Effects of Piper aduncum (Piperales: Piperaceae) Essential Oil and Its Main Component Dillapiole on Detoxifying Enzymes and Acetylcholinesterase Activity of Amblyomma sculptum (Acari: Ixodidae)
Abstract
:1. Introduction
2. Results
2.1. Oil Composition Analysis
2.2. Effect of Piper aduncum EO and Dillapiole on Larval Mortality
2.3. Effect of Piper aduncum EO and Dillapiole on Detoxifying Enzymes of Larvae
2.4. Effect of Piper aduncum EO and Dillapiole on Acetylcholinesterase (AChE) Activity of Larvae
2.5. Scanning Electron Microscopy
3. Discussion
4. Materials and Methods
4.1. Plant Material, Identification, and Extraction of Essential Oils
4.2. Tick Collection
4.3. Larval Immersion Test
4.4. Determination of Enzymatic Activity in Larvae
4.4.1. Treatment and Processing of Larvae
4.4.2. Glutathione-S-Transferase Activity Assay
4.4.3. Esterase Activity Assay
4.4.4. Determination of Acetylcholinesterase Activity
4.5. Scanning Electron Microscopy (SEM)
4.6. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Estrada-Peña, A.; Tarragona, E.L.; Vesco, U.; de Meneghi, D.; Mastropaolo, M.; Mangold, A.J.; Guglielmone, A.A.; Nava, S. Divergent Environmental Preferences and Areas of Sympatry of Tick Species in the Amblyomma cajennense Complex (Ixodidae). Int. J. Parasitol. 2014, 44, 1081–1089. [Google Scholar] [CrossRef]
- De Paula, L.G.F.; do Nascimento, R.M.; de Franco, A.O.; Szabó, M.P.J.; Labruna, M.B.; Monteiro, C.; da Krawczak, F.S. Seasonal Dynamics of Amblyomma sculptum: A Review. Parasites Vectors 2022, 15, 193. [Google Scholar] [CrossRef]
- De Paula, L.G.F.; Zeringóta, V.; Sampaio, A.L.N.; Bezerra, G.P.; Barreto, A.L.G.; dos Santos, A.A.; Miranda, V.C.; de Paula, W.V.F.; Neves, L.C.; Secchis, M.V.; et al. Seasonal Dynamics of Amblyomma sculptum in Two Areas of the Cerrado Biome Midwestern Brazil, Where Human Cases of Rickettsiosis Have Been Reported. Exp. Appl. Acarol. 2021, 84, 215–225. [Google Scholar] [CrossRef]
- Nava, S.; Beati, L.; Labruna, M.B.; Cáceres, A.G.; Mangold, A.J.; Guglielmone, A.A. Reassessment of the Taxonomic Status of Amblyomma Cajennense (Fabricius, 1787) with the Description of Three New Species, Amblyomma tonelliae n. Sp., Amblyomma interandinum n. Sp. and Amblyomma patinoi n. Sp., and Reinstatement of Amblyomma mixtum Koch, 1844, and Amblyomma sculptum Berlese, 1888 (Ixodida: Ixodidae). Ticks Tick-Borne Dis. 2014, 5, 252–276. [Google Scholar] [CrossRef] [PubMed]
- De Alkmim, M.A.; Ferreira, L.L.; Bastianetto, E.; de Valgas e Bastos, C.; da Silveira, J.A.G. Report of Amblyomma sculptum in a House in a Rickettsia Rickettsii Circulation Area. Vector-Borne Zoonotic Dis. 2021, 21, 388–390. [Google Scholar] [CrossRef] [PubMed]
- Campos, S.D.E.; da Cunha, N.C.; Almosny, N.R.P. Brazilian Spotted Fever with an Approach in Veterinary Medicine and One Health Perspective. Vet. Med. Int. 2016, 2016, 2430945. [Google Scholar] [CrossRef]
- Costa, F.B.; Gerardi, M.; Binder, L.D.C.; Benatti, H.R.; Serpa, M.C.D.A.; Lopes, B.; Luz, H.R.; Ferraz, K.M.P.M.B.; Labruna, M.B. Rickettsia Rickettsii (Rickettsiales: Rickettsiaceae) Infecting Amblyomma sculptum (Acari: Ixodidae) Ticks and Capybaras in a Brazilian Spotted Fever-Endemic Area of Brazil. J. Med. Entomol. 2020, 57, 308–311. [Google Scholar] [CrossRef] [PubMed]
- Luz, H.R.; Costa, F.B.; Benatti, H.R.; Ramos, V.N.; de Serpa, M.C.A.; Martins, T.F.; Acosta, I.C.L.; Ramirez, D.G.; Muñoz-Leal, S.; Ramirez-Hernandez, A.; et al. Epidemiology of Capybara-Associated Brazilian Spotted Fever. PLoS Negl. Trop. Dis. 2019, 13, e0007734. [Google Scholar] [CrossRef]
- Pacheco-Silva, A.B.; Martins, E.B.; López, A.J.R.; Detepo, P.J.T.; Mamani, R.F.; Japiassú, A.M.; Lupi, O.; Mendes, T.V.; de Pina-Costa, A.; Calvet, G.A.; et al. Fatal Brazilian Spotted Fever in a Healthy Military Man during Field Training in Rio de Janeiro City, Southeastern Brazil. Rev. Inst. Med. Trop. Sao Paulo 2022, 64, e77. [Google Scholar] [CrossRef]
- Ribeiro, C.M.; da Costa, V.M.; de Carvalho, J.L.B.; Mendes, R.G.; de Bastos, P.A.S.; Katagiri, S.; Amaku, M. Brazilian Spotted Fever: A Spatial Analysis of Human Cases and Vectors in the State of São Paulo, Brazil. Zoonoses Public Health 2019, 67, 629–636. [Google Scholar] [CrossRef]
- Gomes, G.A.; Monteiro, C.M.O.; de Julião, L.S.; Maturano, R.; Senra, T.O.S.; Zeringóta, V.; Calmon, F.; da Matos, R.S.; Daemon, E.; de Carvalho, M.G. Acaricidal Activity of Essential Oil from Lippia Sidoides on Unengorged Larvae and Nymphs of Rhipicephalus sanguineus (Acari: Ixodidae) and Amblyomma cajennense (Acari: Ixodidae). Exp. Parasitol. 2014, 137, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Vale, L.; de Paula, L.G.F.; Vieira, M.S.; das Alves, S.G.A.; de Junior, N.R.M.; Gomes, M.D.F.; Teixeira, W.F.P.; Rizzo, P.V.; Freitas, F.M.C.; Ferreira, L.L.; et al. Binary Combinations of Thymol, Carvacrol and Eugenol for Amblyomma sculptum Control: Evaluation of in Vitro Synergism and Effectiveness under Semi-Field Conditions. Ticks Tick-Borne Dis. 2021, 12, 101816. [Google Scholar] [CrossRef]
- Gonzaga, B.C.F.; Barrozo, M.M.; Coutinho, A.L.; Pereira e Sousa, L.J.M.; Vale, F.L.; Marreto, L.; Marchesini, P.; de Castro Rodrigues, D.; de Souza, E.D.F.; Sabatini, G.A.; et al. Essential Oils and Isolated Compounds for Tick Control: Advances beyond the Laboratory. Parasites Vectors 2023, 16, 415. [Google Scholar] [CrossRef]
- Isman, M.B. Botanical Insecticides in the Twenty-First Century—Fulfilling Their Promise? Annu. Rev. Entomol. 2020, 65, 233–249. [Google Scholar] [CrossRef] [PubMed]
- Velasques, J.; Cardoso, M.H.; Abrantes, G.; Frihling, B.E.; Franco, O.L.; Migliolo, L. The Rescue of Botanical Insecticides: A Bioinspiration for New Niches and Needs. Pestic. Biochem. Physiol. 2017, 143, 14–25. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.-X.; Wang, Y.-H.; Yin, J.-L.; Peng, X.-Y.; Guo, C.-Q.; Zeng, J.-J.; Liu, X.-L.; Liu, Y.-Q. Research Status of Ginger Insecticidal Components in Botanical Insecticides. Ying Yong Sheng Tai Xue Bao 2023, 34, 825–834. [Google Scholar] [CrossRef]
- Silva, W.C.; De Souza Martins, J.R.; De Souza, H.E.M.; Heinzen, H.; Cesio, M.V.; Mato, M.; Albrecht, F.; De Azevedo, J.L.; De Barros, N.M. Toxicity of Piper aduncum L. (Piperales: Piperaceae) from the Amazon Forest for the Cattle Tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Vet. Parasitol. 2009, 164, 267–274. [Google Scholar] [CrossRef]
- Araújo, M.J.C.; Câmara, C.A.G.; Born, F.S.; Moraes, M.M.; Badji, C.A. Acaricidal Activity and Repellency of Essential Oil from Piper aduncum and Its Components against Tetranychus urticae. Exp. Appl. Acarol. 2012, 57, 139–155. [Google Scholar] [CrossRef]
- Silva, L.S.; Mar, J.M.; Azevedo, S.G.; Rabelo, M.S.; Bezerra, J.A.; Campelo, P.H.; Machado, M.B.; Trovati, G.; dos Santos, A.L.; da Fonseca Filho, H.D.; et al. Encapsulation of Piper aduncum and Piper hispidinervum Essential Oils in Gelatin Nanoparticles: A Possible Sustainable Control Tool of Aedes aegypti, Tetranychus urticae and Cerataphis lataniae. J. Sci. Food Agric. 2018, 99, 685–695. [Google Scholar] [CrossRef]
- De Almeida, R.R.P.; Souto, R.N.P.; Bastos, C.N.; da Silva, M.H.L.; Maia, J.G.S. Chemical Variation in Piper aduncum and Biological Properties of Its Dillapiole-Rich Essential Oil. Chem. Biodivers. 2009, 6, 1427–1434. [Google Scholar] [CrossRef]
- Durofil, A.; Radice, M.; Blanco-Salas, J.; Ruiz-Téllez, T. Piper aduncum Essential Oil: A Promising Insecticide, Acaricide and Antiparasitic. A Review. Parasite 2021, 28, 42. [Google Scholar] [CrossRef]
- Bass, C.; Field, L.M. Gene Amplification and Insecticide Resistance. Pest Manag. Sci. 2011, 67, 886–890. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Schuler, M.A.; Berenbaum, M.R. Molecular Mechanisms of Metabolic Resistance to Synthetic and Natural Xenobiotics. Annu. Rev. Entomol. 2007, 52, 231–253. [Google Scholar] [CrossRef]
- Rane, R.V.; Ghodke, A.B.; Hoffmann, A.A.; Edwards, O.R.; Walsh, T.K.; Oakeshott, J.G. Detoxifying Enzyme Complements and Host Use Phenotypes in 160 Insect Species. Curr. Opin. Insect Sci. 2019, 31, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Rane, R.V.; Walsh, T.K.; Pearce, S.L.; Jermiin, L.S.; Gordon, K.H.; Richards, S.; Oakeshott, J.G. Are Feeding Preferences and Insecticide Resistance Associated with the Size of Detoxifying Enzyme Families in Insect Herbivores? Curr. Opin. Insect Sci. 2016, 13, 70–76. [Google Scholar] [CrossRef] [PubMed]
- Obaid, M.K.; Islam, N.; Alouffi, A.; Khan, A.Z.; Da Silva Vaz, I.; Tanaka, T.; Ali, A. Acaricides Resistance in Ticks: Selection, Diagnosis, Mechanisms, and Mitigation. Front. Cell. Infect. Microbiol. 2022, 12, 941831. [Google Scholar] [CrossRef] [PubMed]
- Temeyer, K.B.; Tuckow, A.P.; Brake, D.K.; Li, A.Y.; Pérez de León, A.A. Acetylcholinesterases of Blood-Feeding Flies and Ticks. Chem.-Biol. Interact. 2013, 203, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R. Molecular Markers and Their Application in the Monitoring of Acaricide Resistance in Rhipicephalus microplus. Exp. Appl. Acarol. 2019, 78, 149–172. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.P.; Sabadin, G.A.; Sousa, I.C.; Gomes, M.N.; Soares, A.M.S.; Monteiro, C.M.O.; Vaz, I.S.; Costa-Junior, L.M. Effects of Carvacrol and Thymol on the Antioxidant and Detoxifying Enzymes of Rhipicephalus microplus (Acari: Ixodidae). Ticks Tick Borne Dis. 2022, 13, 101929. [Google Scholar] [CrossRef]
- Alonso-Díaz, M.A.; Fernández-Salas, A.; Martínez-Ibáñez, F.; Osorio-Miranda, J. Amblyomma cajennense (Acari: Ixodidae) Tick Populations Susceptible or Resistant to Acaricides in the Mexican Tropics. Vet. Parasitol. 2013, 197, 326–331. [Google Scholar] [CrossRef]
- De Higa, L.O.S.; Barradas Piña, F.T.; da Rodrigues, V.S.; Garcia, M.V.; Salas, D.R.; Miller, R.J.; de Leon, A.P.; Barros, J.C.; Andreotti, R. Evidence of Acaricide Resistance in Different Life Stages of Amblyomma mixtum and Rhipicephalus microplus (Acari: Ixodidae) Collected from the Same Farm in the State of Veracruz, Mexico. Prev. Vet. Med. 2020, 174, 104837. [Google Scholar] [CrossRef]
- De Paula e Souza Freitas, E.; Zapata, M.T.A.G.; de Fernandes, F.F. Monitoring of Resistance or Susceptibility of Adults and Larvae of Amblyomma cajennense (Acari: Ixodidae) to Synthetic Acaricides in Goiás, Brazil. Exp. Appl. Acarol. 2011, 53, 189–202. [Google Scholar] [CrossRef]
- Foil, L.D.; Coleman, P.; Eisler, M.; Fragoso-Sanchez, H.; Garcia-Vazquez, Z.; Guerrero, F.D.; Jonsson, N.N.; Langstaff, I.G.; Li, A.Y.; Machila, N.; et al. Factors That Influence the Prevalence of Acaricide Resistance and Tick-Borne Diseases. Vet. Parasitol. 2004, 125, 163–181. [Google Scholar] [CrossRef] [PubMed]
- Novato, T.P.L.; Araújo, L.X.; de Monteiro, C.M.O.; Maturano, R.; de Senra, T.O.S.; da Silva Matos, R.; Gomes, G.A.; de Carvalho, M.G.; Daemon, E. Evaluation of the Combined Effect of Thymol, Carvacrol and (E)-Cinnamaldehyde on Amblyomma sculptum (Acari: Ixodidae) and Dermacentor nitens (Acari: Ixodidae) Larvae. Vet. Parasitol. 2015, 212, 331–335. [Google Scholar] [CrossRef]
- Camara, M.; Lima, A.; Jumbo, L.O.; Tavares, C.; Mendonça, C.D.J.; Monteiro, O.; Araújo, S.H.; De Oliveira, E.E.; Lima Neto, J.; Maia, J.G.; et al. Seasonal and Circadian Evaluation of the Pectis Brevipedunculata Essential Oil and Its Acaricidal Activity against Rhipicephalus microplus (Acari: Ixodidae). J. Braz. Chem. Soc. 2023, 34, 1020–1029. [Google Scholar] [CrossRef]
- Farias, K.S.; Alves, F.M.; Santos-Zanuncio, V.S.; de Sousa Jr, P.T.; Silva, D.B.; Carollo, C.A. Global Distribution of the Chemical Constituents and Antibacterial Activity of Essential Oils in Lauraceae Family: A Review. S. Afr. J. Bot. 2023, 155, 214–222. [Google Scholar] [CrossRef]
- Llorens-Molina, J.A.; Rivera Seclén, C.F.; Vacas Gonzalez, S.; Boira Tortajada, H. Mentha Suaveolens Ehrh. Chemotypes in Eastern Iberian Peninsula: Essential Oil Variation and Relation with Ecological Factors. Chem. Biodivers. 2017, 14, e1700320. [Google Scholar] [CrossRef]
- Vieira, M.A.R.; Jorge, L.G.; Marçon, C.; Campos, F.G.; Rozada, A.M.F.; de Gauze, G.F.; Seixas, F.A.V.; Marques, M.O.M.; Mendes, R.P.; Boaro, C.S.F. Geographical Influences on the Chemical Composition and Antifungal Activity of Xylopia aromatica (Lam.) Mart. Leaf Essential Oil. S. Afr. J. Bot. 2023, 160, 209–218. [Google Scholar] [CrossRef]
- Bakkali, F.; Averbeck, S.; Averbeck, D.; Idaomar, M. Biological Effects of Essential Oils—A Review. Food Chem. Toxicol. 2008, 46, 446–475. [Google Scholar] [CrossRef]
- Abdelfattah, E.A.; El-Bassiony, G.M. Impact of Malathion Toxicity on the Oxidative Stress Parameters of the Black Soldier Fly Hermetia illucens (Linnaeus, 1758) (Diptera: Stratiomyidae). Sci. Rep. 2022, 12, 4583. [Google Scholar] [CrossRef]
- Radwan, I.T.; Sayed-Ahmed, M.Z.; Ghazawy, N.A.; Alqahtani, S.S.; Ahmad, S.; Alam, N.; Alkhaibari, A.M.; Ali, M.S.; Selim, A.; AbdelFattah, E.A. Effect of Nanostructure Lipid Carrier of Methylene Blue and Monoterpenes as Enzymes Inhibitor for Culex pipiens. Sci. Rep. 2023, 13, 12522. [Google Scholar] [CrossRef] [PubMed]
- Hernandez, E.P.; Kusakisako, K.; Talactac, M.R.; Galay, R.L.; Hatta, T.; Fujisaki, K.; Tsuji, N.; Tanaka, T. Glutathione S-Transferases Play a Role in the Detoxification of Flumethrin and Chlorpyrifos in Haemaphysalis longicornis. Parasit Vectors 2018, 11, 460. [Google Scholar] [CrossRef] [PubMed]
- Ketterman, A.J.; Saisawang, C.; Wongsantichon, J. Insect Glutathione Transferases. Drug Metab. Rev. 2011, 43, 253–265. [Google Scholar] [CrossRef] [PubMed]
- Xiang, C.-P.; Han, J.-X.; Li, X.-C.; Li, Y.-H.; Zhang, Y.; Chen, L.; Qu, Y.; Hao, C.-Y.; Li, H.-Z.; Yang, C.-R.; et al. Chemical Composition and Acetylcholinesterase Inhibitory Activity of Essential Oils from Piper Species. J. Agric. Food Chem. 2017, 65, 3702–3710. [Google Scholar] [CrossRef] [PubMed]
- Hematpoor, A.; Liew, S.Y.; Chong, W.L.; Azirun, M.S.; Lee, V.S.; Awang, K. Inhibition and Larvicidal Activity of Phenylpropanoids from Piper sarmentosum on Acetylcholinesterase against Mosquito Vectors and Their Binding Mode of Interaction. PLoS ONE 2016, 11, e0155265. [Google Scholar] [CrossRef]
- Pereira Filho, A.A.; Pessoa, G.C.D.; Yamaguchi, L.F.; Stanton, M.A.; Serravite, A.M.; Pereira, R.H.M.; Neves, W.S.; Kato, M.J. Larvicidal Activity of Essential Oils from Piper Species against Strains of Aedes aegypti (Diptera: Culicidae) Resistant to Pyrethroids. Front. Plant Sci. 2021, 12, 685864. [Google Scholar] [CrossRef]
- Aziz, Z.A.A.; Ahmad, A.; Setapar, S.H.M.; Karakucuk, A.; Azim, M.M.; Lokhat, D.; Rafatullah, M.; Ganash, M.; Kamal, M.A.; Ashraf, G.M. Essential Oils: Extraction Techniques, Pharmaceutical and Therapeutic Potential—A Review. Curr. Drug Metab. 2018, 19, 1100–1110. [Google Scholar] [CrossRef] [PubMed]
- Fanela, T.L.M.; Baldin, E.L.L.; Pannuti, L.E.R.; Cruz, P.L.; Crotti, A.E.M.; Takeara, R.; Kato, M.J. Lethal and Inhibitory Activities of Plant-Derived Essential Oils Against Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae) Biotype B in Tomato. Neotrop. Entomol. 2016, 45, 201–210. [Google Scholar] [CrossRef] [PubMed]
- FAO. Guidelines Resistance Management and Integrated Parasite Control in Ruminants; FAO: Rome, Italy, 2004. [Google Scholar]
- Sabatini, G.A.; Kemp, D.H.; Hughes, S.; Nari, A.; Hansen, J. Tests to Determine LC50 and Discriminating Doses for Macrocyclic Lactones against the Cattle Tick, Boophilus microplus. Vet. Parasitol. 2001, 95, 53–62. [Google Scholar] [CrossRef]
- Bradford, M.M. A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
- Habig, W.H.; Pabst, M.J.; Jakoby, W.B. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J. Biol. Chem. 1974, 249, 7130–7139. [Google Scholar] [CrossRef] [PubMed]
- Van Asperen, K. A Study of Housefly Esterases by Means of a Sensitive Colorimetric Method. J. Insect Physiol. 1962, 8, 401–416. [Google Scholar] [CrossRef]
- Li, A.Y.; Pruett, J.H.; Davey, R.B.; George, J.E. Toxicological and Biochemical Characterization of Coumaphos Resistance in the San Roman Strain of Boophilus microplus (Acari: Ixodidae). Pestic. Biochem. Physiol. 2005, 81, 145–153. [Google Scholar] [CrossRef]
Compounds | RIa | RIb | % | Peak |
---|---|---|---|---|
α-Pinene S | 932 | 932 | 0.3 | 1 |
β-Pinene S | 975 | 974 | 0.3 | 2 |
β-Myrcene S | 992 | 988 | 0.1 | 3 |
α-Phellandrene S | 1004 | 1002 | 0.1 | 4 |
2-Carene S | 1010 | 1008 | 0.1 | 5 |
p-Cimene S | 1024 | 1020 | 0.1 | 6 |
β-Phellandrene | 1028 | 1025 | 0.2 | 7 |
(Z)-β-Ocimene S | 1039 | 1032 | 1.6 | 8 |
(E)-β-Ocimene S | 1049 | 1044 | 3.4 | 9 |
γ-Terpinene | 1059 | 1054 | 0.2 | 10 |
α-Terpinolene S | 1088 | 1086 | 0.4 | 11 |
Oxygenated monoterpene * | 1209 | - | 0.1 | 12 |
(+)-Piperitone | 1255 | 1249 | 0.7 | 13 |
δ-Elemene | 1339 | 1335 | 0.1 | 14 |
α-Ylanglene | 1374 | 1373 | 0.1 | 15 |
α-Copaene S | 1378 | 1374 | 0.2 | 16 |
β-Elemene | 1394 | 1389 | 0.2 | 17 |
α-Gurjunene S | 1412 | 1409 | 0.1 | 18 |
(E)-β-Caryophyllene S | 1422 | 1417 | 0.8 | 19 |
β-Gurjunene | 1432 | 1431 | 0.2 | 20 |
α-Humulene S | 1457 | 1452 | 0.9 | 21 |
Germacrene D | 1484 | 1481 | 2.7 | 22 |
Bicyclogermacrene | 1500 | 1500 | 2.3 | 23 |
α-Muurolene | 1503 | 1500 | 0.1 | 24 |
α-Bulnesene | 1510 | 1509 | 0.2 | 25 |
γ-Cadinene | 1517 | 1513 | 0.1 | 26 |
Myristicin | 1524 | 1518 | 1.2 | 27 |
δ-Cadinene | 1522 | 1522 | 0.1 | 28 |
Germacrene B | 1561 | 1559 | 0.2 | 29 |
(E)-Nerolidol S | 1566 | 1561 | 0.1 | 30 |
Spathulenol | 1581 | 1577 | 0.1 | 31 |
Veridiflorol | 1596 | 1592 | 0.3 | 32 |
Dillapiole S | 1632 | 1620 | 81.9 | 33 |
epi-α-Muurolol | 1646 | 1640 | 0.1 | 34 |
α-Cadinol | 1659 | 1652 | 0.2 | 35 |
Apiole S | 1686 | 1677 | 0.2 | 36 |
EO/Compound | LC5 * | LC25 * | LC75 * | LC50 | HillSlope ± SE | CI 95% | R2 |
---|---|---|---|---|---|---|---|
Piper aduncum | 1.29 | 2.40 | 5.05 | 3.49 | 2.96 ± 0.14 | 3.36 to 3.62 | 0.95 |
Dillapiole | 1.41 | 2.44 | 4.69 | 3.38 | 3.36 ± 0.21 | 3.24 to 3.54 | 0.93 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pereira Filho, A.A.; do Vale, V.F.; de Oliveira Monteiro, C.M.; Barrozo, M.M.; Stanton, M.A.; Yamaguchi, L.F.; Kato, M.J.; Araújo, R.N. Effects of Piper aduncum (Piperales: Piperaceae) Essential Oil and Its Main Component Dillapiole on Detoxifying Enzymes and Acetylcholinesterase Activity of Amblyomma sculptum (Acari: Ixodidae). Int. J. Mol. Sci. 2024, 25, 5420. https://doi.org/10.3390/ijms25105420
Pereira Filho AA, do Vale VF, de Oliveira Monteiro CM, Barrozo MM, Stanton MA, Yamaguchi LF, Kato MJ, Araújo RN. Effects of Piper aduncum (Piperales: Piperaceae) Essential Oil and Its Main Component Dillapiole on Detoxifying Enzymes and Acetylcholinesterase Activity of Amblyomma sculptum (Acari: Ixodidae). International Journal of Molecular Sciences. 2024; 25(10):5420. https://doi.org/10.3390/ijms25105420
Chicago/Turabian StylePereira Filho, Adalberto Alves, Vladimir Fazito do Vale, Caio Marcio de Oliveira Monteiro, Mayara Macedo Barrozo, Mariana Alves Stanton, Lydia Fumiko Yamaguchi, Massuo Jorge Kato, and Ricardo Nascimento Araújo. 2024. "Effects of Piper aduncum (Piperales: Piperaceae) Essential Oil and Its Main Component Dillapiole on Detoxifying Enzymes and Acetylcholinesterase Activity of Amblyomma sculptum (Acari: Ixodidae)" International Journal of Molecular Sciences 25, no. 10: 5420. https://doi.org/10.3390/ijms25105420
APA StylePereira Filho, A. A., do Vale, V. F., de Oliveira Monteiro, C. M., Barrozo, M. M., Stanton, M. A., Yamaguchi, L. F., Kato, M. J., & Araújo, R. N. (2024). Effects of Piper aduncum (Piperales: Piperaceae) Essential Oil and Its Main Component Dillapiole on Detoxifying Enzymes and Acetylcholinesterase Activity of Amblyomma sculptum (Acari: Ixodidae). International Journal of Molecular Sciences, 25(10), 5420. https://doi.org/10.3390/ijms25105420