRef]
- McQuade, R.; Sharp, T. Release of cerebral 5-hydroxytryptamine evoked by electrical stimulation of the dorsal and median raphe nuclei: Effect of a neurotoxic amphetamine. Neuroscience 1995, 68, 1079–1088. [Google Scholar] [CrossRef]
- Jacobs, B.L.; Azmitia, E.C. Structure and function of the brain serotonin system. Physiol. Rev. 1992, 72, 165–229. [Google Scholar] [CrossRef] [PubMed]
- Abrams, J.K.; Johnson, P.L.; Hollis, J.H.; Lowry, C.A. Anatomic and functional topography of the dorsal raphe nucleus. Ann. N. Y. Acad. Sci. 2004, 1018, 46–57. [Google Scholar] [CrossRef] [PubMed]
- Berger, M.; Gray, J.A.; Roth, B.L. The expanded biology of serotonin. Annu. Rev. Med. 2009, 60, 355–366. [Google Scholar] [CrossRef] [PubMed]
- Fidalgo, S.; Ivanov, D.K.; Wood, S.H. Serotonin: From top to bottom. Biogerontology 2013, 14, 21–45. [Google Scholar] [CrossRef] [PubMed]
- Kroeze, W.K.; Kristiansen, K.; Roth, B.L. Molecular biology of serotonin receptors structure and function at the molecular level. Curr. Top. Med. Chem. 2002, 2, 507–528. [Google Scholar] [CrossRef] [PubMed]
- Nichols, D.E.; Nichols, C.D. Serotonin receptors. Chem. Rev. 2008, 108, 1614–1641. [Google Scholar] [CrossRef] [PubMed]
- Compan, V.; Laurent, L.; Jean, A.; Macary, C.; Bockaert, J.; Dumuis, A. Serotonin signaling in eating disorders. Wiley Interdiscip. Rev. Membr. Transp. Signal 2012, 1, 715–729. [Google Scholar] [CrossRef]
- Mengod, G.; Vilaró, M.T.; Raurich, A.; López-Giménez, J.F.; Cortés, R.; Palacios, J.M. 5-HT receptors in mammalian brain: Receptor autoradiography and in situ hybridization studies of new ligands and newly identified receptors. Histochem. J. 1996, 28, 747–758. [Google Scholar] [CrossRef] [PubMed]
- Bockaert, J.; Claeysen, S.; Compan, V.; Dumuis, A. 5-HT(4) receptors: History, molecular pharmacology and brain functions. Neuropharmacology 2008, 55, 922–931. [Google Scholar] [CrossRef]
- Rebholz, H.; Friedman, E.; Castello, J. Alterations of Expression of the Serotonin 5-HT4 Receptor in Brain Disorders. Int. J. Mol. Sci. 2018, 19, 3581. [Google Scholar] [CrossRef]
- Roux, C.M.; Leger, M.; Freret, T. Memory Disorders Related to Hippocampal Function: The Interest of 5-HT4Rs Targeting. Int. J. Mol. Sci. 2021, 22, 12082. [Google Scholar] [CrossRef] [PubMed]
- Dumuis, A.; Bouhelal, R.; Sebben, M.; Cory, R.; Bockaert, J. A nonclassical 5-hydroxytryptamine receptor positively coupled with adenylate cyclase in the central nervous system. Mol. Pharmacol. 1988, 34, 880–887. [Google Scholar] [PubMed]
- Gerald, C.; Adham, N.; Kao, H.T.; Olsen, M.A.; Laz, T.M.; Schechter, L.E.; Bard, J.A.; Vaysse, P.J.; Hartig, P.R.; Branchek, T.A.; et al. The 5-ht4 receptor: Molecular cloning and pharmacological characterization of two splice variants. EMBO J. 1995, 14, 2806–2815. [Google Scholar] [CrossRef] [PubMed]
- Barthet, G.; Gaven, F.; Framery, B.; Shinjo, K.; Nakamura, T.; Claeysen, S.; Bockaert, J.; Dumuis, A. Uncoupling and endocytosis of 5-hydroxytryptamine 4 receptors. Distinct molecular events with different grk2 requirements. J. Biol. Chem. 2005, 280, 27924–27934. [Google Scholar] [CrossRef] [PubMed]
- Barthet, G.; Framery, B.; Gaven, F.; Pellissier, L.; Reiter, E.; Claeysen, S.; Bockaert, J.; Dumuis, A. 5-hydroxytryptamine 4 receptor activation of the extracellular signal-regulated kinase pathway depends on src activation but not on g protein or beta-arrestin signaling. Mol. Biol. Cell 2007, 18, 1979–1991. [Google Scholar] [CrossRef] [PubMed]
- Mitroshina, E.V.; Marasanova, E.A.; Vedunova, M.V. Functional Dimerization of Serotonin Receptors: Role in Health and Depressive Disorders. Int. J. Mol. Sci. 2023, 24, 16416. [Google Scholar] [CrossRef]
- Vilaró, M.T.; Cortés, R.; Mengod, G. Serotonin 5-HT4 receptors and their mRNAs in rat and guinea pig brain: Distribution and effects of neurotoxic lesions. J. Comp. Neurol. 2005, 484, 418–439. [Google Scholar] [CrossRef] [PubMed]
- Bonaventure, P.; Hall, H.; Gommeren, W.; Cras, P.; Langlois, X.; Jurzak, M.; Leysen, J.E. Mapping of serotonin 5-HT(4) receptor mRNA and ligand binding sites in the post-mortem human brain. Synapse 2000, 36, 35–46. [Google Scholar] [CrossRef]
- Beliveau, V.; Ganz, M.; Feng, L.; Ozenne, B.; Højgaard, L.; Fisher, P.M.; Svarer, C.; Greve, D.N.; Knudsen, G.M. A High-Resolution In Vivo Atlas of the Human Brain’s Serotonin System. J. Neurosci. 2017, 37, 120–128. [Google Scholar] [CrossRef]
- Sgambato-Faure, V.; Tremblay, L. Dopamine and serotonin modulation of motor and non-motor functions of the non-human primate striato-pallidal circuits in normal and pathological states. J. Neural Transm. 2018, 125, 485–500. [Google Scholar] [CrossRef]
- Waeber, C.; Sebben, M.; Nieoullon, A.; Bockaert, J.; Dumuis, A. Regional distribution and ontogeny of 5-HT4 binding sites in rodent brain. Neuropharmacology 1994, 33, 527–541. [Google Scholar] [CrossRef] [PubMed]
- Compan, V.; Daszuta, A.; Salin, P.; Sebben, M.; Bockaert, J.; Dumuis, A. Lesion study of the distribution of serotonin 5-HT4 receptors in rat basal ganglia and hippocampus. Eur. J. Neurosci. 1996, 8, 2591–2598. [Google Scholar] [CrossRef] [PubMed]
- Egeland, M.; Warner-Schmidt, J.; Greengard, P.; Svenningsson, P. Co-expression of serotonin 5-HT(1B) and 5-HT(4) receptors in p11 containing cells in cerebral cortex, hippocampus, caudate-putamen and cerebellum. Neuropharmacology 2011, 61, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Peñas-Cazorla, R.; Vilaró, M.T. Serotonin 5-HT4 receptors and forebrain cholinergic system: Receptor expression in identified cell populations. Brain Struct. Funct. 2015, 220, 3413–3434. [Google Scholar] [CrossRef]
- Licht, C.L.; Marcussen, A.B.; Wegener, G.; Overstreet, D.H.; Aznar, S.; Knudsen, G.M. The brain 5-HT4 receptor binding is down-regulated in the Flinders Sensitive Line depression model and in response to paroxetine administration. J. Neurochem. 2009, 109, 1363–1374. [Google Scholar] [CrossRef] [PubMed]
- Vidal, R.; Valdizan, E.M.; Mostany, R.; Pazos, A.; Castro, E. Long-term treatment with fluoxetine induces desensitization of 5-HT4 receptor-dependent signalling and functionality in rat brain. J. Neurochem. 2009, 110, 1120–1127. [Google Scholar] [CrossRef] [PubMed]
- Jennings, K.A.; Licht, C.L.; Bruce, A.; Lesch, K.P.; Knudsen, G.M.; Sharp, T. Genetic variation in 5-hydroxytryptamine transporter expression causes adaptive changes in 5-HT4 receptor levels. Int. J. Neuropsychopharmacol. 2012, 15, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Fisher, P.M.; Holst, K.K.; Mc Mahon, B.; Haahr, M.E.; Madsen, K.; Gillings, N.; Baaré, W.F.; Jensen, P.S.; Knudsen, G.M. 5-HTTLPR status predictive of neocortical 5-HT4 binding assessed with [(11)C]SB207145 PET in humans. Neuroimage 2012, 62, 130–136. [Google Scholar] [CrossRef] [PubMed]
- Haahr, M.E.; Fisher, P.M.; Jensen, C.G.; Frokjaer, V.G.; Mahon, B.M.; Madsen, K.; Baaré, W.F.; Lehel, S.; Norremolle, A.; Rabiner, E.A.; et al. Central 5-HT4 receptor binding as biomarker of serotonergic tonus in humans: A [11C]SB207145 PET study. Mol. Psychiatry 2014, 19, 427–432. [Google Scholar] [CrossRef]
- Hegde, S.S.; Eglen, R.M. Peripheral 5-HT4 receptors. FASEB J. 1996, 10, 1398–1407. [Google Scholar] [CrossRef]
- Lucas, G.; Compan, V.; Charnay, Y.; Neve, R.L.; Nestler, E.J.; Bockaert, J.; Barrot, M.; Debonnel, G. Frontocortical 5-HT4 Receptors Exert Positive Feedback on Serotonergic Activity: Viral Transfections, Subacute and Chronic Treatments with 5-HT4 Agonists. Biol. Psychiatry 2005, 57, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Conductier, G.; Dusticier, N.; Lucas, G.; Côté, F.; Debonnel, G.; Daszuta, A.; Dumuis, A.; Nieoullon, A.; Hen, R.; Bockaert, J.; et al. Adaptive Changes in Serotonin Neurons of the Raphe Nuclei in 5-HT4 Receptor Knock-out Mouse. Eur. J. Neurosci. 2006, 24, 1053–1062. [Google Scholar] [CrossRef] [PubMed]
- Moha ou Maati, H.; Bourcier-Lucas, C.; Veyssiere, J.; Kanzari, A.; Heurteaux, C.; Borsotto, M.; Haddjeri, N.; Lucas, G. The Peptidic Antidepressant Spadin Interacts with Prefrontal 5-HT4 and MGluR2 Receptors in the Control of Serotonergic Function. Brain Struct. Funct. 2016, 221, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Ge, J.; Barnes, N.M. 5-HT4 receptor-mediated modulation of 5-HT release in the rat hippocampus in vivo. Br. J. Pharmacol. 1996, 117, 1475–1480. [Google Scholar] [CrossRef] [PubMed]
- Twarkowski, H.; Hagena, H.; Manahan-Vaughan, D. The 5-hydroxytryptamine 4 Receptor Enables Differentiation of Informational Content and Encoding in the Hippocampus. Hippocampus 2016, 26, 875–891. [Google Scholar] [CrossRef] [PubMed]
- Hatat, B.; Yahiaoui, S.; Lecoutey, C.; Davis, A.; Freret, T.; Boulouard, M.; Claeysen, S.; Rochais, C.; Dallemagne, P. A Novel invivo Anti-amnesic Agent, Specially Designed to Express Both Acetylcholinesterase (AChE) Inhibitory, Serotonergic Subtype 4 Receptor (5-HT4R) Agonist and Serotonergic Subtype 6 Receptor (5-HT6R) Inverse Agonist Activities, with a Potential Interest Against Alzheimer’s Disease. Front. Aging Neurosci. 2019, 11, 148. [Google Scholar] [PubMed]
- Consolo, S.; Arnaboldi, S.; Giorgi, S.; Russi, G.; Ladinsky, H. 5-HT4 receptor stimulation facilitates acetylcholine release in rat frontal cortex. Neuroreport 1994, 5, 1230–1232. [Google Scholar] [CrossRef] [PubMed]
- Steward, L.J.; Ge, J.; Stowe, R.L.; Brown, D.C.; Bruton, R.K.; Stokes, P.R.; Barnes, N.M. Ability of 5-HT4 receptor ligands to modulate rat striatal dopamine release in vitro and in vivo. Br. J. Pharmacol. 1996, 117, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Bai, M.; Zhu, X.-Z.; Zhang, Y.; Zhang, S.; Zhang, L.; Xue, L.; Zhong, M.; Zhang, X. Anhedonia Was Associated with the Dysregulation of Hippocampal HTR4 and MicroRNA Let-7a in Rats. Physiol. Behav. 2014, 129, 135–141. [Google Scholar] [CrossRef]
- Licht, C.L.; Kirkegaard, L.; Zueger, M.; Chourbaji, S.; Gass, P.; Aznar, S.; Knudsen, G.M. Changes in 5-HT4 Receptor and 5-HT Transporter Binding in Olfactory Bulbectomized and Glucocorticoid Receptor Heterozygous Mice. Neurochem. Int. 2010, 56, 603–610. [Google Scholar] [CrossRef]
- Vidal, R.; Castro, E.; Pilar-Cuéllar, F.; Pascual-Brazo, J.; Díaz, A.; Rojo, M.L.; Linge, R.; Martín, A.; Valdizán, E.M.; Pazos, A. Serotonin 5-HT4 Receptors: A New Strategy for Developing Fast Acting Antidepressants? Curr. Pharm. Des. 2014, 20, 3751–3762. [Google Scholar] [CrossRef] [PubMed]
- Lucas, G.; Rymar, V.V.; Du, J.; Mnie-Filali, O.; Bisgaard, C.; Manta, S.; Lambas-Senas, L.; Wiborg, O.; Haddjeri, N.; Piñeyro, G.; et al. Serotonin(4) (5-HT(4)) receptor agonists are putative antidepressants with a rapid onset of action. Neuron 2007, 55, 712–725. [Google Scholar] [CrossRef] [PubMed]
- Karayol, R.; Medrihan, L.; Warner-Schmidt, J.L.; Fait, B.W.; Rao, M.N.; Holzner, E.B.; Greengard, P.; Heintz, N.; Schmidt, E.F. Serotonin receptor 4 in the hippocampus modulates mood and anxiety. Mol. Psychiatry 2021, 26, 2334–2349. [Google Scholar] [CrossRef] [PubMed]
- Amigó, J.; Díaz, A.; Pilar-Cuéllar, F.; Vidal, R.; Martín, A.; Compan, V.; Pazos, A.; Castro, E. The absence of 5-HT4 receptors modulates depression- and anxiety-like responses and influences the response of fluoxetine in olfactory bulbectomised mice: Adaptive changes in hippocampal neuroplasticity markers and 5-HT1A autoreceptor. Neuropharmacology 2016, 111, 47–58. [Google Scholar] [CrossRef] [PubMed]
- Castello, J.; LeFrancois, B.; Flajolet, M.; Greengard, P.; E Friedman, E.; Rebholz, H. CK2 regulates 5-HT4 receptor signaling and modulates depressive-like behavior. Mol. Psychiatry 2018, 23, 872–882. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, L.; Zhang, J.; Lv, S.-X.; Du, C.-X.; Wang, T.; Wang, H.-S.; Xie, W.; Liu, J. Activation and Blockade of Serotonin-4 Receptors in the Lateral Habenula Produce Antidepressant Effects in the Hemiparkinsonian Rat. Neuropsychobiology 2021, 80, 52–63. [Google Scholar] [CrossRef]
- Pascual-Brazo, J.; Castro, E.; Díaz, Á.; Valdizán, E.M.; Pilar-Cuéllar, F.; Vidal, R.; Treceño, B.; Pazos, Á. Modulation of Neuroplasticity Pathways and Antidepressant-like Behavioural Responses Following the Short-Term (3 and 7 Days) Administration of the 5-HT4 Receptor Agonist RS67333. Int. J. Neuropsychopharmacol. 2012, 15, 631–643. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, K.; Ikeda, Y.; Sakai, A.; Yamasaki, N.; Haneda, E.; Miyakawa, T.; Suzuki, H. Reversal of Hippocampal Neuronal Maturation by Serotonergic Antidepressants. Proc. Natl. Acad. Sci. USA 2010, 107, 8434–8439. [Google Scholar] [CrossRef] [PubMed]
- Mendez-David, I.; David, D.J.; Darcet, F.; Wu, M.V.; Kerdine-Römer, S.; Gardier, A.M.; Hen, R. Rapid Anxiolytic Effects of a 5-HT4 Receptor Agonist Are Mediated by a Neurogenesis-Independent Mechanism. Neuropsychopharmacology 2014, 39, 1366–1378. [Google Scholar] [CrossRef]
- Ishizuka, T.; Goshima, H.; Ozawa, A.; Watanabe, Y. Stimulation of 5-HT4 Receptor Enhances Differentiation of Mouse Induced Pluripotent Stem Cells into Neural Progenitor Cells. Clin. Exp. Pharmacol. Physiol. 2014, 41, 345–350. [Google Scholar] [CrossRef]
- Imoto, Y.; Kira, T.; Sukeno, M.; Nishitani, N.; Nagayasu, K.; Nakagawa, T.; Kaneko, S.; Kobayashi, K.; Segi-Nishida, E. Role of the 5-HT4 Receptor in Chronic Fluoxetine Treatment-Induced Neurogenic Activity and Granule Cell Dematuration in the Dentate Gyrus. Mol. Brain 2015, 8, 29. [Google Scholar] [CrossRef] [PubMed]
- Segi-Nishida, E. The Effect of Serotonin-Targeting Antidepressants on Neurogenesis and Neuronal Maturation of the Hippocampus Mediated via 5-HT1A and 5-HT4 Receptors. Front. Cell. Neurosci. 2017, 11, 142. [Google Scholar] [CrossRef] [PubMed]
- Schill, Y.; Bijata, M.; Kopach, O.; Cherkas, V.; Abdel-Galil, D.; Böhm, K.; Schwab, M.H.; Matsuda, M.; Compan, V.; Basu, S.; et al. Serotonin 5-HT4 receptor boosts functional maturation of dendritic spines via RhoA-dependent control of F-actin. Commun. Biol. 2020, 3, 76. [Google Scholar] [CrossRef]
- Hagena, H.; Manahan-Vaughan, D. The serotonergic 5-HT4 receptor: A unique modulator of hippocampal synaptic information processing and cognition. Neurobiol. Learn. Mem. 2017, 138, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Rosel, P.; Arranz, B.; Urretavizcaya, M.; Oros, M.; San, L.; Navarro, M.A. Altered 5-HT2A and 5-HT4 postsynaptic receptors and their intracellular signalling systems IP3 and cAMP in brains from depressed violent suicide victims. Neuropsychobiology 2004, 49, 189–195. [Google Scholar] [CrossRef] [PubMed]
- Madsen, K.; Torstensen, E.; Holst, K.K.; Haahr, M.E.; Knorr, U.; Frokjaer, V.G.; Brandt-Larsen, M.; Iversen, P.; Fisher, P.M.; Knudsen, G.M. Familial risk for major depression is associated with lower striatal 5-HT₄ receptor binding. Int. J. Neuropsychopharmacol. 2014, 18, pyu034. [Google Scholar] [CrossRef]
- Köhler-Forsberg, K.; Dam, V.H.; Ozenne, B.; Sankar, A.; Beliveau, V.; Landman, E.B.; Larsen, S.V.; Poulsen, A.S.; Ip, C.-T.; Jørgensen, A.; et al. Serotonin 4 Receptor Brain Binding in Major Depressive Disorder and Association With Memory Dysfunction. JAMA Psychiatry 2023, 80, 296–304. [Google Scholar] [CrossRef] [PubMed]
- Köhler-Forsberg, K.; Ozenne, B.; Larsen, S.V.; Poulsen, A.S.; Landman, E.B.; Dam, V.H.; Ip, C.-T.; Jørgensen, A.; Svarer, C.; Knudsen, G.M.; et al. Concurrent anxiety in patients with major depression and cerebral serotonin 4 receptor binding. A NeuroPharm-1 study. Transl. Psychiatry 2022, 12, 273. [Google Scholar] [CrossRef] [PubMed]
- Sankar, A.; Ozenne, B.; Dam, V.H.; Svarer, C.; Jørgensen, M.B.; Miskowiak, K.W.; Frokjaer, V.G.; Knudsen GM and Fisher, P.M. Association between brain serotonin 4 receptor binding and reactivity to emotional faces in depressed and healthy individuals. Transl. Psychiatry 2023, 13, 165. [Google Scholar] [CrossRef]
- da Cunha-Bang, S.; Mc Mahon, B.; Fisher, P.M.; Jensen, P.S.; Svarer, C.; Knudsen, G.M. High trait aggression in men is associated with low 5-HT levels, as indexed by 5-HT4 receptor binding. Soc. Cogn. Affect. Neurosci. 2016, 11, 548–555. [Google Scholar] [CrossRef]
- Ohtsuki, T.; Ishiguro, H.; Detera-Wadleigh, S.D.; Toyota, T.; Shimizu, H.; Yamada, K.; Yoshitsugu, K.; Hattori, E.; Yoshikawa, T.; Arinami, T. Association between Serotonin 4 Receptor Gene Polymorphisms and Bipolar Disorder in Japanese Case-Control Samples and the NIMH Genetics Initiative Bipolar Pedigrees. Mol. Psychiatry 2002, 7, 954–961. [Google Scholar] [CrossRef]
- Poinsignon, V.; Colle, R.; Asmar, K.E.; Mendez-David, I.; David, D.J.; Ait Tayeb, A.E.K.; Chappell, K.; Gressier, F.; Herrero, H.; Fève, B.; et al. The GG genotype of the serotonin 4 receptor genetic polymorphism, rs1345697, is associated with lower remission rates after antidepressant treatment: Findings from the METADAP cohort. J. Affect. Disord. 2022, 299, 335–343. [Google Scholar] [CrossRef] [PubMed]
- Terry, A.V., Jr.; Buccafusco, J.J.; Jackson, W.J.; Prendergast, M.A.; Fontana, D.J.; Wong, E.H.; Bonhaus, D.W.; Weller, P.; Eglen, R.M. Enhanced delayed matching performance in younger and older macaques administered the 5-HT4 receptor agonist, RS 17017. Psychopharmacology 1998, 135, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Quiedeville, A.; Boulouard, M.; Hamidouche, K.; Da Silva Costa-Aze, V.; Nee, G.; Rochais, C.; Dallemagne, P.; Fabis, F.; Freret, T.; Bouet, V. Chronic activation of 5-HT4 receptors or blockade of 5-HT6 receptors improve memory performances. Behav. Brain Res. 2015, 293, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, C.M.; Rosen, Z.B.; Suri, D.; Sun, Q.; Hersh, M.; Sargin, D.; Dincheva, I.; Morgan, A.A.; Spivack, S.; Krok, A.C.; et al. Hippocampal 5-HT Input Regulates Memory Formation and Schaffer Collateral Excitation. Neuron 2018, 98, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Haahr, M.E.; Fisher, P.; Holst, K.; Madsen, K.; Jensen, C.G.; Marner, L.; Lehel, S.; Baaré, W.; Knudsen, G.; Hasselbalch, S. The 5-HT4 receptor levels in hippocampus correlates inversely with memory test performance in humans. Hum. Brain Mapp. 2013, 34, 3066–3074. [Google Scholar] [CrossRef] [PubMed]
- Stenbæk, D.S.; Fisher, P.M.; Ozenne, B.; Andersen, E.; Hjordt, L.V.; McMahon, B.; Hasselbalch, S.G.; Frokjaer, V.G.; Knudsen, G.M. Brain serotonin 4 receptor binding is inversely associated with verbal memory recall. Brain Behav. 2017, 7, e00674. [Google Scholar] [CrossRef] [PubMed]
- Murphy, S.E.; Wright, L.C.; Browning, M.; Cowen, P.J.; Harmer, C.J. A role for 5-HT4 receptors in human learning and memory. Psychol. Med. 2020, 50, 2722–2730. [Google Scholar] [CrossRef] [PubMed]
- de Cates, A.N.; Wright, L.C.; Martens, M.A.G.; Gibson, D.; Türkmen, C.; Filippini, N.; Cowen, P.J.; Harmer, C.J.; Murphy, S.E. Déjà-vu? Neural and behavioural effects of the 5-HT4 receptor agonist, prucalopride, in a hippocampal-dependent memory task. Transl. Psychiatry 2021, 11, 497. [Google Scholar] [CrossRef]
- de Cates, A.N.; Martens, M.A.G.; Wright, L.C.; Gibson, D.; Spitz, G.; Gould van Praag, C.D.; Suri, S.; Cowen, P.J.; Murphy, S.E.; Harmer, C.J. 5-HT4 Receptor Agonist Effects on Functional Connectivity in the Human Brain: Implications for Procognitive Action. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2023, 8, 1124–1134. [Google Scholar] [CrossRef]
- Madsen, K.; Neumann, W.J.; Holst, K.; Marner, L.; Haahr, M.T.; Lehel, S.; Knudsen, G.M.; Hasselbalch, S.G. Cerebral serotonin 4 receptors and amyloid-β in early Alzheimer’s disease. J. Alzheimers Dis. 2011, 26, 457–466. [Google Scholar] [CrossRef]
- Wang, J.-W.; Liu, J.; Wang, Z.-L.; Gao, F.; Yang, J.; Wang, X.-C.; Guo, Y.; Wang, Y.; Ma, B.-R.; Wang, H.-S.; et al. Activation and blockade of 5-HT4 receptors in the dorsal hippocampus enhance working and hippocampus-dependent memories in the unilateral 6-hydroxydopamine lesioned rats. Behav. Brain Res. 2022, 431, 113952. [Google Scholar] [CrossRef] [PubMed]
- Ishii, T.; Kinoshita, K.-I.; Muroi, Y. Serotonin 5-HT4 Receptor Agonists Improve Facilitation of Contextual Fear Extinction in an MPTP-Induced Mouse Model of Parkinson’s Disease. Int. J. Mol. Sci. 2019, 20, 5340. [Google Scholar] [CrossRef] [PubMed]
- Hashemi-Firouzi, N.; Shahidi, S.; Soleimani Asl, S. Chronic stimulation of the serotonergic 5-HT4 receptor modulates amyloid-beta-related impairments in synaptic plasticity and memory deficits in male rats. Brain Res. 2021, 1773, 147701. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Hu, Y. Activation of 5-HT4 receptors inhibits secretion of beta-amyloid peptides and increases neuronal survival. Exp. Neurol. 2007, 203, 274–278. [Google Scholar] [CrossRef] [PubMed]
- Barrett, M.J.; Cloud, L.J.; Shah, H.; Holloway, K.L. Therapeutic approaches to cholinergic deficiency in Lewy body diseases. Expert Rev. Neurother. 2020, 20, 41–53. [Google Scholar] [CrossRef] [PubMed]
- De Deurwaerdère, P.; Cervo, L.; Stinus, L.; Spampinato, U. Central 5-HT(4) receptors and dopamine-dependent motor behaviors: Searching for a functional role. Pharmacol. Biochem. Behav. 2002, 71, 627–633. [Google Scholar] [CrossRef] [PubMed]
- Reavill, C.; Hatcher, J.P.; Lewis, V.A.; Sanger, G.J.; Hagan, J. 5-HT4 receptors antagonism does not affect motor and reward mechanisms in the rat. Eur. J. Pharmacol. 1998, 357, 115–120. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Qiao, C.-M.; Zhou, Y.; Wu, J.; Cui, C.; Hong, H.; Jia, X.-B.; Huang, S.-B.; Yao, L.; Zhao, W.-J.; et al. Protective effects of prucalopride in MPTP-induced Parkinson’s disease mice: Neurochemistry, motor function and gut barrier. Biochem. Biophys. Res. Commun. 2021, 556, 16–22. [Google Scholar] [CrossRef]
- Padovan-Neto, F.E.; Patterson, S.; Voelkner, N.M.F.; Altwal, F.; Beverley, J.A.; West, A.R.; Steiner, H. Selective Regulation of 5-HT1B Serotonin Receptor Expression in the Striatum by Dopamine Depletion and Repeated L-DOPA Treatment: Relationship to L-DOPA-Induced Dyskinesias. Mol. Neurobiol. 2020, 57, 736–751. [Google Scholar] [CrossRef]
- Cirillo, R.; Duperrier, S.; Parekh, P.; Millot, M.; Li, Q.; Thiolat, M.L.; Morelli, M.; Xie, J.; Le Bars, D.; Redouté, J.; et al. Striatal serotonin 4 receptor is increased in experimental parkinsonism and dyskinesia. J. Park. Dis. 2024, 14, 261–267. [Google Scholar] [CrossRef]
- Reynolds, G.P.; Mason, S.L.; Meldrum, A.; De Keczer, S.; Parnes, H.; Eglen, R.M.; Wong, E.H. 5-Hydroxytryptamine (5-HT)4 receptors in post mortem human brain tissue: Distribution, pharmacology and effects of neurodegenerative diseases. Br. J. Pharmacol. 1995, 114, 993–998. [Google Scholar] [CrossRef]
- Wong, E.H.F.; Reynolds, G.P.; Bonhaus, D.W.; Hsu, S.; Eglen, R.M. Characterization of [3H]GR 113808 binding to 5-HT 4 receptors in brain tissues from patients with neurodegenerative disorders. Behav. Brain Res. 1996, 73, 249–252. [Google Scholar] [CrossRef]
- Asai, H.; Udaka, F.; Hirano, M.; Minami, T.; Oda, M.; Kubori, T.; Nishinaka, K.; Kameyama, M.; Ueno, S. Increased gastric motility during 5-HT4 agonist therapy reduces response fluctuations in Parkinson’s disease. Park. Relat. Disord. 2005, 11, 499–502. [Google Scholar] [CrossRef]
- Jean, A.; Conductier, G.; Manrique, C.; Bouras, C.; Berta, P.; Hen, R.; Charnay, Y.; Bockaert, J.; Compan, V. Anorexia induced by activation of serotonin 5-HT4 receptors is mediated by increases in CART in the nucleus accumbens. Proc. Natl. Acad. Sci. USA 2007, 104, 16335–16340. [Google Scholar] [CrossRef] [PubMed]
- Jean, A.; Laurent, L.; Delaunay, S.; Doly, S.; Dusticier, N.; Linden, D.; Neve, R.; Maroteaux, L.; Nieoullon, A.; Compan, V. Adaptive Control of Dorsal Raphe by 5-HT4 in the Prefrontal Cortex Prevents Persistent Hypophagia following Stress. Cell Rep. 2017, 21, 901–909. [Google Scholar] [CrossRef]
- Ratner, C.; Ettrup, A.; Bueter, M.; Haahr, M.E.; Compan, V.; le Roux, C.W.; Levin, B.; Hansen, H.H.; Knudsen, G.M. Cerebral markers of the serotonergic system in rat models of obesity and after Roux-en-Y gastric bypass. Obesity 2012, 20, 2133–2141. [Google Scholar] [CrossRef] [PubMed]
- Haahr, M.E.; Rasmussen, P.M.; Madsen, K.; Marner, L.; Ratner, C.; Gillings, N.; Baaré, W.F.; Knudsen, G.M. Obesity is associated with high serotonin 4 receptor availability in the brain reward circuitry. Neuroimage 2012, 61, 884–888. [Google Scholar] [CrossRef]
- Hu, Z.; Ying, X.; Huang, L.; Zhao, Y.; Zhou, D.; Liu, J.; Zhong, J.; Huang, T.; Zhang, W.; Cheng, F.; et al. Association of human serotonin receptor 4 promoter methylation with autism spectrum disorder. Medicine 2020, 99, e18838. [Google Scholar] [CrossRef] [PubMed]
- Park, M.T.M.; Jeon, P.; Khan, A.R.; Dempster, K.; Mallar Chakravarty, M.; Lerch, J.P.; MacKinley, M.; Théberge, J.; Palaniyappan, L. Hippocampal neuroanatomy in first episode psychosis: A putative role for glutamate and serotonin receptors. Prog. Neuropsychopharmacol. Biol. Psychiatry 2021, 110, 110297. [Google Scholar] [CrossRef]
- Jiang, S.S.; Gong, M.N.; Rao, W.; Chai, W.; Chen, W.Z.; Zhang, X.; Nie, H.B.; Xu, R.S. 5-Hydroxytryptamine: A potential therapeutic target in amyotrophic lateral sclerosis. Neural Regen. Res. 2023, 18, 2047–2055. [Google Scholar] [PubMed]
- Konen, J.R.; Haag, M.M.; Guseva, D.; Hurd, M.; Linton, A.A.; Lavoie, B.; Kerrigan, C.B.; Joyce, E.; Bischoff, S.; Swann, S.; et al. Prokinetic actions of luminally acting 5-HT4 receptor agonists. Neurogastroenterol. Motil. 2021, 33, e14026. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Cheng, J.; Yin, J.; Yang, Y.; Guo, J.; Zhang, W.; Xie, B.; Lu, H.; Hao, D. Effects of sacral nerve electrical stimulation on 5 HT and 5 HT3AR/5 HT4R levels in the colon and sacral cord of acute spinal cord injury rat models. Mol. Med. Rep. 2020, 22, 763–773. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, R. Prucalopride: A Recently Approved Drug by the Food and Drug Administration for Chronic Idiopathic Constipation. Int. J. Appl. Basic Med. Res. 2019, 9, 1–2. [Google Scholar] [CrossRef] [PubMed]
- Bassotti, G.; Satta, P.U.; Berti, G.; Lai, M.; Villanacci, V.; Bellini, M. Pharmacotherapeutic advances for chronic idiopathic constipation in adults. Expert Opin. Pharmacother. 2022, 23, 2053–2078. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Li, Y.; Liu, C.; Fan, R.; Wang, P.; Zheng, L.; Hong, F.; Feng, X.; Zhang, Y.; Li, L.; et al. Alteration of enteric monoamines with monoamine receptors and colonic dysmotility in 6-hydroxydopamine-induced Parkinson’s disease rats. Transl. Res. 2015, 166, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Mozaffari, S.; Nikfar, S.; Daniali, M.; Abdollahi, M. The pharmacological management of constipation in patients with Parkinson’s disease: A much-needed relief. Expert Opin. Pharmacother. 2020, 21, 701–707. [Google Scholar] [CrossRef]
- Liu, Z.; Sakakibara, R.; Odaka, T.; Uchiyama, T.; Uchiyama, T.; Yamamoto, T.; Ito, T.; Asahina, M.; Yamaguchi, K.; Yamaguchi, T.; et al. Mosapride citrate, a novel 5-HT4 agonist and partial 5-HT3 antagonist, ameliorates constipation in parkinsonian patients. Mov. Disord. 2005, 20, 680–686. [Google Scholar] [CrossRef]
Goal of the Study | Methods of 5-HT4 Receptor Investigation | Models | Main Results | Reference | |
---|---|---|---|---|---|
5-HT4 receptor expression | PET imaging | Subjects with early Alzheimer’s disease | In global brain and positively correlated with beta-amyloid accumulation | [81] | |
Healthy young adult individuals | Inverse relationship with memory performance | [76] | |||
Inverse relationship with positive and neutral word recall performance | [77] | ||||
Depressed patients | in global brain * associated with memory dysfunction | [67] | |||
Western blot | Rat model of Parkinson’s disease | in dorsal hippocampus | [82] | ||
5-HT4 receptor modulation | 5-HT4 receptor agonist | Macaque young and old) | Learning improved | [73] | |
Mouse | Memory improved | [74] | |||
Mouse model of scopolamine-induced deficit | Memory deficits counteracted | [46] | |||
Mouse model of Parkinson’s disease | Restored facilitation of contextual fear extinction | [83] | |||
Rat model of Parkinson’s disease | Working memory improved | [82] | |||
Rat model of Alzheimer’s disease | Memory deficits and associated mechanisms counteracted | [84] | |||
Healthy young adult individuals | Pro-cognitive effects induced | [78] | |||
Mnesic performance improved associated with increased hippocampal activity | [79] | ||||
5-HT4 receptor agonist and antagonist | ePet1-cre; Ai32 mouse | Memory formation modulated | [75] |
Goal of the Study | Methods of 5-HT4 Receptor Investigation | Models | Main Results | Reference | |
---|---|---|---|---|---|
5-HT4 receptor expression | Binding assays | Patients affected by Huntington’s disease | in putamen * | [92,93] | |
Patients affected by Parkinson’s disease | in putamen and nigra * | [92,93] | |||
In situ hybridization | Rat model of Parkinson’s disease | in striatum | [90] | ||
PET imaging immunohistochemistry | in motor striatum | [91] | |||
5-HT4 receptor modulation | 5-HT4 receptor agonist | Patients affected by Parkinson’s disease | Motor functions improved | [94] | |
Mouse model of Parkinson’s disease | No motor improvement | [83] | |||
Motor deficits improved associated with rescued striatal dopamine levels | [89] | ||||
5-HT4 receptor antagonist | Rat model of amphetamine-induced turning behavior | No impact | [88] |
Goal of the Study | Methods of 5-HT4 Receptor Investigation | Models | Main Results | Reference | |
---|---|---|---|---|---|
5-HT4 receptor expression | Autoradiography | Rat model of obesity | In nucleus accumbens | [97] | |
PET imaging | Normal to high body mass index individuals | In nucleus accumbens, ventral pallidum, left hippocampus, and orbitofrontal cortex, associated with obesity | [98] | ||
Deletion | Mouse | Food intake | [96] | ||
Overexpression | Mouse | Food intake | [96] | ||
Food intake modulated | KO mouse | Food intake | [96] | ||
5-HT4 receptor modulation | 5-HT4 receptor agonist or antagonist | Mouse | Food intake modulated | [95] | |
Macaque | Modulated food intake | personal communications | |||
5-HT4 receptor agonist | Macaque model of Parkinson’s disease | Food intake | personal communications |
Goal of the Study | Methods of 5-HT4 Receptor Investigation | Models | Main Results | Reference | |
---|---|---|---|---|---|
5-HT4 receptor expression | ELISA, qRT-PCR, immunohistochemistry, Western blot | Rat model of constipation | In colon after sacral nerve electrical stimulation | [103] | |
Western blot | Rat model of Parkinson’s disease | In colon, associated with constipation | [106] | ||
5-HT4 receptor modulation | 5-HT4 receptor agonist | Patients affected by Parkinson’s disease | Intestinal transit | [108] | |
Gastric motility | [94] | ||||
Rat model of Parkinson’s disease | In colon | [106] | |||
Constipation | |||||
Mouse model of Parkinson’s disease | Beneficial effect on intestinal barrier integrity | [89] | |||
5-HT4 receptor agonist and antagonist | Naïve or KO mouse | Modulated gut transit and colonic motility | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sgambato, V. The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders. Int. J. Mol. Sci. 2024, 25, 5245. https://doi.org/10.3390/ijms25105245
Sgambato V. The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders. International Journal of Molecular Sciences. 2024; 25(10):5245. https://doi.org/10.3390/ijms25105245
Chicago/Turabian StyleSgambato, Véronique. 2024. "The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders" International Journal of Molecular Sciences 25, no. 10: 5245. https://doi.org/10.3390/ijms25105245
APA StyleSgambato, V. (2024). The Serotonin 4 Receptor Subtype: A Target of Particular Interest, Especially for Brain Disorders. International Journal of Molecular Sciences, 25(10), 5245. https://doi.org/10.3390/ijms25105245