Cardioembolic Stroke: Past Advancements, Current Challenges, and Future Directions
Abstract
:1. Introduction
2. Heart Disease and Stroke
- (1)
- Features of cardioembolic stroke
- (2)
- Heart diseases which cause embolic stroke
- (3)
- Cryptogenic stroke
3. Detection of AF and Patient Management
- (1)
- Mode of AF detection
- (2)
- Relationship between duration of monitoring and AF detection
- (3)
- Patient management is individualized and based on the risk of stroke and the presence of AF
4. Anticoagulation
- (1)
- Oral anticoagulation for preventing stroke in patients with non-valvular AF (NVAF)
- (2)
- Early DOAC initiation after acute ischemic stroke in patients with AF
- (3)
- Resumption of anticoagulation after ICH in patients with AF
5. Catheter Ablation
- (1)
- Maintaining sinus rhythm is the key to health
- (2)
- Ablation effect on stroke incidence
- (3)
- Relationship between heart failure and incidence of stroke
6. Atrial Cardiopathy
7. Future Directions
Author Contributions
Funding
Conflicts of Interest
References
- Hart, R.G.; Diener, H.C.; Coutts, S.B.; Easton, J.D.; Granger, C.B.; O’Donnell, M.J.; Sacco, R.L.; Connolly, S.J. Cryptogenic Stroke/ESUS International Working Group. Embolic strokes of undetermined source: The case for a new clinical construct. Lancet Neurol. 2014, 13, 429–438. [Google Scholar] [CrossRef] [PubMed]
- Kimura, K.; Minematsu, K.; Yamaguchi, T. Japan Multicenter Stroke Investigators’ Collaboration (J-MUSIC). Atrial fibrillation as a predictive factor for severe stroke and early death in 15,831 patients with acute ischaemic stroke. J. Neurol. Neurosurg. Psychiatry 2005, 76, 679–683. [Google Scholar] [CrossRef] [PubMed]
- Hart, R.G.; Sharma, M.; Mundl, H.; Kasner, S.E.; Bangdiwala, S.I.; Berkowitz, S.D.; Swaminathan, B.; Lavados, P.; Wang, Y.; Wang, Y.; et al. NAVIGATE ESUS Investigators. Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source. N. Engl. J. Med. 2018, 378, 2191–2201. [Google Scholar] [CrossRef] [PubMed]
- Diener, H.C.; Sacco, R.L.; Easton, J.D.; Granger, C.B.; Bernstein, R.A.; Uchiyama, S.; Kreuzer, J.; Cronin, L.; Cotton, D.; Grauer, C.; et al. RE-SPECT ESUS Steering Committee and Investigators. Dabigatran for Prevention of Stroke after Embolic Stroke of Undetermined Source. N. Engl. J. Med. 2019, 380, 1906–1917. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Longstreth, W.T., Jr.; Tirschwell, D.L.; Kronmal, R.A.; Marshall, R.S.; Broderick, J.P.; Aragón García, R.; Plummer, P.; Sabagha, N.; Pauls, Q.; et al. ARCADIA Investigators. Apixaban to Prevent Recurrence after Cryptogenic Stroke in Patients with Atrial Cardiopathy: The ARCADIA Randomized Clinical Trial. JAMA 2024, 331, 573–581. [Google Scholar] [CrossRef] [PubMed]
- Klijn, C.J.; Kappelle, L.J. Haemodynamic stroke: Clinical features, prognosis, and management. Lancet Neurol. 2010, 9, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, S. (Ed.) Stroke Data Bank 2015; Nakayama Shoten: Tokyo, Japan, 2015. (In Japanese) [Google Scholar]
- Caplan, L.R.; Gorelick, P.B.; Hier, D.B. Race, sex and occlusive cerebrovascular disease: A review. Stroke 1986, 17, 648–655. [Google Scholar] [CrossRef] [PubMed]
- Minematsu, K.; Yamaguchi, T.; Omae, T. ‘Spectacular shrinking deficit’: Rapid recovery from a major hemispheric syndrome by migration of an embolus. Neurology 1992, 42, 157–162. [Google Scholar] [CrossRef] [PubMed]
- Sussman, E.S.; Connolly, E.S., Jr. Hemorrhagic transformation: A review of the rate of hemorrhage in the major clinical trials of acute ischemic stroke. Front. Neurol. 2013, 4, 69. [Google Scholar] [CrossRef]
- Kimura, K.; Iguchi, Y.; Yamashita, S.; Shibazaki, K.; Kobayashi, K.; Inoue, T. Atrial fibrillation as an independent predictor for no early recanalization after IV-t-PA in acute ischemic stroke. J. Neurol. Sci. 2008, 267, 57–61. [Google Scholar] [CrossRef]
- Goldstein, L.B.; Jones, M.R.; Matchar, D.B.; Edwards, L.J.; Hoff, J.; Chilukuri, V.; Armstrong, S.B.; Horner, R.D. Improving the reliability of stroke subgroup classification using the Trial of ORG 10172 in Acute Stroke Treatment (TOAST) criteria. Stroke 2001, 32, 1091–1098. [Google Scholar] [CrossRef] [PubMed]
- Ay, H.; Furie, K.L.; Singhal, A.; Smith, W.S.; Sorensen, A.G.; Koroshetz, W.J. An evidence-based causative classification system for acute ischemic stroke. Ann. Neurol. 2005, 58, 688–697. [Google Scholar] [CrossRef] [PubMed]
- Ay, H.; Benner, T.; Arsava, E.M.; Furie, K.L.; Singhal, A.B.; Jensen, M.B.; Ayata, C.; Towfighi, A.; Smith, E.E.; Chong, J.Y.; et al. A computerized algorithm for etiologic classification of ischemic stroke: The Causative Classification of Stroke System. Stroke 2007, 38. [Google Scholar]
- McArdle, P.F.; Kittner, S.J.; Ay, H.; Brown, R.D., Jr.; Meschia, J.F.; Rundek, T.; Wassertheil-Smoller, S.; Woo, D.; Andsberg, G.; Biffi, A.; et al. Agreement between TOAST and CCS ischemic stroke classification: The NINDS SiGN study. Neurology 2014, 83, 1653–1660. [Google Scholar] [CrossRef]
- Escudero-Martínez, I.; Morales-Caba, L.; Segura, T. Atrial fibrillation and stroke: A review and new insights. Atrial fibrillation and stroke: A review and new insights. Trends Cardiovasc. Med. 2023, 33, 23–29. [Google Scholar] [CrossRef] [PubMed]
- Sporns, P.B.; Hanning, U.; Schwindt, W.; Velasco, A.; Minnerup, J.; Zoubi, T.; Heindel, W.; Jeibmann, A.; Niederstadt, T.U. Ischemic Stroke: What Does the Histological Composition Tell Us About the Origin of the Thrombus? Stroke 2017, 48, 2206–2210. [Google Scholar] [CrossRef] [PubMed]
- Sanna, T.; Diener, H.C.; Passman, R.S.; Di Lazzaro, V.; Bernstein, R.A.; Morillo, C.A.; Rymer, M.M.; Thijs, V.; Rogers, T.; Beckers, F.; et al. Cryptogenic stroke and underlying atrial fibrillation. N. Engl. J. Med. 2014, 370, 2478–2486. [Google Scholar] [CrossRef] [PubMed]
- Brambatti, M.; Connolly, S.J.; Gold, M.R.; Morillo, C.A.; Capucci, A.; Muto, C.; Lau, C.P.; Van Gelder, I.C.; Hohnloser, S.H.; Carlson, M.; et al. Temporal relationship between subclinical atrial fibrillation and embolic events. Circulation 2014, 129, 2094–2099. [Google Scholar] [CrossRef] [PubMed]
- Gladstone, D.J.; Spring, M.; Dorian, P.; Panzov, V.; Thorpe, K.E.; Hall, J.; Vaid, H.; O’Donnell, M.; Laupacis, A.; Côté, R.; et al. EMBRACE Investigators and Coordinators. Atrial fibrillation in patients with cryptogenic stroke. N. Engl. J. Med. 2014, 370, 2467–2477. [Google Scholar] [CrossRef] [PubMed]
- Buck, B.H.; Hill, M.D.; Quinn, F.R.; Butcher, K.S.; Menon, B.K.; Gulamhusein, S.; Siddiqui, M.; Coutts, S.B.; Jeerakathil, T.; Smith, E.E.; et al. Effect of Implantable vs. Prolonged External Electrocardiographic Monitoring on Atrial Fibrillation Detection in Patients with Ischemic Stroke: The PER DIEM Randomized Clinical Trial. JAMA 2021, 325, 2160–2168. [Google Scholar] [CrossRef]
- Wachter, R.; Gröschel, K.; Gelbrich, G.; Hamann, G.F.; Kermer, P.; Liman, J.; Seegers, J.; Wasser, K.; Schulte, A.; Jürries, F.; et al. Holter-electrocardiogram-monitoring in patients with acute ischaemic stroke (Find-AFRANDOMISED): An open-label randomised controlled trial. Lancet Neurol. 2017, 16, 282–290. [Google Scholar] [CrossRef]
- Joglar, J.A.; Chung, M.K.; Armbruster, A.L.; Benjamin, E.J.; Chyou, J.Y.; Cronin, E.M.; Deswal, A.; Eckhardt, L.L.; Goldberger, Z.D.; Gopinathannair, R.; et al. 2023 ACC/AHA/ACCP/HRS Guideline for the Diagnosis and Management of Atrial Fibrillation: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation 2024, 149, e1–e156. [Google Scholar] [CrossRef] [PubMed]
- Smith, E.E.; Yaghi, S.; Sposato, L.A.; Fisher, M. Atrial Fibrillation Detection and Load: Knowledge Gaps Related to Stroke Prevention. Stroke 2024, 55, 205–213. [Google Scholar] [CrossRef] [PubMed]
- Freeman, J.V.; Higgins, A.Y.; Wang, Y.; Du, C.; Friedman, D.J.; Daimee, U.A.; Minges, K.E.; Pereira, L.; Goldsweig, A.M.; Price, M.J.; et al. Antithrombotic Therapy after Left Atrial Appendage Occlusion in Patients with Atrial Fibrillation. J. Am. Coll. Cardiol. 2022, 79, 1785–1798. [Google Scholar] [CrossRef] [PubMed]
- Giugliano, R.P.; Ruff, C.T.; Braunwald, E.; Murphy, S.A.; Wiviott, S.D.; Halperin, J.L.; Waldo, A.L.; Ezekowitz, M.D.; Weitz, J.I.; Špinar, J.; et al. Edoxaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2013, 369, 2093–2104. [Google Scholar] [CrossRef] [PubMed]
- Patel, M.R.; Mahaffey, K.W.; Garg, J.; Pan, G.; Singer, D.E.; Hacke, W.; Breithardt, G.; Halperin, J.L.; Hankey, G.J.; Piccini, J.P.; et al. Rivaroxaban versus warfarin in nonvalvular atrial fibrillation. N. Engl. J. Med. 2011, 365, 883–891. [Google Scholar] [CrossRef]
- Granger, C.B.; Alexander, J.H.; McMurray, J.J.; Lopes, R.D.; Hylek, E.M.; Hanna, M.; Al-Khalidi, H.R.; Ansell, J.; Atar, D.; Avezum, A.; et al. Apixaban versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2011, 365, 981–992. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Ezekowitz, M.D.; Yusuf, S.; Eikelboom, J.; Oldgren, J.; Parekh, A.; Pogue, J.; Reilly, P.A.; Themeles, E.; Varrone, J.; et al. Dabigatran versus warfarin in patients with atrial fibrillation. N. Engl. J. Med. 2009, 361, 1139–1151. [Google Scholar] [CrossRef]
- Gosselin, R.C.; Adcock, D.M.; Bates, S.M.; Douxfils, J.; Favaloro, E.J.; Gouin-Thibault, I.; Guillermo, C.; Kawai, Y.; Lindhoff-Last, E.; Kitchen, S. International Council for Standardization in Haematology (ICSH) Recommendations for Laboratory Measurement of Direct Oral Anticoagulants. Thromb. Haemost. 2018, 118, 437–450. [Google Scholar] [CrossRef]
- Hindricks, G.; Potpara, T.; Dagres, N.; Arbelo, E.; Bax, J.J.; Blomström-Lundqvist, C.; Boriani, G.; Castella, M.; Dan, G.A.; Dilaveris, P.E.; et al. 2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association for Cardio-Thoracic Surgery (EACTS): The Task Force for the diagnosis and management of atrial fibrillation of the European Society of Cardiology (ESC) Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC. Eur. Heart J. 2021, 42, 373–498. [Google Scholar]
- Ono, K.; Iwasaki, Y.K.; Akao, M.; Ikeda, T.; Ishii, K.; Inden, Y.; Kusano, K.; Kobayashi, Y.; Koretsune, Y.; Sasano, T.; et al. JCS/JHRS 2020 Guideline on Pharmacotherapy of Cardiac Arrhythmias. Circ. J. 2022, 86, 1790–1924. [Google Scholar] [CrossRef]
- Azoulay, L.; Dell’Aniello, S.; Simon, T.A.; Renoux, C.; Suissa, S. Initiation of warfarin in patients with atrial fibrillation: Early effects on ischaemic strokes. Eur. Heart J. 2014, 35, 1881–1887. [Google Scholar] [CrossRef] [PubMed]
- Heidbuchel, H.; Verhamme, P.; Alings, M.; Antz, M.; Hacke, W.; Oldgren, J.; Sinnaeve, P.; Camm, A.J.; Kirchhof, P. EHRA practical guide on the use of new oral anticoagulants in patients with non-valvular atrial fibrillation: Executive summary. Eur. Heart J. 2013, 34, 2094–2106. [Google Scholar] [CrossRef] [PubMed]
- Kimura, S.; Toyoda, K.; Yoshimura, S.; Minematsu, K.; Yasaka, M.; Paciaroni, M.; Werring, D.J.; Yamagami, H.; Nagao, T.; Yoshimura, S.; et al. Practical “1-2-3-4-Day” Rule for Starting Direct Oral Anticoagulants after Ischemic Stroke with Atrial Fibrillation: Combined Hospital-Based Cohort Study. Stroke 2022, 53, 1540–1549. [Google Scholar] [CrossRef] [PubMed]
- Oldgren, J.; Åsberg, S.; Hijazi, Z.; Wester, P.; Bertilsson, M.; Norrving, B. Early Versus Delayed Non-Vitamin K Antagonist Oral Anticoagulant Therapy after Acute Ischemic Stroke in Atrial Fibrillation (TIMING): A Registry-Based Randomized Controlled Noninferiority Study. Circulation 2022, 146, 1056–1066. [Google Scholar] [CrossRef] [PubMed]
- Fischer, U.; Koga, M.; Strbian, D.; Branca, M.; Abend, S.; Trelle, S.; Paciaroni, M.; Thomalla, G.; Michel, P.; Nedeltchev, K. Early versus Later Anticoagulation for Stroke with Atrial Fibrillation. N. Engl. J. Med. 2023, 388, 2411–2421. [Google Scholar] [CrossRef] [PubMed]
- Pasquini, M.; Charidimou, A.; van Asch, C.J.; Baharoglu, M.I.; Samarasekera, N.; Werring, D.J.; Klijn, C.J.; Roos, Y.B.; Al-Shahi Salman, R.; Cordonnier, C. Variation in restarting antithrombotic drugs at hospital discharge after intracerebral hemorrhage. Stroke 2014, 45, 2643–2648. [Google Scholar] [CrossRef] [PubMed]
- Suda, S.; Iguchi, Y.; Yagita, Y.; Kanzawa, T.; Okubo, S.; Fujimoto, S.; Kono, Y.; Kimura, K. Resumption of oral anticoagulation in patients with non-valvular atrial fibrillation after intracerebral hemorrhage: A sub-analysis of the PASTA registry study. J. Neurol. Sci. 2023, 453, 120810. [Google Scholar] [CrossRef]
- Al-Shahi Salman, R.; Stephen, J.; Tierney, J.F.; Lewis, S.C.; Newby, D.E.; Parry-Jones, A.R.; White, P.M.; Connolly, S.J.; Benavente, O.R.; Dowlatshahi, D.; et al. Effects of oral anticoagulation in people with atrial fibrillation after spontaneous intracranial haemorrhage (COCROACH): Prospective, individual participant data meta-analysis of randomised trials. Lancet Neurol. 2023, 22, 1140–1149. [Google Scholar] [CrossRef]
- Takabayashi, K.; Hamatani, Y.; Yamashita, Y.; Takagi, D.; Unoki, T.; Ishii, M.; Iguchi, M.; Masunaga, N.; Ogawa, H.; Esato, M.; et al. Incidence of Stroke or Systemic Embolism in Paroxysmal Versus Sustained Atrial Fibrillation: The Fushimi Atrial Fibrillation Registry. Stroke 2015, 46, 3354–3361. [Google Scholar] [CrossRef]
- Willems, S.; Borof, K.; Brandes, A.; Breithardt, G.; Camm, A.J.; Crijns, H.J.G.M.; Eckardt, L.; Gessler, N.; Goette, A.; Haegeli, L.M.; et al. Systematic, early rhythm control strategy for atrial fibrillation in patients with or without symptoms: The EAST-AFNET 4 trial. Eur. Heart J. 2022, 43, 1219–1230. [Google Scholar] [CrossRef]
- Eckardt, L.; Sehner, S.; Suling, A.; Borof, K.; Breithardt, G.; Crijns, H.; Goette, A.; Wegscheider, K.; Zapf, A.; Camm, J.; et al. Attaining sinus rhythm mediates improved outcome with early rhythm control therapy of atrial fibrillation: The EAST-AFNET 4 trial. Eur. Heart J. 2022, 43, 4127–4144. [Google Scholar] [CrossRef] [PubMed]
- Køber, L.; Torp-Pedersen, C.; McMurray, J.J.; Gøtzsche, O.; Lévy, S.; Crijns, H.; Amlie, J.; Carlsen, J.; Dronedarone Study Group. Increased mortality after dronedarone therapy for severe heart failure. N. Engl. J. Med. 2008, 358, 2678–2687. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.J.; Camm, A.J.; Halperin, J.L.; Joyner, C.; Alings, M.; Amerena, J.; Atar, D.; Avezum, Á.; Blomström, P.; Borggrefe, M.; et al. Dronedarone in high-risk permanent atrial fibrillation. N. Engl. J. Med. 2011, 365, 2268–2276. [Google Scholar] [CrossRef]
- Haïssaguerre, M.; Jaïs, P.; Shah, D.C.; Takahashi, A.; Hocini, M.; Quiniou, G.; Garrigue, S.; Le Mouroux, A.; Le Métayer, P.; Clémenty, J. Spontaneous initiation of atrial fibrillation by ectopic beats originating in the pulmonary veins. N. Engl. J. Med. 1998, 339, 659–666. [Google Scholar] [CrossRef] [PubMed]
- Packer, D.L.; Mark, D.B.; Robb, R.A.; Monahan, K.H.; Bahnson, T.D.; Poole, J.E.; Noseworthy, P.A.; Rosenberg, Y.D.; Jeffries, N.; Mitchell, L.B.; et al. Effect of Catheter Ablation vs. Antiarrhythmic Drug Therapy on Mortality, Stroke, Bleeding, and Cardiac Arrest Among Patients with Atrial Fibrillation: The CABANA Randomized Clinical Trial. JAMA 2019, 321, 1261–1274. [Google Scholar] [CrossRef]
- Sohns, C.; Zintl, K.; Zhao, Y.; Dagher, L.; Andresen, D.; Siebels, J.; Wegscheider, K.; Sehner, S.; Boersma, L.; Merkely, B.; et al. Impact of Left Ventricular Function and Heart Failure Symptoms on Outcomes Post Ablation of Atrial Fibrillation in Heart Failure: CASTLE-AF Trial. Circ. Arrhythm. Electrophysiol. 2020, 13, e008461. [Google Scholar] [CrossRef]
- Andrade, J.G. Ablation as First-line Therapy for Atrial Fibrillation. Eur. Cardiol. 2023, 18, e46. [Google Scholar] [CrossRef] [PubMed]
- Parkash, R.; Wells, G.A.; Rouleau, J.; Talajic, M.; Essebag, V.; Skanes, A.; Wilton, S.B.; Verma, A.; Healey, J.S.; Sterns, L.; et al. Randomized Ablation-Based Rhythm-Control Versus Rate-Control Trial in Patients with Heart Failure and Atrial Fibrillation: Results from the RAFT-AF trial. Circulation 2022, 145, 1693–1704. [Google Scholar] [CrossRef]
- Saglietto, A.; De Ponti, R.; Di Biase, L.; Matta, M.; Gaita, F.; Romero, J.; De Ferrari, G.M.; Anselmino, M. Impact of atrial fibrillation catheter ablation on mortality, stroke, and heart failure hospitalizations: A meta-analysis. J. Cardiovasc. Electrophysiol. 2020, 31, 1040–1047. [Google Scholar] [CrossRef]
- Akerstrom, F.; Hutter, J.; Charitakis, E.; Tabrizi, F.; Asaad, F.; Bastani, H.; Bourke, T.; Braunschweig, F.; Drca, N.; Englund, A.; et al. Association between catheter ablation of atrial fibrillation and mortality or stroke. Heart 2024, 110, 163–169. [Google Scholar] [CrossRef]
- Barra, S.; Baran, J.; Narayanan, K.; Boveda, S.; Fynn, S.; Heck, P.; Grace, A.; Agarwal, S.; Primo, J.; Marijon, E.; et al. Association of catheter ablation for atrial fibrillation with mortality and stroke: A systematic review and meta-analysis. Int. J. Cardiol. 2018, 266, 136–142. [Google Scholar] [CrossRef] [PubMed]
- Homma, S.; Thompson, J.L.; Pullicino, P.M.; Levin, B.; Freudenberger, R.S.; Teerlink, J.R.; Ammon, S.E.; Graham, S.; Sacco, R.L.; Mann, D.L.; et al. Warfarin and aspirin in patients with heart failure and sinus rhythm. N. Engl. J. Med. 2012, 366, 1859–1869. [Google Scholar] [CrossRef] [PubMed]
- Haeusler, K.G.; Laufs, U.; Endres, M. Chronic heart failure and ischemic stroke. Stroke 2011, 42, 2977–2982. [Google Scholar] [CrossRef]
- Kang, S.H.; Kim, J.; Park, J.J.; Oh, I.Y.; Yoon, C.H.; Kim, H.J.; Kim, K.; Choi, D.J. Risk of stroke in congestive heart failure with and without atrial fibrillation. Int. J. Cardiol. 2017, 248, 182–187. [Google Scholar] [CrossRef] [PubMed]
- Goldberger, J.J.; Arora, R.; Green, D.; Greenland, P.; Lee, D.C.; Lloyd-Jones, D.M.; Markl, M.; Ng, J.; Shah, S.J. Evaluating the Atrial Myopathy Underlying Atrial Fibrillation: Identifying the Arrhythmogenic and Thrombogenic Substrate. Circulation 2015, 132, 278–291. [Google Scholar] [CrossRef] [PubMed]
- Dzeshka, M.S.; Lip, G.Y.; Snezhitskiy, V.; Shantsila, E. Cardiac Fibrosis in Patients with Atrial Fibrillation: Mechanisms and Clinical Implications. J. Am. Coll. Cardiol. 2015, 66, 943–959. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Okin, P.M.; Longstreth, W.T., Jr.; Elkind, M.S.; Soliman, E.Z. Atrial cardiopathy: A broadened concept of left atrial thromboembolism beyond atrial fibrillation. Future Cardiol. 2015, 11, 323–331. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Okin, P.M.; Elkind, M.S.; Iadecola, C. Atrial Fibrillation and Mechanisms of Stroke: Time for a New Model. Stroke 2016, 47, 895–900. [Google Scholar] [CrossRef] [PubMed]
- Kamel, H.; Healey, J.S. Cardioembolic Stroke. Circ. Res. 2017, 120, 514–526. [Google Scholar] [CrossRef]
- Kato, Y.; Takahashi, S. Atrial Cardiopathy and Cryptogenic Stroke. Front. Neurol. 2022, 13, 839398. [Google Scholar] [CrossRef]
- Kamel, H.; Longstreth, W.T., Jr.; Tirschwell, D.L.; Kronmal, R.A.; Broderick, J.P.; Palesch, Y.Y.; Meinzer, C.; Dillon, C.; Ewing, I.; Spilker, J.A.; et al. The AtRial Cardiopathy and Antithrombotic Drugs in prevention after cryptogenic stroke randomized trial: Rationale and methods. Int. J. Stroke 2019, 14, 207–214. [Google Scholar] [CrossRef] [PubMed]
- GBD 2019 Stroke Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 2021, 20, 795–820. [Google Scholar] [CrossRef] [PubMed]
Clinical | Sudden Onset |
---|---|
Lack of stepwise progression | |
“Spectacular shrinking deficit” | |
Disturbance of consciousness | |
Cortical signs (aphasia, hemispatial neglect) | |
High NIHSS score | |
Radiological | Massive infarction |
Multiple infarctions in different arterial territories | |
Large artery occlusion |
Study Name | Country | Study Design | Intervention | Primary Outcome | Delay between ICH and Randomization, Days |
---|---|---|---|---|---|
SAFE-ICH | Japan | Multicenter, prospective, observational | No | Composite of these incidence rates up to 30 days after ICH: - Symptomatic ICH - Symptomatic stroke - All-cause death | 1–14 |
A3ICH | France | Multicenter, phase 3, randomized, open-label, masked outcome assessment (PROBE), single (Outcomes Assessor) | Apixaban vs. LAAC vs. no anticoagulant or LAAC | Composite of all fatal or nonfatal major cardiovascular/cerebrovascular ischemic or hemorrhagic intracranial/extracranial events | 30 |
ASPIRE | United States | Multicenter, phase 3, randomized, double-blinded, parallel assignment, quadruple (Participant, Care Provider, Investigator, Outcomes Assessor) | Apixaban compared with aspirin | Incidence of stroke of any type (ischemic or hemorrhagic) or death from any cause | 15–180 |
ENRICH-AF | Canada | Multicenter, phase 3, randomized, open, blinded end point (PROBE), single (Outcomes Assessor) | Edoxaban compared with no anticoagulant | Stroke of any type and major hemorrhage as defined by ISTH criteria | 15 |
PRESTIGE-AF | Europe | Multicenter, phase 3b, randomized, parallel-group, open, blinded end point (PROBE), single (Outcomes Assessor) | DOAC (all types) compared with no anticoagulant | Time to the first ischemic stroke event and time to first recurrent ICH event | 15–180 |
Study | Patients | Intervention | Control | Outcome |
---|---|---|---|---|
CABANA—Packer (2019) (Ref. [47]) | n = 2204, symptomatic patients with AF aged 65 years and older or younger than 65 years with 1 or more risk factors for stroke | Ablation | Medical therapy (both rhythm and rate control) | Possible stroke reduction (statistically nonsignificant) |
Barra (2018) (Ref. [53]) | Meta-analysis of 13 studies including CABANA, n = 25,129 for ablation, 53,837 for medical treatment | Ablation (n = 25,129) | Medical therapy (n = 53,837) | Lower risk of cerebrovascular events (2.3% vs. 5.5%; RR = 0.57, 95%CI 0.46–0.70, p < 0.001) |
NNT 31 | ||||
Akerstrom (2024) (Ref. [52]) | Swedish National Patient Registry n = 48,786 | Ablation | Medical therapy, propensity-matched | Possible stroke reduction (HR 0.75, 95% CI 0.53 to 1.07). |
Saglietto (2020) (Ref. [51]) | Meta-analysis of CABANA and 8 matched registries | Ablation (n = 241,372) | Medical therapy (n = 213,661) | Reduction in stroke (HR, 0.63; 95% CI, 0.56–0.70; I2 = 23%; NNT = 59) in 3.5 years |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kato, Y.; Tsutsui, K.; Nakano, S.; Hayashi, T.; Suda, S. Cardioembolic Stroke: Past Advancements, Current Challenges, and Future Directions. Int. J. Mol. Sci. 2024, 25, 5777. https://doi.org/10.3390/ijms25115777
Kato Y, Tsutsui K, Nakano S, Hayashi T, Suda S. Cardioembolic Stroke: Past Advancements, Current Challenges, and Future Directions. International Journal of Molecular Sciences. 2024; 25(11):5777. https://doi.org/10.3390/ijms25115777
Chicago/Turabian StyleKato, Yuji, Kenta Tsutsui, Shintaro Nakano, Takeshi Hayashi, and Satoshi Suda. 2024. "Cardioembolic Stroke: Past Advancements, Current Challenges, and Future Directions" International Journal of Molecular Sciences 25, no. 11: 5777. https://doi.org/10.3390/ijms25115777
APA StyleKato, Y., Tsutsui, K., Nakano, S., Hayashi, T., & Suda, S. (2024). Cardioembolic Stroke: Past Advancements, Current Challenges, and Future Directions. International Journal of Molecular Sciences, 25(11), 5777. https://doi.org/10.3390/ijms25115777