Potential Roles of Inflammation on Post-Traumatic Osteoarthritis of the Ankle
Abstract
:1. Introduction
2. Post-Traumatic Arthritis of Ankle (PTOA) after Intra-Articular Ankle Fractures
3. Evidence of Inflammatory Responses after Intra-Articular Ankle Fractures
3.1. Reports from Clinical Studies
3.2. Reports from In Vivo Studies
4. Evidence of Inflammatory Responses in Post-Traumatic Osteoarthritis of Ankle (PTOA)
4.1. Reports from Clinical Studies
4.2. Reports from In Vitro Studies
5. Evidence of Inflammatory Responses in the Development of Post-Traumatic Arthritis (PTOA) after an Intra-Articular Ankle Fracture
5.1. Reports from Clinical Studies
5.2. Reports from In Vivo Studies
6. Possible Therapeutic Interventions to Inhibit the Development of Post-Traumatic Osteoarthritis of Ankle (PTOA): Reports from Clinical Studies and In Vitro Studies
6.1. A Single Intra-Articular Injection of Autogenous Leukocyte-Reduced Platelet-Rich Plasma
6.2. Resolvins (RVs)
6.3. N-methyl Pyrrolidone (NMP)
6.4. miR-146a
6.5. Sinomenine (SIN)
6.6. Propofol
6.7. IL-1 Receptor Antagonist (IL-1RA) and Doxycycline
6.8. Surfactant P188
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Thordarson, D.B. Complications after treatment of tibial pilon fractures: Prevention and management strategies. J. Am. Acad. Orthop. Surg. 2000, 8, 253–265. [Google Scholar] [CrossRef]
- Giannoudis, P.V.; Tzioupis, C.; Papathanassopoulos, A.; Obakponovwe, O.; Roberts, C. Articular step-off and risk of post-traumatic osteoarthritis. Evidence today. Injury 2010, 41, 986–995. [Google Scholar] [CrossRef]
- Guilak, F.; Fermor, B.; Keefe, F.J.; Kraus, V.B.; Olson, S.A.; Pisetsky, D.S.; Setton, L.A.; Weinberg, J.B. The role of biomechanics and inflammation in cartilage injury and repair. Clin. Orthop. Relat. Res. 2004, 423, 17–26. [Google Scholar] [CrossRef]
- Zelle, B.A.; Dang, K.H.; Ornell, S.S. High-energy tibial pilon fractures: An instructional review. Int. Orthop. 2019, 43, 1939–1950. [Google Scholar] [CrossRef]
- Cutillas-Ybarra, M.B.; Lizaur-Utrilla, A.; Lopez-Prats, F.A. Prognostic factors of health-related quality of life in patients after tibial plafond fracture. A pilot study. Injury 2015, 46, 2253–2257. [Google Scholar] [CrossRef]
- Rao, K.; Dibbern, K.; Day, M.; Glass, N.; Marsh, J.L.; Anderson, D.D. Correlation of Fracture Energy With Sanders Classification and Post-traumatic Osteoarthritis After Displaced Intra-articular Calcaneus Fractures. J. Orthop. Trauma. 2019, 33, 261–266. [Google Scholar] [CrossRef]
- Biz, C.; Golin, N.; De Cicco, M.; Maschio, N.; Fantoni, I.; Frizziero, A.; Belluzzi, E.; Ruggieri, P. Long-term radiographic and clinical-functional outcomes of isolated, displaced, closed talar neck and body fractures treated by ORIF: The timing of surgical management. BMC Musculoskelet. Disord. 2019, 20, 363. [Google Scholar] [CrossRef]
- Riordan, E.A.; Little, C.; Hunter, D. Pathogenesis of post-traumatic OA with a view to intervention. Best. Pract. Res. Clin. Rheumatol. 2014, 28, 17–30. [Google Scholar] [CrossRef]
- Schmal, H.; Salzmann, G.M.; Niemeyer, P.; Langenmair, E.; Guo, R.; Schneider, C.; Habel, M.; Riedemann, N. Early intra-articular complement activation in ankle fractures. Biomed. Res. Int. 2014, 2014, 426893. [Google Scholar] [CrossRef] [PubMed]
- Godoy-Santos, A.L.; Ranzoni, L.; Teodoro, W.R.; Capelozzi, V.; Giglio, P.; Fernandes, T.D.; Rammelt, S. Increased cytokine levels and histological changes in cartilage, synovial cells and synovial fluid after malleolar fractures. Injury 2017, 48 (Suppl. S4), S27–S33. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.B., Jr.; Nettles, D.L.; Jones, L.C.; Miller, S.D.; Guyton, G.P.; Schon, L.C. Inflammatory cytokines and cellular metabolites as synovial fluid biomarkers of posttraumatic ankle arthritis. Foot Ankle Int. 2014, 35, 1241–1249. [Google Scholar] [CrossRef] [PubMed]
- Adams, S.B.; Setton, L.A.; Bell, R.D.; Easley, M.E.; Huebner, J.L.; Stabler, T.; Kraus, V.B.; Leimer, E.M.; Olson, S.A.; Nettles, D.L. Inflammatory Cytokines and Matrix Metalloproteinases in the Synovial Fluid After Intra-articular Ankle Fracture. Foot Ankle Int. 2015, 36, 1264–1271. [Google Scholar] [CrossRef]
- Furman, B.D.; Olson, S.A.; Guilak, F. The development of posttraumatic arthritis after articular fracture. J. Orthop. Trauma. 2006, 20, 719–725. [Google Scholar] [CrossRef]
- Olson, S.A.; Horne, P.; Furman, B.; Huebner, J.; Al-Rashid, M.; Kraus, V.B.; Guilak, F. The role of cytokines in posttraumatic arthritis. J. Am. Acad. Orthop. Surg. 2014, 22, 29–37. [Google Scholar] [CrossRef]
- Punzi, L.; Galozzi, P.; Luisetto, R.; Favero, M.; Ramonda, R.; Oliviero, F.; Scanu, A. Post-traumatic arthritis: Overview on pathogenic mechanisms and role of inflammation. RMD Open 2016, 2, e000279. [Google Scholar] [CrossRef] [PubMed]
- Perl, M.; Gebhard, F.; Knöferl, M.W.; Bachem, M.; Gross, H.J.; Kinzl, L.; Strecker, W. The pattern of preformed cytokines in tissues frequently affected by blunt trauma. Shock 2003, 19, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Furman, B.D.; Mangiapani, D.S.; Zeitler, E.; Bailey, K.N.; Horne, P.H.; Huebner, J.L.; Kraus, V.B.; Guilak, F.; Olson, S.A. Targeting pro-inflammatory cytokines following joint injury: Acute intra-articular inhibition of interleukin-1 following knee injury prevents post-traumatic arthritis. Arthritis Res. Ther. 2014, 16, R134. [Google Scholar] [CrossRef]
- Pham, T.M.; Frich, L.H.; Lambertsen, K.L.; Overgaard, S.; Schmal, H. Elevation of Inflammatory Cytokines and Proteins after Intra-Articular Ankle Fracture: A Cross-Sectional Study of 47 Ankle Fracture Patients. Mediators Inflamm. 2021, 2021, 8897440. [Google Scholar] [CrossRef]
- Furman, B.D.; Kimmerling, K.A.; Zura, R.D.; Reilly, R.M.; Zlowodzki, M.P.; Huebner, J.L.; Kraus, V.B.; Guilak, F.; Olson, S.A. Articular ankle fracture results in increased synovitis, synovial macrophage infiltration, and synovial fluid concentrations of inflammatory cytokines and chemokines. Arthritis Rheumatol. 2015, 67, 1234–1239. [Google Scholar] [CrossRef]
- Zitsch, B.P.; James, C.R.; Crist, B.D.; Stoker, A.M.; Della Rocca, G.J.; Cook, J.L. A prospective randomized double-blind clinical trial to assess the effects of leukocyte-reduced platelet-rich plasma on pro-inflammatory, degradative, and anabolic biomarkers after closed pilon fractures. J. Orthop. Res. 2022, 40, 925–932. [Google Scholar] [CrossRef]
- Adams, S.B.; Reilly, R.M.; Huebner, J.L.; Kraus, V.B.; Nettles, D.L. Time-Dependent Effects on Synovial Fluid Composition During the Acute Phase of Human Intra-articular Ankle Fracture. Foot Ankle Int. 2017, 38, 1055–1063. [Google Scholar] [CrossRef]
- Leimer, E.M.; Pappan, K.L.; Nettles, D.L.; Bell, R.D.; Easley, M.E.; Olson, S.A.; Setton, L.A.; Adams, S.B. Lipid profile of human synovial fluid following intra-articular ankle fracture. J. Orthop. Res. 2017, 35, 657–666. [Google Scholar] [CrossRef]
- Adams, S.B.; Leimer, E.M.; Setton, L.A.; Bell, R.D.; Easley, M.E.; Huebner, J.L.; Stabler, T.V.; Kraus, V.B.; Olson, S.A.; Nettles, D.L. Inflammatory Microenvironment Persists After Bone Healing in Intra-articular Ankle Fractures. Foot Ankle Int. 2017, 38, 479–484. [Google Scholar] [CrossRef]
- Zhou, P.; Liu, H.; Wu, Y.; Chen, D. Propofol Promotes Ankle Fracture Healing in Children by Inhibiting Inflammatory Response. Med. Sci. Monit. 2018, 24, 4379–4385. [Google Scholar] [CrossRef]
- Marchand, L.S.; Rothberg, D.L.; Higgins, T.F.; Haller, J.M. Greater Acute Articular Inflammatory Response in Tibial Plafond Fractures as Compared to Ankle Fractures. Foot Ankle Int. 2022, 43, 1465–1473. [Google Scholar] [CrossRef]
- Cao, D.; Pi, J.; Shan, Y.; Tang, Y.; Zhou, P. Anti-inflammatory effect of Resolvin D1 on LPS-treated MG-63 cells. Exp. Ther. Med. 2018, 16, 4283–4288. [Google Scholar] [CrossRef]
- Bian, J.; Cao, D.; Shen, J.; Jiang, B.; Chen, D.; Bian, L. N-methyl pyrrolidone promotes ankle fracture healing by inhibiting inflammation via suppression of the mitogen-activated protein kinase signaling pathway. Exp. Ther. Med. 2018, 15, 3617–3622. [Google Scholar] [CrossRef]
- Mao, H.; Xu, G. Protective effect and mechanism of microRNA-146a on ankle fracture. Exp. Ther. Med. 2020, 20, 3. [Google Scholar] [CrossRef]
- Shen, J.; Yao, R.; Jing, M.; Zhou, Z. Sinomenine Regulates Inflammatory Response and Oxidative Stress via Nuclear Factor kappa B (NF-κB) and NF-E2-Related Factor 2 (Nrf2) Signaling Pathways in Ankle Fractures in Children. Med. Sci. Monit. 2018, 24, 6649–6655. [Google Scholar] [CrossRef]
- Furman, B.D.; Zeitlin, J.H.; Buchanan, M.W.; Huebner, J.L.; Kraus, V.B.; Yi, J.S.; Adams, S.B.; Olson, S.A. Immune cell profiling in the joint following human and murine articular fracture. Osteoarthr. Cartil. 2021, 29, 915–923. [Google Scholar] [CrossRef]
- Peal, B.T.; Gagliardi, R.; Su, J.; Fortier, L.A.; Delco, M.L.; Nixon, A.J.; Reesink, H.L. Synovial fluid lubricin and hyaluronan are altered in equine osteochondral fragmentation, cartilage impact injury, and full-thickness cartilage defect models. J. Orthop. Res. 2020, 38, 1826–1835. [Google Scholar] [CrossRef] [PubMed]
- Swann, D.A.; Silver, F.H.; Slayter, H.S.; Stafford, W.; Shore, E. The molecular structure and lubricating activity of lubricin isolated from bovine and human synovial fluids. Biochem. J. 1985, 225, 195–201. [Google Scholar] [CrossRef]
- San Giovanni, T.P.; Golish, S.R.; Palanca, A.; Hanna, L.S.; Scuderi, G.J. Correlation of intra-articular ankle pathology with cytokine biomarkers and matrix degradation products. Foot Ankle Int. 2012, 33, 627–631. [Google Scholar] [CrossRef]
- Schmal, H.; Salzmann, G.M.; Langenmair, E.R.; Henkelmann, R.; Südkamp, N.P.; Niemeyer, P. Biochemical characterization of early osteoarthritis in the ankle. Sci. World J. 2014, 2014, 434802. [Google Scholar] [CrossRef]
- Zou, Y.C.; Li, H.H.; Yang, G.G.; Yin, H.D.; Cai, D.Z.; Liu, G. Attenuated levels of ghrelin in synovial fluid is related to the disease severity of ankle post-traumatic osteoarthritis. Biofactors 2019, 45, 463–470. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cao, L.; Gao, X.; Chen, Z.; Guo, S.; He, Z.; Qian, Y.; Yu, Y.; Wang, G. Ghrelin prevents articular cartilage matrix destruction in human chondrocytes. Biomed. Pharmacother. 2018, 98, 651–655. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, Y.; Miyamoto, S.; Ozeki, T.; Hiyohsi, M.; Suzuki, M.; Nagano, A. Levels of rheumatoid factor isotypes, metalloproteinase-3 and tissue inhibitor of metalloproteinase-1 in synovial fluid from various arthritides. Clin. Rheumatol. 2000, 19, 14–20. [Google Scholar] [CrossRef] [PubMed]
- Furman, B.D.; Kent, C.L.; Huebner, J.L.; Kraus, V.B.; McNulty, A.L.; Guilak, F.; Olson, S.A. CXCL10 is upregulated in synovium and cartilage following articular fracture. J. Orthop. Res. 2018, 36, 1220–1227. [Google Scholar] [CrossRef]
- Li, L.; Lan, J.; Ye, Y.; Yang, B.; Yang, X.; Cai, Z. CPEB1 Expression Correlates with Severity of Posttraumatic Ankle Osteoarthritis and Aggravates Catabolic Effect of IL-1β on Chondrocytes. Inflammation 2019, 42, 628–636. [Google Scholar] [CrossRef]
- Bajaj, S.; Shoemaker, T.; Hakimiyan, A.A.; Rappoport, L.; Pascual-Garrido, C.; Oegema, T.R.; Wimmer, M.A.; Chubinskaya, S. Protective effect of P188 in the model of acute trauma to human ankle cartilage: The mechanism of action. J. Orthop. Trauma. 2010, 24, 571–576. [Google Scholar] [CrossRef]
- Pham, T.M.; Kristiansen, E.B.; Frich, L.H.; Lambertsen, K.L.; Overgaard, S.; Schmal, H. Association of acute inflammatory cytokines, fracture malreduction, and functional outcome 12 months after intra-articular ankle fracture-a prospective cohort study of 46 patients with ankle fractures. J. Orthop. Surg. Res. 2021, 16, 338. [Google Scholar] [CrossRef] [PubMed]
- Leimer, E.M.; Tanenbaum, L.M.; Nettles, D.L.; Bell, R.D.; Easley, M.E.; Setton, L.A.; Adams, S.B. Amino Acid Profile of Synovial Fluid Following Intra-articular Ankle Fracture. Foot Ankle Int. 2018, 39, 1169–1177. [Google Scholar] [CrossRef]
- Liang, D.; Sun, J.; Wei, F.; Zhang, J.; Li, P.; Xu, Y.; Shang, X.; Deng, J.; Zhao, T.; Wei, L. Establishment of rat ankle post-traumatic osteoarthritis model induced by malleolus fracture. BMC Musculoskelet. Disord. 2017, 18, 464. [Google Scholar] [CrossRef] [PubMed]
- Allen, N.B.; Abar, B.; Danilkowicz, R.M.; Kraus, V.B.; Olson, S.A.; Adams, S.B. Intra-Articular Synovial Fluid With Hematoma After Ankle Fracture Promotes Cartilage Damage In Vitro Partially Attenuated by Anti-Inflammatory Agents. Foot Ankle Int. 2022, 43, 426–438. [Google Scholar] [CrossRef] [PubMed]
- Jantzen, C.; Ebskov, L.B.; Andersen, K.H.; Benyahia, M.; Rasmussen, P.B.; Johansen, J.K. The Effect of a Single Hyaluronic Acid Injection in Ankle Arthritis: A Prospective Cohort Study. J. Foot Ankle Surg. 2020, 59, 961–963. [Google Scholar] [CrossRef]
- Vannabouathong, C.; Del Fabbro, G.; Sales, B.; Smith, C.; Li, C.S.; Yardley, D.; Bhandari, M.; Petrisor, B.A. Intra-articular Injections in the Treatment of Symptoms from Ankle Arthritis: A Systematic Review. Foot Ankle Int. 2018, 39, 1141–1150. [Google Scholar] [CrossRef]
- Toguchi, A.; Noguchi, N.; Kanno, T.; Yamada, A. Methylsulfonylmethane Improves Knee Quality of Life in Participants with Mild Knee Pain: A Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2023, 15, 2995. [Google Scholar] [CrossRef]
Study Model (N: M/F) | Age (yrs) | Major Findings | Interpretation | Ref | ||||
---|---|---|---|---|---|---|---|---|
Inflammatory Biomarkers | Oxidative Process | Histologic Findings | ||||||
Pro- | Anti- | Others | ||||||
Prospective Randomized Double-blind Controlled trial (11:6/5) | 39 ±12 | ↑ MCP-1 ↑ IL-1β ↑ IL-6 ↑ IL-8 ↑ PGE2 ↑MMP-1,3,8,9 | ↑ IL-1RA | ↑ VEGF | - | - | Pro-inflammatory, anti-inflammatory, degradative, and anabolic biomarkers were elevated 24 h post-acute fracture period. | [20] |
Prospective Cohort (24:4/2) | 51.8 ± 30.1 | ↑ IFN-γ ↑ IL-1β ↑ IL-6 ↑ IL-8 ↑ IL-12p70 ↑ TNF-α ↑ IFN-γ | ↑ IL-10 | Chemokines ↑ Eotaxin ↑ Eotaxin-3, ↑ MCP-1,4 ↑ MDC ↑ MIP-1β ↑ TARC ↑ MCP-1 | - | Fracture: ↑Synovitis score ↑CD68+ macrophage | Multiple cytokines and chemokines in synovial fluids increased after ankle fracture. | [19] |
Cross-section (47:22/25) | 42± 14.4 | ↑ IL-1β ↑ IL-2 ↑ IL-6 ↑ IL-8 ↑ IL-12p70 ↑ TNF ↑ IFN-γ ↑ MMP-1,3,9 | ↑ IL-1RA ↑ IL-4 ↑ IL-10 ↑ IL-13 | Cartilage degradative products ↑ ACG ↑ CTX-2 Metabolic mediators ↑ TGF-β1 ↑ TGF-β2 | - | - | Elevated level of multiple cytokines and mediators was observed after acute intra-articular ankle fractures. | [18] |
Cross-section (16: 10/6) | 35.94 (24–48) | ↑ IL-2 ↑ IL-6 ↑ IL-17 ↔ IFN-γ | ↑ IL-10 ↔ TGF-β1 | - | - | Synovium ↑ thin ↓thick collagen fiber Chondral tissue: ↑ Cellularity ↑ Articular irregularity ↑Discontinuity ↑ Disarray ↑ PTG ↑ Collagen type 1,3,5 | Pro- and anti-inflammatory levels were increased with histologic changes of disarray collagen fibers, increased cellularity, and deposits of PTG after intra-articular ankle fracture. | [10] |
Cross-section (21:13/8) | 42 (29–63) | ↑ IL-1β, 6, 8 ↑ TNF-α ↑ MMP-1, 2, 3, 9, 10 | ↑ IL-10 | ↑ GM-CSF ↑ bilirubin/ biliverdin ↔ sGAG ↔ CTX II | - | - | Pro-inflammatory and cartilage degradative products were significantly elevated after intra-articular ankle fracture. | [12] |
Cross-section (21:13/8) | 42 (20–63) | At6 mo persist: ↑ IL-6 ↑ IL-8 ↑ MMP-1,2,3 | - | At 6 mo persist: ↔ sGAG ↔ CTX II | - | - | Pro-inflammatory cytokines levels were persistently increased 6 months after fracture. | [23] |
Prospective Cohort (20:8/12) | 42 (20–63) | ↑ MMP-1,2,9,10 ↑ IL-6 ↑TNF-α | ↑ IL-10 | ↑ Free FA ↑ PUFA ↑ 2-hydroxyl FA ↑sphingomyelins ↑ lysolipids ↑bilirubin/ billiverdin 6 months post-Sx (Reversal) ↓ FA ↓sphingomyelins | - | - | Increasing levels of lipid biomarkers and metabolites were found after ankle fracture, suggesting the possible involvement of phospholipase A2 in arthritic progression. | [22] |
Cross-section (30:15/15) | 7± 1.1 | ↑ TNF-α ↑ IL-1β ↑ IL-6 | - | - | - | - | Pro-inflammatory cytokines were increased in children with ankle fractures. | [24] |
Prospective Cohort (54:24/30) | 47 (18–74) | Initial (0–2 d): ↑↑ IL-1β ↑ IL-6 ↑ IL-12p70 ↑ MMP-9 At 3–9 d: ↑ IL-1β ↑ IL-6 ↑ IL-12p70 ↑↑ MMP1 ↑↑ MMP2 ↑↑ MMP3 ↑↑ MMP10 At >=10 d: ↓ IL-1β ↓ IL-6 ↓ IL-12p70 ↔ INF-γ ↔ IL-2, 8, 13 ↔ TNF-α | Initial (0–2 d): ↑ IL-4 ↑ IL-10 >=10 d: ↓ IL-4 ↓ IL-10 | Initial (0–2 d): ↑ sGAG At 3–9 d: ↑ CTX II ↑↑ Heme At >=10 d: - ↓ sGAG - ↑↑CTX-II | - | - | Temporal fluctuations in biomarker levels as a result of trauma and hemarthrosis needed to be considered in the pathogenesis of PTOA. | [21] |
Cross-section (65:13/23) | 39.6 (20–60) | Intra-articular fx ↑ IL-1β ↑ IL-6 ↑ IL-8 | Intra-articular fx ↑ IL-1RA ↑ IL-10 | Intra-articular fx ↑ MMP-1 ↑ MMP-3 ↑ MMP-13 | - | Greater rates of PTOA after plafond fractures, with higher levels of pro-inflammatory and degradative products, were found when compared to extra-articular ankle fractures. | [25] | |
Cross-section (70:35/35) | 5.5 ±1.3 | Serum level ↑ TNF-α ↑ IL-1β ↑ IL-6 | - | - | - | - | Pro-inflammatory cytokines were increased in children with ankle fractures. | [26] |
Cross-section (120:60/60) | 6.0 ±1.2 | Serum level ↑ TNF-α ↑ IL-1β ↑ IL-6 | - | - | - | - | Pro-inflammatory cytokines were increased in children with ankle fractures. | [27] |
Cross-section (120:60/60) | 12–53 | Serum level ↑ TNF-α ↑ IL-1β ↑ IL-6 | - | - | ↓ miR-146a Oxidative process: ↑ MDA ↓ SOD ↓ CAT | - | Elevation of Pro-inflammatory cytokines and oxidative process were found in children with ankle fracture | [28] |
Cross-section (120: N/A) | - | Serum level ↑ TNF-α ↑ IL-1β ↑ IL-6 | - | - | Oxidative process: ↑ MDA ↓ SOD ↓ CAT | - | Pro-inflammatory cytokines and oxidative processes were higher in children with ankle fractures compared to those with healthy ankles. | [29] |
Cross-section (6: 2/4) | 42 ± 24 | - | - | ↑↑CD3 T-cell (↑↑CD4, CD8) ↑ CD19+ B-cell ↑ CD14+ Monocytes | - | - | Prominent immune cell CD4 and CD8 T-cell infiltration were found after intra-articular fracture. | [30] |
Cross-section (8:4/4) | 38.9 ±20.6 | Ankle fracture ↓ IL-1β | - | First 6 days after fracture ↑Aggrecan ↑ C5b-9 Ankle fracture ↑ C3a ↑ C5a ↑ C5b-9 ↑ bFGF ↑ IGF-1 | - | - | Elevation of complements, pro-inflammatory, and anabolic factors were reported after ankle fracture, leading to the development of PTOA | [9] |
Model (N: Gender M/F) | Major Findings | Association | Interpretation | Ref. | ||||
---|---|---|---|---|---|---|---|---|
Age (yrs.) | Inflammatory Biomarkers | Functional Outcomes | Radiographic Outcomes | |||||
Synovial Fluid | Serum | |||||||
Cross-section (49:31/18) | 32.6 ±13.6 | ↑ Aggrecan ↑ BMP-7 ↓ BMP-2 ↔ MMP-13 ↔ IL-1β | - | ↓ AOFAS ↓ FFI | ↑ KLS | Poor outcome ↑ Cartilage degradative products ↑ Anabolic biomarkers | Aggrecan and BMP-7 levels were elevated in PTOA with poor functional and radiographic outcomes. | [34] |
Cross-section (36:21/15) | 45 ± 16 | ↑ MCP-1 ↑ IL-6 ↑ FAC | - | ↑ Intra-op arthroscopic OA severity grading ↑ VAS | - | Poor outcome ↑ Pro-inflammatory cytokines | Pro-inflammatory cytokines and chemokines were elevated in more severe PTOA findings from the arthroscope. | [33] |
Cross-section (97:63/34) | 48.2 ± 2.4 | ↑ Ghrelin ↓ TNF-α ↓ MMP-3 | ↔ Ghrelin | ↑ AOFAS ↑ VAS | ↓ Modified KLS ↓ Mankin cartilage score | Good outcomes ↑ Ghrelin ↓ Pro-inflammatory cytokines ↓ Degradation | Increased levels of ghrelin in synovial fluid were inversely proportionated with the severity of PTOA. | [36] |
Cross-section (40:17/23) | 63 ±15 | ↑ IL-6 ↑ IL-8 ↑ MCP-1 ↑ IL-1Ra ↑ IL-10 ↑ IL-15 | ↓ ADL ↓ Response to non-operative treatment | ↑ Tanaka-Takakura staging | Poor outcomes ↑ Pro-inflammatory cytokines ↑ Chemokines ↑ Anti-inflammatory cytokines | Elevation of pro- and anti-inflammatory cytokines was found in PTOA after ankle fracture. | [11] | |
Cross-section (126:94/32) 50 RA 25 OA 10 PA 16 PG 9 GA 16 TA | - | ↑ IgG-RF in RA > TA ↑ IgM-RF in RA > TA ↑ IgA-RF in RA > TA ↑ MMP-3 in RA > TA ↔ TIMP RA, TA | - | - | ↑ KLS | Poor outcome ↑ Immuno-globulin | Rheumatoid factors (including IgA, IgG, and IgM) were significantly higher in RA compared to TA. | [37] |
Study Model | Treatment (Dose/Duration) | Major Findings | Interpretation | Ref. | |
---|---|---|---|---|---|
Inflammatory Responses | Gene Expression | ||||
Chondrocytes | Transfection with c CPEB1 IL-1β + TNF-α (24 h) Overexpressed CPEB1 + IL-1β (24 h) | - ↑ IL-1β ↓ IL-1β ↑ MMP-3,13 ↑ ADAMTS5 | ↑ CPEB1 ↑ CPEB1 ↑↑ CPEB1 | The upregulation of CPEB1 in chondrocytes was observed in PTOA; however, the overexpression of CPEP1 reduced the pro-inflammatory cytokines. | [39] |
Human-impacted Tali cell culture impacted with peak activity (1–600 N) | Impact with peak activity (1–600 N) alone P188 (8 mg/mL, 20 min, 1 h, 24 h) p38 inhibitors (20 µM/ 20 min, 1 h, 24 h) p38i + P188 (20 µM; 8 mg/mL/ 20 min, 1 h, 24 h) | IL-6: ↑↑ at 24–48 h ↓ after 48 h ↑ D12–14 - - - | ↑ Stat3 ↑ ATF-2 ↓ COL-II ↓ Stat1 ↓ p38 ↓ Stat3 ↓ GSK3 ↓ ERK ↓ JNK ↑ ATF2 ↔ Elk-1 ↔ ATF-2 ↓ p38 ↓ Stat3 ↓ GSK3 ↓ ERK ↔ JNK ↓ apoptosis ↑cell survival ↓ p38 ↓ ERK ↓ JNK | P188 was a potential therapy in the progression of PTOA via inhibition of three main pathways, including p38, mitochondrial apoptosis-related GSK3, and IL-6 inflammation. | [40] |
| Exogenous CXCL10 (1, 10, and 100 ng/mL, 72 h) Cartilage + IL-1α (10, 100 pg/mL, 72 h) Exogeneous CXCL10+ Cartilage + IL-1α (10, 100 pg/mL, 72 h) | ↓ Total MMP ↓ Aggrecanase ↔ S-GAG ↔ NO ↑ Total MMP ↑ S-GAG ↑ NO ↔ aggrecanase ↓ Total MMP ↓ S-GAG ↔ NO | - | Although exogenous CXCL10 did not induce cartilage catabolism, it was involved in mitigating inflammation and reducing the production of MMP. | [38] |
Model (N: Gender M/F) | Time to PTOA after the Intra-Articular Ankle Fracture (mo.) | Age (yrs) | Major Findings | Clinical Outcome | Associated Factors with PTOA Outcome | Interpretation | Ref. | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Inflammatory Cytokines | Gene Expression | Radio- Graph ic Outcome | ||||||||||
Synovial Fluids | ||||||||||||
Pro- | Anti- | Others | ||||||||||
Prospective cohort (46:18/24) | 12 | 42.7 ±3.6 | ↑ IL-2 ↑ IL-6 ↑ IFN-γ ↓ IL-1β | ↑ IL-4 ↑ TGF-β2 | - | ↓KLS | ↓ AOFAS ↓ EQ5D-5L ↓ FFI-DK | Poor outcomes ↑ Pro-inflammatory cytokines ↑ Anti-inflammatory cytokines | Both pro- and anti-inflammatory cytokines, except IL-1β, were elevated in ankle fracture with poor PTOA changes | [41] | ||
Prospective cohort (19:7/12) | 6 | 42± 22 | ↑ IL-1 ↑ TNF-α ↑ FGF ↑ TGF-β ↑↑ MMP-1 ↑↑ MMP-9 ↑ MMP-2 ↑ MMP-3 ↑ MMP-10 | - | ↑ DSGEGDFXAEGGGVR ↑ HWESASXX ↑ GSSG ↑ Cysteine-Glutathione disulfide ↑ Tryptophan metabolites ↑ Glutamate ↑ Aspartate | - | - | - | Poor outcomes ↑ Pro-inflammatory cytokines ↑ Fibrinogen cleavage peptide ↑ Glutathione metabolites ↑ Tryptophan pathways ↑ Glutamate metabolism ↑ Aspartate metabolism | Elevated metabolites associated with glutathione associated with increased MMP-1,9, suggested the possible role of oxidative stress in PTOA. | [42] | |
Cross-sectional Cadavers (47:26/20) -Articular fracture -PTOA -Normal | - | - | - | - | - | ↑↑ CXCL10 after fracture ↑ CXCL10 in OA ↑ CXCL10 in normal + TNFα, IL-1β | - | - | - | CXCL10 level was increased after fracture, PTOA, and inflammation | [38] |
Animals | Model of Ankle Fracture | Major Findings | Interpretation | Ref. | ||
---|---|---|---|---|---|---|
Inflammatory Responses | Gene Expression | Histological Changes Representing PTOA at 8 Weeks after Fracture | ||||
Mice | Articular fracture | ↑ Serum CXCL10 after fracture | ↑ CXCL10 | - | CXCL10 was upregulated in acute fracture. | [38] |
Mice | Malleolar articular fracture + dislocation, immediate reduction Malleolar articular fracture | Synovial fluid profile of both groups ↑ MMP-13 ↑ Col-X ↓ Col-II | Synovium both groups ↑ mRNA for MMP-13 ↓ Col2a1 ↓ Acan | ↑ Modified OARSI score in both groups ↑ Cartilage fibrillation ↓ Aggrecan ↓ Matrix ↓ Chondrocytes | Both fracture alone and fracture with dislocation led to increased inflammatory responses in synovial fluid, resulting in the development of PTOA as indicated by damage to the articular cartilage of the talus. | [43] |
Study Model (N: Gender M/F) | Age | Mode of Fracture | Intervention (Dose/Duration/Route) | Major Findings | Interpretation | Ref | |
---|---|---|---|---|---|---|---|
Biomarkers | Functional Outcome | ||||||
Prospective Randomized Double-blind Controlled trial (11: 6/5) | 39 ± 12 | Closed intra-articular fracture (AO/OTA type 43C) | Autogenous Leukocyte-reduced PRP (5 mL/IA) | (1) Pro-inflammatory ↓ IL-1β ↓ IL-6 ↓ IL- 8 ↓ PGE-2 (2) Anabolic agent ↑ PDGF-AA (3) Degradative products ↓ MMP-3 ↓ MMP-9 (4) Anti-inflammatory ↓ IL1-RA ↓ IL-10 | - | Single intra-articular leukocyte-reduced PRP had anti-inflammatory, anti-degradative, anabolic effect compared to saline. | [20] |
Study Model (Cell Line) | Intervention (Dose/Duration/ Route) | Major Findings | Interpretation | Ref | ||||
---|---|---|---|---|---|---|---|---|
Inflammatory Biomarkers | Oxidative Process | Gene Expression | Apoptosis | Cell Viability | ||||
MG-63 cells | LPS (1 μg/mL) LPS + RvD1 (50, 100, 200 nM /2 h) | ↑ TNF-α ↑ IL-1β ↑ IL-6 ↑ COX-2 ↓ TNF-α ↓ IL-1β ↓ IL-6 | - - | ↑ p38 ↑NFKB(p50) ↑ NLRP3 ↑ ASC ↓ LPS-induced proliferation inhibition ↓ p-p38 ↓ p50 ↓ NLRP3 ↓ ASC | ↑ cleaved caspase-1 ↑ caspase-1 ↓ cleaved caspase-1 ↓ caspase-1 | ↓ ↑ | RvD1 inhibited inflammation following ankle fracture via MAPK, NF-kB, and NLRP3 inflammasome pathway. | [26] |
MG-63 cells | BK induction (1 μM, 24 h) BK + NMP (5 mM, 48 h) BK + NMP (10 mM, 48 h) | ↑ TNF-α ↑ IL-1β ↑ IL-6 ↑ COX-2 ↑ iNOS ↔ TNF-α ↔ IL-1β ↓ IL-6 ↓ COX-2 ↓ iNOS ↓ TNF-α ↓ IL-1β ↓ IL-6 ↓ COX-2 ↓ iNOS | - - - | ↑ p-ERK ↑ p-JNK ↑ p-p38 - ↔ p-ERK ↓ p-JNK ↓ p-p38 | - - - | - - - | NMP inhibited inflammation of the protein kinase pathway after ankle fracture. | [27] |
MG-63 cells | BK induction (1 μg/mL, 24 h) BK + miR-146a mimic BK + miR-146a inhibitor | ↑ TNF-α ↑ IL-1β ↑ IL-6 ↓TNF-α ↓ IL-1β ↓ IL-6 ↑ TNF-α ↑ IL-1β ↑ IL-6 | ↑ MDA ↓ SOD ↓ CAT ↓ MDA ↑ SOD ↑ CAT ↑ MDA ↓ SOD ↓ CAT | ↑ TRAF6 ↑ p-NF-kB ↑ p-p-65 ↓TRAF6 ↓ p-p-65 ↑ TRAF6 ↑ p-NF-kB ↑ p-p-65 | - - - | ↓ ↑ - | miR-146a protects against inflammation, and oxidative stress and inhibits TRAF6/NFκB pathway following ankle fracture. | [28] |
MG-63 cells | BK induction (1 μg/mL, 24 h) BK + SIN pretreatment (0.25, 0.5, or 1 mM, 2 h) | ↑ TNF-α ↑ IL-1β ↑ IL-6 ↓TNF-α ↓ IL-1β ↓ IL-6 | ↑ MDA ↓ SOD ↓ CAT ↓ MDA ↑ SOD ↑ CAT | ↑p-p-38 ↑p-NF-kB (p65) ↓ Nrf2 ↓ HO-1 ↓ NQO-1 ↓ p-p-38 ↓ p-NF-kB (p65) ↑Nrf2 ↑ HO-1 ↑ NQO-1 | - - | - - | Sinomenine was one of the potential agents for reducing inflammation and oxidative stress after ankle fracture. | [29] |
54/Cross-section - control - SFFH D0-2 - SFFH D3-9 -SFFH D10-14 - with IL-1RA - with Doxy | SFFH D0-2 SFFH D3-9 SFFH D3-9 SFFH D10-14 IL-1RA (20 μg/mL, added to culture) Doxycycline (known MMP inhibitors) (25 μg/mL, added to culture) | ↑ IL-8 ↑ MMP-1 ↑ MMP-3 ↑ MMP-10 ↑ CTX-II ↑ sGAG ↓PTG ↓ IL-8 ↓ MMP-3 ↓ MMP-10 ↓ CTXII ↓ IL-8 ↓ MMP-3 ↓ MMP-10 ↓ CTXII | - - - - | - - - - | - - ↔ ↔ | ↔ - - - | Fracture hematoma in synovial fluid causes cartilage damage through multiple pro-inflammatory cytokines; IL-RA and doxycycline could potentially reduce PTOA by inhibiting these markers. | [44] |
MG-63 cells | BK induction (1 μg/mL, 24 h) BK + Propofol (1, 5, 10 μg/mL, added in cell culture) | ↑ TNF-α ↑ IL-1β ↑ IL-6 ↓ TNF-α ↓ IL-1β ↓ IL-6 | - - | ↑ p-p38 ↑ p-p65 ↑ NLRP3 ↑ ASC ↓ p-p38 ↓ p-p65 ↓ NLRP3 ↓ ASC | ↑Caspase-1 ↓Caspase-1 | - - | Propofol reduces activation of MAPK, NF-kB, and NLRP3 pathways, which makes it beneficial for ankle fracture healing. | [24] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chalidapong, P.; Vaseenon, T.; Chattipakorn, N.; Chattipakorn, S.C. Potential Roles of Inflammation on Post-Traumatic Osteoarthritis of the Ankle. Int. J. Mol. Sci. 2024, 25, 5903. https://doi.org/10.3390/ijms25115903
Chalidapong P, Vaseenon T, Chattipakorn N, Chattipakorn SC. Potential Roles of Inflammation on Post-Traumatic Osteoarthritis of the Ankle. International Journal of Molecular Sciences. 2024; 25(11):5903. https://doi.org/10.3390/ijms25115903
Chicago/Turabian StyleChalidapong, Pawee, Tanawat Vaseenon, Nipon Chattipakorn, and Siriporn C. Chattipakorn. 2024. "Potential Roles of Inflammation on Post-Traumatic Osteoarthritis of the Ankle" International Journal of Molecular Sciences 25, no. 11: 5903. https://doi.org/10.3390/ijms25115903
APA StyleChalidapong, P., Vaseenon, T., Chattipakorn, N., & Chattipakorn, S. C. (2024). Potential Roles of Inflammation on Post-Traumatic Osteoarthritis of the Ankle. International Journal of Molecular Sciences, 25(11), 5903. https://doi.org/10.3390/ijms25115903