Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer
Abstract
:1. Introduction
2. Genomics-Based Validation of Predictive and Prognostic Markers of GC
3. Epigenomics-Based Validation of Predictive and Prognostic Markers of GC
4. Transcriptmics-Based Validation of Predictive and Prognostic Markers of GC
5. Proteomics-Based Validation of Predictive and Prognostic Markers of GC
Number of Patients | Databases | Analytical Platform | Statistical Analysis | Proposed Proteomics-Based Biomarkers | Comments | Refs. |
---|---|---|---|---|---|---|
18 | GEO EGA TCGA | Nano-LC-MS PLGS ExpressionE tool algorithm MetaCoreTM KEGG Mapper PPI analyses | Kaplan–Meier Method | HSP, CHGA, TFF 1 and 2, REGIA, MAPK1 | IST1, VAT1, ALYREF, and HEXB were closely related with the worse survival. | [51] |
48 | TCGA TIMER GSCA | TMT-MS | Kaplan–Meier Plotter database | BCAT2, ALDH6A1, MCEE, PCCB, BCKDHB, DBT, AUH | The expression of BCAT2 was suppressed in cancerous samples from GC patients and was negatively correlated with survival. | [33] |
352 | TCGA TCPA RPPA | dplyr, ggplot2, and ggrepel software packages, https://ggrepel.slowkow.com. GO and KEGG analyses | Kaplan–Meier survival curve Cox regression analysis | COLLAGEN VI, CD20, TIGAR | Tri-protein was detected as an independent prognostic factor. | [48] |
N.A. | TCGA TCPA RPPA | MIFS algorithms PCA, PLS-DA, t-SN, and heatmap analysis | Kaplan–Meier survival analysis Cox regression analysis | MYH11, CD20, CHK1_pS345, AR, PR, HER3, MYH11, SMAD1 | RPPA-based functional proteomic data identified the functional proteome signatures. | [49] |
367 | TCGA-STAD | Nano LC-MS/MS Proteome Discoverer 2.4.0.305 software InterPro Protein Domains and Features KEGG pathways analysis mRNA-Seq | Student’s t-test or One-way ANOVA Kolmogorov–Smirnov test Brown–Forsythe test | LOX, LTBP2, and COL1A2 provide disease progression and patient poor prognosis. | ECM constituents that characterize the matrisome of GC contexts were identified. | [50] |
6. Metabolomics-Based Validation of Predictive and Prognostic Markers of GC
Number of Patients | Analytical Platform | Statistical Analysis | Proposed Proteomics-Based Biomarkers | Comments | Refs. |
---|---|---|---|---|---|
218 | Agilent MassHunter qualitative analysis software (version B.01.00, Agilent Technologies, Santa Clara, CA, USA) MetaboAnalyst | Kaplan–Meier analysis log-rank tests Multivariate Cox regression analyses Lasso regression | omithine, phenylacetyl-L-glutamine, porphobilinogen, linoleic acid, DL-dipalmitoyl phosphatidylcholine, 5′-methylthioadenosine, inosine triphosphate, paraxanthine | These metabolites were indicated as an independent prognostic factor. | [58] |
65 | LC-MS Total ion current spectra PCA | t-test, Support vector machine | sulfite, TG (54:2), TG (53:4), G3P, α-aminobutyric acid, α-CEHC, dodecanol, glutamyl alanine, 3-methyl alanine, 3-hydroxysteroid, CL (63:4), PE-NMe (40:5), retinol, MG (21:0/0:0/0:0), tetradecanoic acid, tridecanoic acid, octacosanoic acid and myristate glycine | These metabolites had independent risk factors for peritoneal metastasis of GC patients. | [59] |
31 | LC-MS | t-test | lysophosphatidic acids, triglycerides, lysine, and sphingosine-1-phosphate, phosphatidylcholine, oxidized ceramide, phosphatidylglycerol | These differential metabolites may be useful biomarkers for validating the prognosis and monitoring the recurrence of GC. | [61] |
181 | LC-MS Random survival forest method LC-MS analysis Wilcoxon rank-sum test KEGG pathway enrichment analysis | Kaplan–Meier curves LASSO regression algorithm | symmetric dimethylarginine/asymmetric dimethylarginine, neopterin, thymine, glucuronate, hydroxyproline, 14:0 Carnitine, indole acrylate, 8:0 Carnitine, acetylalanine, 2-aminoadipate, and GlcNAc6p | Eleven metabolites significantly discriminated the prognosis of GC patients. | [62] |
37 | LC-MS GC-MS Waters ACQUITY UPLC ChromaTOF TargetSearch | Normalization Autoencoder t-test | PE 38:4, threonic acid, l-lysyl-l-glutamine, temorine | These metabolites differed before and after surgery. | [63] |
218 | mGWAS GO enrichment analysis Cytoscape software, https://cytoscape.org/ | Multifactorial Cox regression analysis | VENTX, PCDH7, JAKMIP1, MIR202HG, MIR378D1, LINC02472, and LINC02310 | These functional genes regulate the metabolites via related pathways and thereby affect GC survival. | [65] |
7. Pharmacogenomics-Based Validation of Predictive Markers of GC
8. Discussion and Future Directions
9. Materials and Methods
10. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef] [PubMed]
- Ajani, J.A.; Lee, J.; Sano, T.; Janjigian, Y.Y.; Fan, D.; Song, S. Gastric adenocarcinoma. Nat. Rev. Dis. Primers 2017, 3, 17036. [Google Scholar] [CrossRef] [PubMed]
- Katona, B.W.; Rustgi, A.K. Gastric Cancer Genomics: Advances and Future Directions. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 211–217. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; Yuen, S.T.; Xu, J.; Lee, S.P.; Yan, H.H.; Shi, S.T.; Siu, H.C.; Deng, S.; Chu, K.M.; Law, S.; et al. Whole-genome sequencing and comprehensive molecular profiling identify new driver mutations in gastric cancer. Nat. Genet. 2014, 46, 573–582. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-generation sequencing technologies: An overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef]
- Jiang, P.; Sinha, S.; Aldape, K.; Hannenhalli, S.; Sahinalp, C.; Ruppin, E. Big data in basic and translational cancer research. Nat. Rev. Cancer 2022, 22, 625–639. [Google Scholar] [CrossRef] [PubMed]
- Phillips, K.A. Assessing the Value of Next-Generation Sequencing Technologies: An Introduction. Value Health 2018, 21, 1031–1032. [Google Scholar] [CrossRef] [PubMed]
- Nicora, G.; Vitali, F.; Dagliati, A.; Geifman, N.; Bellazzi, R. Integrated Multi-Omics Analyses in Oncology: A Review of Machine Learning Methods and Tools. Front. Oncol. 2020, 10, 1030. [Google Scholar] [CrossRef]
- Li, C.; Sun, Y.D.; Yu, G.Y.; Cui, J.R.; Lou, Z.; Zhang, H.; Huang, Y.; Bai, C.G.; Deng, L.L.; Liu, P.; et al. Integrated Omics of Metastatic Colorectal Cancer. Cancer Cell 2020, 38, 734–747.e9. [Google Scholar] [CrossRef]
- Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 2008, 9, 559. [Google Scholar] [CrossRef] [PubMed]
- Szklarczyk, D.; Franceschini, A.; Wyder, S.; Forslund, K.; Heller, D.; Huerta-Cepas, J.; Simonovic, M.; Roth, A.; Santos, A.; Tsafou, K.P.; et al. STRING v10: Protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res. 2015, 43, D447–D452. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.L.; Xie, M.Z.; Li, K.Z.; Li, J.L.; Gui, Y.C.; Xu, J.W. Genome-wide analysis to identify a novel distant metastasis-related gene signature predicting survival in patients with gastric cancer. Biomed. Pharmacother. 2019, 117, 109159. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Yang, M. Identification by Bioinformatics Analysis of Potential Key Genes Related to the Progression and Prognosis of Gastric Cancer. Front. Oncol. 2022, 12, 881015. [Google Scholar] [CrossRef]
- Li, X.; Duan, Y.; Hao, Y. Identification of super enhancer-associated key genes for prognosis of germinal center B-cell type diffuse large B-cell lymphoma by integrated analysis. BMC Med. Genom. 2021, 14, 69. [Google Scholar] [CrossRef]
- Guo, H.; Yang, J.; Liu, S.; Qin, T.; Zhao, Q.; Hou, X.; Ren, L. Prognostic marker identification based on weighted gene co-expression network analysis and associated in vitro confirmation in gastric cancer. Bioengineered 2021, 12, 4666–4680. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Ding, Y.; Wu, M.; Lyu, X.; Wang, H.; Chen, Y.; Wang, H.; Teng, L. Identification of TYROBP and C1QB as Two Novel Key Genes With Prognostic Value in Gastric Cancer by Network Analysis. Front. Oncol. 2020, 10, 1765. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Pang, H.; He, Q.; Pan, B.; Sun, X.; Shan, J.; Wu, L.; Wu, K.; Yao, X.; Guo, Y. A novel strategy to identify candidate diagnostic and prognostic biomarkers for gastric cancer. Cancer Cell Int. 2021, 21, 335. [Google Scholar] [CrossRef] [PubMed]
- Chivu-Economescu, M.; Necula, L.G.; Matei, L.; Dragu, D.; Bleotu, C.; Sorop, A.; Herlea, V.; Dima, S.; Popescu, I.; Diaconu, C.C. Collagen Family and Other Matrix Remodeling Proteins Identified by Bioinformatics Analysis as Hub Genes Involved in Gastric Cancer Progression and Prognosis. Int. J. Mol. Sci. 2022, 23, 3214. [Google Scholar] [CrossRef]
- Ilango, S.; Paital, B.; Jayachandran, P.; Padma, P.R.; Nirmaladevi, R. Epigenetic alterations in cancer. Front. Biosci. (Landmark Ed.) 2020, 25, 1058–1109. [Google Scholar] [CrossRef]
- Bernstein, B.E.; Stamatoyannopoulos, J.A.; Costello, J.F.; Ren, B.; Milosavljevic, A.; Meissner, A.; Kellis, M.; Marra, M.A.; Beaudet, A.L.; Ecker, J.R.; et al. The NIH Roadmap Epigenomics Mapping Consortium. Nat. Biotechnol. 2010, 28, 1045–1048. [Google Scholar] [CrossRef] [PubMed]
- Weisenberger, D.J. Characterizing DNA methylation alterations from The Cancer Genome Atlas. J. Clin. Investig. 2014, 124, 17–23. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Gonen, M.; Smith, J.J.; DeMatteo, R.P. Nomograms in oncology: More than meets the eye. Lancet Oncol. 2015, 16, e173–e180. [Google Scholar] [CrossRef] [PubMed]
- Bai, Y.; Wei, C.; Zhong, Y.; Zhang, Y.; Long, J.; Huang, S.; Xie, F.; Tian, Y.; Wang, X.; Zhao, H. Development and Validation of a Prognostic Nomogram for Gastric Cancer Based on DNA Methylation-Driven Differentially Expressed Genes. Int. J. Biol. Sci. 2020, 16, 1153–1165. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Li, L.; Wang, L.; Wang, C.; Hu, X.; Jiang, Q.; Wang, X.; Xue, G.; Liu, Y.; Xue, D. Recognition of DNA Methylation Molecular Features for Diagnosis and Prognosis in Gastric Cancer. Front. Genet. 2021, 12, 758926. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Sun, R.; Zhang, Y.; Yuan, Y.; Miao, Y. A methylation-based mRNA signature predicts survival in patients with gastric cancer. Cancer Cell Int. 2020, 20, 284. [Google Scholar] [CrossRef] [PubMed]
- Mantione, K.J.; Kream, R.M.; Kuzelova, H.; Ptacek, R.; Raboch, J.; Samuel, J.M.; Stefano, G.B. Comparing bioinformatic gene expression profiling methods: Microarray and RNA-Seq. Med. Sci. Monit. Basic. Res. 2014, 20, 138–142. [Google Scholar] [CrossRef]
- Lowe, R.; Shirley, N.; Bleackley, M.; Dolan, S.; Shafee, T. Transcriptomics technologies. PLoS Comput. Biol. 2017, 13, e1005457. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Gerstein, M.; Snyder, M. RNA-Seq: A revolutionary tool for transcriptomics. Nat. Rev. Genet. 2009, 10, 57–63. [Google Scholar] [CrossRef]
- Jacquier, A. The complex eukaryotic transcriptome: Unexpected pervasive transcription and novel small RNAs. Nat. Rev. Genet. 2009, 10, 833–844. [Google Scholar] [CrossRef]
- Pan, J.; Gao, Y. Prognostic significance and immune characteristics of GPR27 in gastric cancer. Aging 2023, 15, 9144–9166. [Google Scholar] [CrossRef] [PubMed]
- Kashima, Y.; Sakamoto, Y.; Kaneko, K.; Seki, M.; Suzuki, Y.; Suzuki, A. Single-cell sequencing techniques from individual to multiomics analyses. Exp. Mol. Med. 2020, 52, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Liu, K.; Luo, Y.; Kang, M.; Wang, J.; Chen, G.; Qi, J.; Wu, W.; Wang, B.; Han, Y.; et al. Single-Cell Profiling of Tumor Immune Microenvironment Reveals Immune Irresponsiveness in Gastric Signet-Ring Cell Carcinoma. Gastroenterology 2023, 165, 88–103. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, W.; Feng, W.; Wang, X.; Lei, T.; Chen, Z.; Song, W. Identification of 14 Differentially-Expressed Metabolism-Related Genes as Potential Targets of Gastric Cancer by Integrated Proteomics and Transcriptomics. Front. Cell Dev. Biol. 2022, 10, 816249. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Chen, X.; Alattar, M.; Wei, J.; Liu, H. MicroRNAs in tumorigenesis, metastasis, diagnosis and prognosis of gastric cancer. Cancer Gene Ther. 2015, 22, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, F.; Yang, Q. The regulatory roles and potential prognosis implications of long non-coding RNAs in gastric cancer. Histol. Histopathol. 2020, 35, 433–442. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, C.D.; Ma, M.H.; Dai, D.Q. Three-microRNA signature identified by bioinformatics analysis predicts prognosis of gastric cancer patients. World J. Gastroenterol. 2018, 24, 1206–1215. [Google Scholar] [CrossRef] [PubMed]
- Dos Santos, E.C.; Rohan, P.; Binato, R.; Abdelhay, E. Integrated Network Analysis of microRNAs, mRNAs, and Proteins Reveals the Regulatory Interaction between hsa-mir-200b and CFL2 Associated with Advanced Stage and Poor Prognosis in Patients with Intestinal Gastric Cancer. Cancers 2023, 15, 5374. [Google Scholar] [CrossRef]
- Lin, C.; Yang, L. Long Noncoding RNA in Cancer: Wiring Signaling Circuitry. Trends Cell Biol. 2018, 28, 287–301. [Google Scholar] [CrossRef]
- Li, G.; Huo, D.; Guo, N.; Li, Y.; Ma, H.; Liu, L.; Xie, H.; Zhang, D.; Qu, B.; Chen, X. Integrating multiple machine learning algorithms for prognostic prediction of gastric cancer based on immune-related lncRNAs. Front. Genet. 2023, 14, 1106724. [Google Scholar] [CrossRef]
- Qi, X.; Chen, X.; Zhao, Y.; Chen, J.; Niu, B.; Shen, B. Prognostic Roles of ceRNA Network-Based Signatures in Gastrointestinal Cancers. Front. Oncol. 2022, 12, 921194. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, W.; Jiang, Y.; Liu, K.; Ran, L.; Song, F. Identification of functional lncRNAs in gastric cancer by integrative analysis of GEO and TCGA data. J. Cell. Biochem. 2019, 120, 17898–17911. [Google Scholar] [CrossRef] [PubMed]
- Liao, T.; Lu, Y.; Li, W.; Wang, K.; Zhang, Y.; Luo, Z.; Ju, Y.; Ouyang, M. Construction and validation of a glycolysis-related lncRNA signature for prognosis prediction in Stomach Adenocarcinoma. Front. Genet. 2022, 13, 794621. [Google Scholar] [CrossRef] [PubMed]
- Dai, J.; Li, Z.X.; Zhang, Y.; Ma, J.L.; Zhou, T.; You, W.C.; Li, W.Q.; Pan, K.F. Whole Genome Messenger RNA Profiling Identifies a Novel Signature to Predict Gastric Cancer Survival. Clin. Transl. Gastroenterol. 2019, 10, e00004. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Hu, S.; Chen, Q.; Shu, L.; Wang, P.; Wang, J. Integrated bioinformatics analysis of noncoding RNAs with tumor immune microenvironment in gastric cancer. Sci. Rep. 2023, 13, 15006. [Google Scholar] [CrossRef] [PubMed]
- Hedl, T.J.; San Gil, R.; Cheng, F.; Rayner, S.L.; Davidson, J.M.; De Luca, A.; Villalva, M.D.; Ecroyd, H.; Walker, A.K.; Lee, A. Proteomics Approaches for Biomarker and Drug Target Discovery in ALS and FTD. Front. Neurosci. 2019, 13, 548. [Google Scholar] [CrossRef] [PubMed]
- Li, D.; Chan, D.W. Proteomic cancer biomarkers from discovery to approval: It’s worth the effort. Expert. Rev. Proteom. 2014, 11, 135–136. [Google Scholar] [CrossRef] [PubMed]
- Zheng, G.L.; Zhang, G.J.; Zhao, Y.; Zheng, Z.C. Screening Protein Prognostic Biomarkers for Stomach Adenocarcinoma Based on The Cancer Proteome Atlas. Front. Oncol. 2022, 12, 901182. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Gao, X.; Wang, J. Functional Proteomic Profiling Analysis in Four Major Types of Gastrointestinal Cancers. Biomolecules 2023, 13, 701. [Google Scholar] [CrossRef]
- Moreira, A.M.; Ferreira, R.M.; Carneiro, P.; Figueiredo, J.; Osorio, H.; Barbosa, J.; Preto, J.; Pinto-do, O.P.; Carneiro, F.; Seruca, R. Proteomic Identification of a Gastric Tumor ECM Signature Associated With Cancer Progression. Front. Mol. Biosci. 2022, 9, 818552. [Google Scholar] [CrossRef]
- Santos, E.C.; Binato, R.; Fernandes, P.V.; Ferreira, M.A.; Abdelhay, E. The protein-protein interaction network of intestinal gastric cancer patients reveals hub proteins with potential prognostic value. Cancer Biomark. 2022, 33, 83–96. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Xia, X.; Wang, X.; Bai, M.; Zhan, D.; Shu, K. Deep Learning-Based Protein Features Predict Overall Survival and Chemotherapy Benefit in Gastric Cancer. Front. Oncol. 2022, 12, 847706. [Google Scholar] [CrossRef] [PubMed]
- Clish, C.B. Metabolomics: An emerging but powerful tool for precision medicine. Cold Spring Harb. Mol. Case Stud. 2015, 1, a000588. [Google Scholar] [CrossRef]
- Kaushik, A.K.; DeBerardinis, R.J. Applications of metabolomics to study cancer metabolism. Biochim. Biophys. Acta Rev. Cancer 2018, 1870, 2–14. [Google Scholar] [CrossRef]
- Vernieri, C.; Casola, S.; Foiani, M.; Pietrantonio, F.; de Braud, F.; Longo, V. Targeting Cancer Metabolism: Dietary and Pharmacologic Interventions. Cancer Discov. 2016, 6, 1315–1333. [Google Scholar] [CrossRef] [PubMed]
- Aftabi, Y.; Soleymani, J.; Jouyban, A. Efficacy of Analytical Technologies in Metabolomics Studies of the Gastrointestinal Cancers. Crit. Rev. Anal. Chem. 2022, 52, 1593–1605. [Google Scholar] [CrossRef]
- Lei, C.; Gong, D.; Zhuang, B.; Zhang, Z. Alterations in the gastric microbiota and metabolites in gastric cancer: An update review. Front. Oncol. 2022, 12, 960281. [Google Scholar] [CrossRef]
- Cao, K.; Lyu, Y.; Chen, J.; He, C.; Lyu, X.; Zhang, Y.; Chen, L.; Jiang, Y.; Xiang, J.; Liu, B.; et al. Prognostic Implication of Plasma Metabolites in Gastric Cancer. Int. J. Mol. Sci. 2023, 24, 12774. [Google Scholar] [CrossRef]
- Pan, G.; Ma, Y.; Suo, J.; Li, W.; Zhang, Y.; Qin, S.; Jiao, Y.; Zhang, S.; Li, S.; Kong, Y.; et al. Discovering Biomarkers in Peritoneal Metastasis of Gastric Cancer by Metabolomics. OncoTargets Ther. 2020, 13, 7199–7211. [Google Scholar] [CrossRef]
- Sun, H.; Huang, X.; Wang, Z.; Zhang, G.; Mei, Y.; Wang, Y.; Nie, Z.; Wang, S. Triglyceride-to-high density lipoprotein cholesterol ratio predicts clinical outcomes in patients with gastric cancer. J. Cancer 2019, 10, 6829–6836. [Google Scholar] [CrossRef]
- Qu, T.; Zhang, S.; Yang, S.; Li, S.; Wang, D. Utilizing serum metabolomics for assessing postoperative efficacy and monitoring recurrence in gastric cancer patients. BMC Cancer 2024, 24, 27. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Wang, B.; Zhao, Y.; Shao, X.; Wang, M.; Ma, F.; Yang, L.; Nie, M.; Jin, P.; Yao, K.; et al. Metabolomic machine learning predictor for diagnosis and prognosis of gastric cancer. Nat. Commun. 2024, 15, 1657. [Google Scholar] [CrossRef] [PubMed]
- Song, G.; Wang, L.; Tang, J.; Li, H.; Pang, S.; Li, Y.; Liu, L.; Hu, J. Circulating metabolites as potential biomarkers for the early detection and prognosis surveillance of gastrointestinal cancers. Metabolomics 2023, 19, 36. [Google Scholar] [CrossRef] [PubMed]
- Chang, L.; Zhou, G.; Ou, H.; Xia, J. mGWAS-Explorer: Linking SNPs, Genes, Metabolites, and Diseases for Functional Insights. Metabolites 2022, 12, 526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Lyu, Y.; Chen, L.; Cao, K.; Chen, J.; He, C.; Lyu, X.; Jiang, Y.; Xiang, J.; Liu, B.; et al. Exploring the Prognosis-Related Genetic Variation in Gastric Cancer Based on mGWAS. Int. J. Mol. Sci. 2023, 24, 15259. [Google Scholar] [CrossRef] [PubMed]
- Horak, P.; Heining, C.; Kreutzfeldt, S.; Hutter, B.; Mock, A.; Hullein, J.; Frohlich, M.; Uhrig, S.; Jahn, A.; Rump, A.; et al. Comprehensive Genomic and Transcriptomic Analysis for Guiding Therapeutic Decisions in Patients with Rare Cancers. Cancer Discov. 2021, 11, 2780–2795. [Google Scholar] [CrossRef] [PubMed]
- Morganti, S.; Tarantino, P.; Ferraro, E.; D’Amico, P.; Duso, B.A.; Curigliano, G. Next Generation Sequencing (NGS): A Revolutionary Technology in Pharmacogenomics and Personalized Medicine in Cancer. Adv. Exp. Med. Biol. 2019, 1168, 9–30. [Google Scholar] [CrossRef] [PubMed]
- Sa, J.K.; Hong, J.Y.; Lee, I.K.; Kim, J.S.; Sim, M.H.; Kim, H.J.; An, J.Y.; Sohn, T.S.; Lee, J.H.; Bae, J.M.; et al. Comprehensive pharmacogenomic characterization of gastric cancer. Genome Med. 2020, 12, 17. [Google Scholar] [CrossRef]
- Pan, J.; Xiang, Z.; Dai, Q.; Wang, Z.; Liu, B.; Li, C. Prediction of platinum-resistance patients of gastric cancer using bioinformatics. J. Cell. Biochem. 2019, 120, 13478–13486. [Google Scholar] [CrossRef]
- Hescheler, D.A.; Plum, P.S.; Zander, T.; Quaas, A.; Korenkov, M.; Gassa, A.; Michel, M.; Bruns, C.J.; Alakus, H. Identification of targeted therapy options for gastric adenocarcinoma by comprehensive analysis of genomic data. Gastric Cancer 2020, 23, 627–638. [Google Scholar] [CrossRef]
- Yang, H.; Zou, X.; Yang, S.; Zhang, A.; Li, N.; Ma, Z. Identification of lactylation related model to predict prognostic, tumor infiltrating immunocytes and response of immunotherapy in gastric cancer. Front. Immunol. 2023, 14, 1149989. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Xu, C.; Wang, B.; Xu, F.; Ma, F.; Qu, Y.; Jiang, D.; Li, K.; Feng, J.; Tian, S.; et al. Proteomic characterization of gastric cancer response to chemotherapy and targeted therapy reveals new therapeutic strategies. Nat. Commun. 2022, 13, 5723. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Yan, S.K.; Dai, W.X.; Liu, X.R.; Zhang, W.D.; Wang, J.J. A metabonomic approach to chemosensitivity prediction of cisplatin plus 5-fluorouracil in a human xenograft model of gastric cancer. Int. J. Cancer 2010, 127, 2841–2850. [Google Scholar] [CrossRef] [PubMed]
- Sasada, S.; Miyata, Y.; Tsutani, Y.; Tsuyama, N.; Masujima, T.; Hihara, J.; Okada, M. Metabolomic analysis of dynamic response and drug resistance of gastric cancer cells to 5-fluorouracil. Oncol. Rep. 2013, 29, 925–931. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.B.; Yang, J.Y.; Kwack, S.J.; Kim, H.S.; Ryu, D.H.; Kim, Y.J.; Bae, J.Y.; Lim, D.S.; Choi, S.M.; Kwon, M.J.; et al. Potential metabolomic biomarkers for evaluation of adriamycin efficacy using a urinary 1H-NMR spectroscopy. J. Appl. Toxicol. 2013, 33, 1251–1259. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Li, W.; Yin, L.; Du, Y.; Zhang, S.; Suo, J. Association of serum levels of deoxyribose 1-phosphate and S-lactoylglutathione with neoadjuvant chemotherapy sensitivity in patients with gastric cancer: A metabolomics study. Oncol. Lett. 2020, 19, 2231–2242. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Cristescu, R.; Lee, J.; Nebozhyn, M.; Kim, K.M.; Ting, J.C.; Wong, S.S.; Liu, J.; Yue, Y.G.; Wang, J.; Yu, K.; et al. Molecular analysis of gastric cancer identifies subtypes associated with distinct clinical outcomes. Nat. Med. 2015, 21, 449–456. [Google Scholar] [CrossRef]
- Wang, H.; Ding, Y.; Chen, Y.; Jiang, J.; Chen, Y.; Lu, J.; Kong, M.; Mo, F.; Huang, Y.; Zhao, W.; et al. A novel genomic classification system of gastric cancer via integrating multidimensional genomic characteristics. Gastric Cancer 2021, 24, 1227–1241. [Google Scholar] [CrossRef]
- Furukawa, K.; Hatakeyama, K.; Terashima, M.; Nagashima, T.; Urakami, K.; Ohshima, K.; Notsu, A.; Sugino, T.; Yagi, T.; Fujiya, K.; et al. Molecular classification of gastric cancer predicts survival in patients undergoing radical gastrectomy based on project HOPE. Gastric Cancer 2022, 25, 138–148. [Google Scholar] [CrossRef]
- Lin, Y.; Pan, X.; Zhao, L.; Yang, C.; Zhang, Z.; Wang, B.; Gao, Z.; Jiang, K.; Ye, Y.; Wang, S.; et al. Immune cell infiltration signatures identified molecular subtypes and underlying mechanisms in gastric cancer. NPJ Genom. Med. 2021, 6, 83. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Ma, J. Molecular characterization of metabolic subtypes of gastric cancer based on metabolism-related lncRNA. Sci. Rep. 2021, 11, 21491. [Google Scholar] [CrossRef]
- Wu, D.; Feng, M.; Shen, H.; Shen, X.; Hu, J.; Liu, J.; Yang, Y.; Li, Y.; Yang, M.; Wang, W.; et al. Prediction of Two Molecular Subtypes of Gastric Cancer Based on Immune Signature. Front. Genet. 2021, 12, 793494. [Google Scholar] [CrossRef] [PubMed]
- Cheong, J.H.; Wang, S.C.; Park, S.; Porembka, M.R.; Christie, A.L.; Kim, H.; Kim, H.S.; Zhu, H.; Hyung, W.J.; Noh, S.H.; et al. Development and validation of a prognostic and predictive 32-gene signature for gastric cancer. Nat. Commun. 2022, 13, 774. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Yang, W.; Ruan, X.; Xu, L.; Cheng, W.; Zhao, M.; Wang, X.; Chen, X.; Cai, D.; Li, G.; et al. Metabolism-associated molecular classification of gastric adenocarcinoma. Front. Oncol. 2022, 12, 1024985. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Yuan, Y.; Lu, H.; Li, X.; Liu, Z.; Gan, J.; Yue, Z.; Wu, J.; Sheng, J.; Xin, L. Cancer functional states-based molecular subtypes of gastric cancer. J. Transl. Med. 2023, 21, 80. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.; Li, M.; Deng, J.; Xu, H.; Ren, Y.; Zhou, Z.; Wang, L.; Zhang, Y.; Xing, Z.; Li, L.; et al. Epigenetically regulated gene expression profiles decipher four molecular subtypes with prognostic and therapeutic implications in gastric cancer. Clin. Epigenetics 2023, 15, 64. [Google Scholar] [CrossRef] [PubMed]
- Diaz Del Arco, C.; Fernandez Acenero, M.J.; Ortega Medina, L. Molecular Classifications in Gastric Cancer: A Call for Interdisciplinary Collaboration. Int. J. Mol. Sci. 2024, 25, 2649. [Google Scholar] [CrossRef] [PubMed]
- Mani, D.R.; Krug, K.; Zhang, B.; Satpathy, S.; Clauser, K.R.; Ding, L.; Ellis, M.; Gillette, M.A.; Carr, S.A. Cancer proteogenomics: Current impact and future prospects. Nat. Rev. Cancer 2022, 22, 298–313. [Google Scholar] [CrossRef]
- Shi, W.; Wang, Y.; Xu, C.; Li, Y.; Ge, S.; Bai, B.; Zhang, K.; Wang, Y.; Zheng, N.; Wang, J.; et al. Multilevel proteomic analyses reveal molecular diversity between diffuse-type and intestinal-type gastric cancer. Nat. Commun. 2023, 14, 835. [Google Scholar] [CrossRef]
- Zhao, S.; Wang, R.; Song, S.; Hao, D.; Han, G.; Song, X.; Zhang, J.; Pizzi, M.P.; Shanbhag, N.; Futreal, A.; et al. Proteogenomic landscape of gastric adenocarcinoma peritoneal metastases. iScience 2023, 26, 106913. [Google Scholar] [CrossRef] [PubMed]
- Cullin, N.; Azevedo Antunes, C.; Straussman, R.; Stein-Thoeringer, C.K.; Elinav, E. Microbiome and cancer. Cancer Cell 2021, 39, 1317–1341. [Google Scholar] [CrossRef] [PubMed]
- Zitvogel, L.; Galluzzi, L.; Viaud, S.; Vetizou, M.; Daillere, R.; Merad, M.; Kroemer, G. Cancer and the gut microbiota: An unexpected link. Sci. Transl. Med. 2015, 7, 271ps1. [Google Scholar] [CrossRef] [PubMed]
- Janney, A.; Powrie, F.; Mann, E.H. Host-microbiota maladaptation in colorectal cancer. Nature 2020, 585, 509–517. [Google Scholar] [CrossRef] [PubMed]
- Polk, D.B.; Peek, R.M., Jr. Helicobacter pylori: Gastric cancer and beyond. Nat. Rev. Cancer 2010, 10, 403–414. [Google Scholar] [CrossRef] [PubMed]
- Lehr, K.; Nikitina, D.; Vilchez-Vargas, R.; Steponaitiene, R.; Thon, C.; Skieceviciene, J.; Schanze, D.; Zenker, M.; Malfertheiner, P.; Kupcinskas, J.; et al. Microbial composition of tumorous and adjacent gastric tissue is associated with prognosis of gastric cancer. Sci. Rep. 2023, 13, 4640. [Google Scholar] [CrossRef] [PubMed]
- Vaske, C.J.; Benz, S.C.; Sanborn, J.Z.; Earl, D.; Szeto, C.; Zhu, J.; Haussler, D.; Stuart, J.M. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics 2010, 26, i237–i245. [Google Scholar] [CrossRef] [PubMed]
- Mo, Q.; Wang, S.; Seshan, V.E.; Olshen, A.B.; Schultz, N.; Sander, C.; Powers, R.S.; Ladanyi, M.; Shen, R. Pattern discovery and cancer gene identification in integrated cancer genomic data. Proc. Natl. Acad. Sci. USA 2013, 110, 4245–4250. [Google Scholar] [CrossRef] [PubMed]
- Yuan, Y.; Savage, R.S.; Markowetz, F. Patient-specific data fusion defines prognostic cancer subtypes. PLOS Comput. Biol. 2011, 7, e1002227. [Google Scholar] [CrossRef]
- Wang, B.; Mezlini, A.M.; Demir, F.; Fiume, M.; Tu, Z.; Brudno, M.; Haibe-Kains, B.; Goldenberg, A. Similarity network fusion for aggregating data types on a genomic scale. Nat. Methods 2014, 11, 333–337. [Google Scholar] [CrossRef]
- Hernandez-de-Diego, R.; Tarazona, S.; Martinez-Mira, C.; Balzano-Nogueira, L.; Furio-Tari, P.; Pappas, G.J., Jr.; Conesa, A. PaintOmics 3: A web resource for the pathway analysis and visualization of multi-omics data. Nucleic Acids Res. 2018, 46, W503–W509. [Google Scholar] [CrossRef] [PubMed]
- Canzler, S.; Hackermuller, J. multiGSEA: A GSEA-based pathway enrichment analysis for multi-omics data. BMC Bioinform. 2020, 21, 561. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Basunia, A.; Peters, B.; Gholami, A.M.; Kuster, B.; Culhane, A.C. MOGSA: Integrative Single Sample Gene-set Analysis of Multiple Omics Data. Mol. Cell. Proteom. 2019, 18 (Suppl. S1), S153–S168. [Google Scholar] [CrossRef] [PubMed]
- Franz, M.; Lopes, C.T.; Fong, D.; Kucera, M.; Cheung, M.; Siper, M.C.; Huck, G.; Dong, Y.; Sumer, O.; Bader, G.D. Cytoscape.js 2023 update: A graph theory library for visualization and analysis. Bioinformatics 2023, 39, btad031. [Google Scholar] [CrossRef] [PubMed]
- Shi, Q.; Zhang, C.; Peng, M.; Yu, X.; Zeng, T.; Liu, J.; Chen, L. Pattern fusion analysis by adaptive alignment of multiple heterogeneous omics data. Bioinformatics 2017, 33, 2706–2714. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.; Shrestha, S.; Draghici, S.; Nguyen, T. PINSPlus: A tool for tumor subtype discovery in integrated genomic data. Bioinformatics 2019, 35, 2843–2846. [Google Scholar] [CrossRef] [PubMed]
- Rappoport, N.; Shamir, R. NEMO: Cancer subtyping by integration of partial multi-omic data. Bioinformatics 2019, 35, 3348–3356. [Google Scholar] [CrossRef] [PubMed]
- Welham, Z.; Dejean, S.; Le Cao, K.A. Multivariate Analysis with the R Package mixOmics. Methods Mol. Biol. 2023, 2426, 333–359. [Google Scholar] [CrossRef] [PubMed]
- Meng, C.; Helm, D.; Frejno, M.; Kuster, B. moCluster: Identifying Joint Patterns Across Multiple Omics Data Sets. J. Proteome Res. 2016, 15, 755–765. [Google Scholar] [CrossRef]
- Yang, Z.; Michailidis, G. A non-negative matrix factorization method for detecting modules in heterogeneous omics multi-modal data. Bioinformatics 2016, 32, 1–8. [Google Scholar] [CrossRef]
- Subramanian, I.; Verma, S.; Kumar, S.; Jere, A.; Anamika, K. Multi-omics Data Integration, Interpretation, and Its Application. Bioinform. Biol. Insights 2020, 14, 1177932219899051. [Google Scholar] [CrossRef] [PubMed]
- Athieniti, E.; Spyrou, G.M. A guide to multi-omics data collection and integration for translational medicine. Comput. Struct. Biotechnol. J. 2023, 21, 134–149. [Google Scholar] [CrossRef] [PubMed]
- Ghandikota, S.; Hershey, G.K.K.; Mersha, T.B. GENEASE: Real time bioinformatics tool for multi-omics and disease ontology exploration, analysis and visualization. Bioinformatics 2018, 34, 3160–3168. [Google Scholar] [CrossRef] [PubMed]
- Jha, V.; Singh, G.; Kumar, S.; Sonawane, A.; Jere, A.; Anamika, K. CGDV: A webtool for circular visualization of genomics and transcriptomics data. BMC Genom. 2017, 18, 823. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Datta, A.; Tan, K.; Choi, H. SLIDE—A web-based tool for interactive visualization of large-scale—Omics data. Bioinformatics 2019, 35, 346–348. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Sui, Z.; Zhang, H.; Wang, Y.; Yu, Z. Integrated Analysis of lncRNA-Mediated ceRNA Network in Lung Adenocarcinoma. Front. Oncol. 2020, 10, 554759. [Google Scholar] [CrossRef]
- Chen, S.; Zang, Y.; Xu, B.; Lu, B.; Ma, R.; Miao, P.; Chen, B. An Unsupervised Deep Learning-Based Model Using Multiomics Data to Predict Prognosis of Patients with Stomach Adenocarcinoma. Comput. Math. Methods Med. 2022, 2022, 5844846. [Google Scholar] [CrossRef]
Number of Patients | Databases | Analytical Platform | Statistical Analysis | Gene set Identified | Comments | Refs. |
---|---|---|---|---|---|---|
415 | TCGA | EdgeR and DESeq packages GO and KEGG pathway enrichment analyses | Cox regression analysis | PCOLCE2, TMEM132C, UPK1B, SLITRK2, PM20D1, FLJ3502 | Six distant metastasis-related genes can be an independent indicator of the prognosis of GC and as a clinically useful classification tool to facilitate individualized GC therapy. | [13] |
N.A. | GEO (GSE84433, GSE26942) TCGA | Limma and pheatmap package WGCNA GO and KEGG pathway enrichment analyses | Kaplan–Meier Plotter | CST1, CEMIP, COL8A1, PMEPA1, MSLN | Five genes were identified as the hub genes by utilizing WGCNA. CEMIP plays an important role in GC progression | [16] |
375 | TGCA TIMER | Limma package WGCNA | Cox analysis | RXRG, AGT, BCHE, UBE2QL1, PLCXD3, ADCYAP1R1, NRCAM, MAMDC2, CDH19, GAMT | AGT expression is higher in GC and BRD9, GOLPH3, NOM1, KLHL25, and PSMD11 interact with AGT, which is closely related to the poor prognosis. | [14] |
60 | GEO (GSE15459) TCGA | GO cellular component analysis | Cox regression analysis | AGT, SERPINH1, MMP7 | The exosome levels of AGT and MMP7 were associated with the serum level and stimulated migration of GC cell lines. | [18] |
747 | GEO (GSE65801, GSE54129, GSE118916, GSE15459, GSE51575, GSE65801) TCGA-STAD | Limma and edgeR R packages GO and KEGG pathway enrichment analyses WGCNA PPI network TIMER | Kaplan–Meier survival analysis log-rank test | TRYOBP, C1QB | TRYOBP and C1QB were correlated with the CD8+ T cells, CD4+ T cells, and macrophages | [17] |
351 | GEO (GSE103236,GSE13911, GSE79973) | Geo2R analysis. DAVID, GO, and KEGG pathway enrichment analyses PPI network TIMER | Kaplan–Meier plotter | CTHRC1, BGN, FAP, THBS2, COL12A1, COL5A2, SULF1, SPP1, COL10A1 | Nine genes negatively correlated with poor outcomes and an immune infiltrate based especially on immunosuppressive M2 macrophages. | [19] |
Number of Patients | Databases | Analytical Platform | Statistical Analysis | Gene set Identified | Comments | Refs. |
---|---|---|---|---|---|---|
343 | GEO (GSE62254) TCGA cBioPortal GSEA | DESeq package DAVID ConsensusPathDB MethylMix analysis GO and KEGG pathway enrichment analyses | Kaplan–Meier analysis LASSO Cox regression model | PODN, MYO1A, NPY, MICU3, TUBB6, RHOJ | Six DNA methylation-driven DEGs identified using an OS nomogram were associated with good prognosis. | [24] |
192 | GEO (GSE13911, GSE30601, GSE79973, GSE25869, GSE15459) TCGA | Illumina microarray platform Geo2R analysis. DAVID, GO and KEGG pathway enrichment analyses | Cox and LASSO regression analysis Kaplan–Meier method | TREM2, MICAL2, INHBA, PCSK5, NRP1, YAP1, RAI14, MATN3 | The eight-MDEGs signature risk score showed statistical significance as an independent variable. | [26] |
443 | GEO (GSE30601) TCGA | Wilcoxon test Pheatmappackage cBioPortal KEGG pathway enrichment analyses PPI network | Cox and LASSO regression analysis Kaplan–Meier method | CEP290, CCDC69, UBXN8, KDM4A, AKR1B1, RASSF2, CHRNB2, EGR1, ARMC9, RPN1 | Eleven prognostic-related DMSs were positively correlated with the VIM gene and negatively correlated with the CDH1 gene. | [25] |
Number of Patients | Databases | Analytical Platform | Statistical Analysis | Gene Set Identified | Comments | Refs. |
---|---|---|---|---|---|---|
32 | GEO (GSE212212) | scRNA-seq CellChat R package | T-test, Wilcoxon rank-sum test, and Fisher’s exact test. | CXCL13 | GSRCC TIME may be dormant, where Treg-FOXP3 and CD8-Tex were hard to mobilize and impaired B cells’ accurate activities. | [33] |
48 | TCGA TIMER GSEA | RNA sequencing GO and KEGG pathway enrichment analyses | Kaplan–Meier Plotter database | BCAT2, ALDH1A2, MDH1, PHGDH, CKB, ADH1B, PCCB, NNT, CKM, DCXR, LIPF, ASS1, ME3, CS | Fourteen metabolic genes were significantly enriched and were correlated with PD-1. | [34] |
361 | GEO (GSE883415) TCGA | Limma package Functional Enrichment analysis | Kaplan–Meier method, Log-rank test Cox regression analysis | miR-145-3p, miR-125b-5p, and miR-99a-5p | The multivariate analysis showed that the three DEM signatures were all independent factors in predicting the prognosis. | [37] |
180 | TCGA | DESeq2 package MultiMiR package LC-MS/MS Enrichr | Kaplan–Meier method Log-rank test | hsa-mir-200b CFL2 | These regulatory circuit networks were associated with survival. | [38] |
97 | GEO TCGA | GEPIA 2 TIMER cBioPortal GSEA | MethSurv Kaplan–Meier plotter | GPR27 | GPR27 was useful for predicting prognosis and had a clear interaction with immune cells’ infiltration as well as their markers in patients with GC. | [34] |
441 | GEO (GPL6947, GSE84437) TCGA-STAD | RNA-seq DAVID, GO, and KEGG pathway enrichment analyses PPI network | Cox regression models | RIMS1, PRICKLE1, MCC, DCLK1, FLRT2, SLCO2A1, CDO1, GHR, CD109, SELP, UPK1B, CD36 | Thirteen mRNA-based risk score model implemented acceptably in discriminating the risk of GC prognosis. | [44] |
N.A. | GEO (GSE57303, GSE62254) TCGA-STAD GDSC | ImmLnc GSEA, GSVA The CIBERSORT algorithm GO and KEGG pathway enrichment analyses | Kaplan–Meier survival analysis Cox regression analysis Immune-related lncRNA prognostic model LASSO | SNHG5, LINC01270, CHKB. AS1, NUTM2A.AS1, MIR181A2HG, CCNT2.AS1, DLG3.AS1, LINC01134,etc | Among the 18 lncRNAs, the p-value of MIR181A2HG is the lowest, implying that it possesses good prediction activity. | [40]. |
N.A. | TGCA-STAD Ensembl CIBERSORT | Illumina HiSeqRNASeq platforms EdgeR analysis DESeq2 analysis Cytoscape GO and KEGG pathway enrichment analyses PPI network | Kaplan–Meier survival analysis Cox hazard model LASSO | VCAN-AS1, AL139002.1, LINC00326, AC018781.1, C15orf54 | The five lncRNAs served as hub nodes in the ceRNA network. | [45] |
64 | GEO (GSE53137, GSE70880, GSE99417) TCGA-STAD | Sva and limma package miRDB, TargetScan, miRTarBase GO and KEGG pathway enrichment analyses PPI network | Kaplan–Meier analysis | UCA1, HOTTIP, HMGA1P4 | Three lncRNAs may be involved in the development, and their prospective activities may be related to the prognosis of GC. | [41] |
337 | TCGA-STAD | GSEA-MSigDB database GO and KEGG pathway enrichment analyses | Kaplan–Meier survival analysis Log-rank test Cox and Lasso regression analysis | AL353804.1, AC010719.1, TNFRSF10A-AS1, AC005586.1, AL355574.1, AC009948.1, AL161785.1 | These lncRNAs were enriched in the cell adhesion molecules and JAK-STAT3 signaling pathway. | [43] |
Number of Patients | Databases | Analytical Platform | Statistical Analysis | Gene Set Identified | Comments | Refs. |
---|---|---|---|---|---|---|
253 | GEO (GSE662254, GSE26942) TCGA CCLE | Limma R package GO pathway enrichment analyses | Cox regression analysis Kaplan–Meier method Log-rank test | ND6, BRMS1, SRXN1 | Patients of the high-risk group should be treated with other chemotherapeutics to prevent unnecessary exposure to agents. | [69] |
393 | GC TCGA | MyCancerGenome CiViC TARGET OncoKB | χ2 test | PIK3CA mutation variants | Drugs identified here for therapeutic options are sorafenib, cabozantinib, regorafenib. | [70] |
206 | TCGA | iBAQ algorithm LC-MS/MS KEGG pathway enrichment analysis ssGSEA PRM method | Two-sided Student’s t-test) Kaplan–Meier survival curves Cox analysis | THSD4, SRPX2, TGFBI, THBS1, LAMB2, COL4A1, COL6A5, FN1, GP1BA, ITGA4, THBS3, THBS4, BCL2, BCL2L1, CASP3, CASP7 CDKN2A | PI3K-AKT signaling pathway had potential relevance to the ECM proteins. | [72] |
804 | GEO (GSE84437) TCGA GSEA TCIA | SVA package ConsensusClusterPlus package ssGSEA algorithm GO and KEGG enrichment pathways PPI network | Cox analysis Kaplan–Meier method | PLOD2, GLUT3 | The lactate score may be useful for predicting the prognosis and immune escape of GC. | [71] |
32 | GEO (GSE1617297) | scRNA-seq CellChat R package UMAP algorithm BCR/TCR analysis | t-test, Wilcoxon rank-sum test, | CXCL13 | CXCL13 is an important regulator for the immune response of the GC TIME. | [33] |
47 | Human Metabolome Database | LC-MS | t-test | Deoxyribose 1-phosphate, S-lactoylglutathione, lysoPC (16:0), and O-arachidonoyl ethanolamine | Four serum metabolites revealed potent divergences in patients with chemo-sensitive and chemo-resistant tumors. | [76] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matsuoka, T.; Yashiro, M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 5880. https://doi.org/10.3390/ijms25115880
Matsuoka T, Yashiro M. Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. International Journal of Molecular Sciences. 2024; 25(11):5880. https://doi.org/10.3390/ijms25115880
Chicago/Turabian StyleMatsuoka, Tasuku, and Masakazu Yashiro. 2024. "Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer" International Journal of Molecular Sciences 25, no. 11: 5880. https://doi.org/10.3390/ijms25115880
APA StyleMatsuoka, T., & Yashiro, M. (2024). Bioinformatics Analysis and Validation of Potential Markers Associated with Prediction and Prognosis of Gastric Cancer. International Journal of Molecular Sciences, 25(11), 5880. https://doi.org/10.3390/ijms25115880