Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation
Abstract
:1. Introduction
2. β C-S Lyases’ Roles and Structures in Microorganisms
2.1. Mechanism and Role in the Sulfur Amino Acid Metabolism
2.2. Production of Volatile Sulfur Compounds by Oral Bacteria β-CSL
2.3. Generation of Odorant Thiol in the Human Sweat by Bacterial β-CSL
2.4. Other Biological Functions of Bacterial β-CSL
2.5. Tridimensional Structure of Microbial β-CSLs
3. Substrates of Microbial β C-S Lyases in Food: Cysteine S-Conjugates As Sulfurous Aroma Precursors
Substrate | Metabolite | Organism/Enzyme | Food Product | References |
---|---|---|---|---|
S-4-(4-methylpentan-2-one)-L-cysteine | 4-mercapto-4-methylpentan-2-one | β-CSL from S. cerevisiae, E. limosum | Sauvignon, Semillon, Chardonnay, Riesling wine | [59,75] |
S-4-(4-methylpentan-2-ol)-L-cysteine | 4-mercapto-4-methylpentan-2-ol | |||
S-3-(hexan-1-ol)-L-cysteine | 3-mercaptohexan-1-ol | |||
S-2-(3-methylbutanol)-L-cysteine | 2-mercapto-3-methylbutanol | β-CSL from S. cerevisiae, P. kluyveri | Lager beer | [76,77] |
S-1-(3-pentanone)-L-cysteine | 1-mercapto-3-pentanone | |||
S-3-(3-methylbutanol)-L-cysteine | 3-mercapto-3-methylbutanol | |||
S-3-(3-methylbutanol)-L-cysteine | 3-mercapto-3-methylbutanol | β-CSL from E. limosum | Passion juice | [78] |
S-3-(hexan-1-ol)-L-cysteine | 3-mercaptohexan-1-ol | |||
S-furfuryl-L-cysteine | furfurylthiol | STR3 and CYS3 from S. cerevisiae | Baijiu, coffee | [65,66,79] |
L-cysteine and benzaldehyde | benzenemethanethiol | Yeast β-CSL | Baijiu Daqu | [80] |
4. Importance of β C-S Lyases in Microorganisms Used for Fermented Food Production
4.1. Wine
4.2. Beer
4.3. Baijiu
4.4. Cheese
4.5. Genes and Corresponding β-CSLs of Interest in Thiol Release Improvement
5. Involvement of Oral Bacteria β-CSLs in the In-Mouth VSC Release and Perception
5.1. Studies on Pure Compounds
5.2. Studies on Food Products
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heydel, J.-M.; Coelho, A.; Thiebaud, N.; Legendre, A.; Bon, A.-M.L.; Faure, P.; Neiers, F.; Artur, Y.; Golebiowski, J.; Briand, L. Odorant-Binding Proteins and Xenobiotic Metabolizing Enzymes: Implications in Olfactory Perireceptor Events: Odorant-Binding Proteins and Metabolizing Enzymes. Anat. Rec. 2013, 296, 1333–1345. [Google Scholar] [CrossRef]
- Heydel, J.M.; Hanser, H.I.; Faure, P.; Neiers, F. Odorant Metabolizing Enzymes in the Peripheral Olfactory Process. In Flavour; Wiley: Hoboken, NJ, USA, 2017; pp. 34–56. [Google Scholar]
- Boichot, V.; Muradova, M.; Nivet, C.; Proskura, A.; Heydel, J.-M.; Canivenc-Lavier, M.-C.; Canon, F.; Neiers, F.; Schwartz, M. The Role of Perireceptor Events in FLavor Perception. Front. Food Sci. Technol. 2022, 9, 989291. [Google Scholar] [CrossRef]
- Munoz-Gonzalez, C.; Brule, M.; Martin, C.; Feron, G.; Canon, F. Molecular Mechanisms of Aroma Persistence: From Noncovalent Interactions between Aroma Compounds and the Oral Mucosa to Metabolization of Aroma Compounds by Saliva and Oral Cells. Food Chem. 2021, 373, 131467. [Google Scholar] [CrossRef]
- Ployon, S.; Brule, M.; Andriot, I.; Morzel, M.; Canon, F. Understanding Retention and Metabolization of Aroma Compounds Using an in Vitro Model of Oral Mucosa. Food Chem. 2020, 318, 126468. [Google Scholar] [CrossRef]
- Schwartz, M.; Neiers, F.; Charles, J.P.; Heydel, J.M.; Munoz-Gonzalez, C.; Feron, G.; Canon, F. Oral Enzymatic Detoxification System: Insights Obtained from Proteome Analysis to Understand Its Potential Impact on Aroma Metabolization. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5516–5547. [Google Scholar] [CrossRef] [PubMed]
- Robert-Hazotte, A.; Faure, P.; Ménétrier, F.; Folia, M.; Schwartz, M.; Le Quéré, J.-L.; Neiers, F.; Thomas-Danguin, T.; Heydel, J.-M. Nasal Odorant Competitive Metabolism Is Involved in the Human Olfactory Process. J. Agric. Food Chem. 2022, 70, 8385–8394. [Google Scholar] [CrossRef]
- Boichot, V.; Menetrier, F.; Saliou, J.-M.; Lirussi, F.; Canon, F.; Folia, M.; Heydel, J.-M.; Hummel, T.; Menzel, S.; Steinke, M.; et al. Characterization of Human Oxidoreductases Involved in Aldehyde Odorant Metabolism. Sci. Rep. 2023, 13, 4876. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.W.; Wei, J.N.; Sanchez-Lengeling, B.; Lee, B.K.; Luo, Y.; Vlot, M.; Dechering, K.; Peng, J.; Gerkin, R.C.; Wiltschko, A.B. Metabolic Activity Organizes Olfactory Representations. eLife 2023, 12, e82502. [Google Scholar] [CrossRef]
- Schwartz, M.; Neiers, F.; Feron, G.; Canon, F. The Relationship Between Salivary Redox, Diet, and Food Flavor Perception. Front. Nutr. 2020, 7, 612735. [Google Scholar] [CrossRef] [PubMed]
- Piombino, P.; Genovese, A.; Esposito, S.; Moio, L.; Cutolo, P.P.; Chambery, A.; Severino, V.; Moneta, E.; Smith, D.P.; Owens, S.M.; et al. Saliva from Obese Individuals Suppresses the Release of Aroma Compounds from Wine. PLoS ONE 2014, 9, e85611. [Google Scholar] [CrossRef]
- Schwartz, M.; Canon, F.; Feron, G.; Neiers, F.; Gamero, A. Impact of Oral Microbiota on Flavor Perception: From Food Processing to In-Mouth Metabolization. Foods 2021, 10, 2006. [Google Scholar] [CrossRef] [PubMed]
- López-Dávalos, P.C.; Requena, T.; Pozo-Bayón, M.Á.; Muñoz-González, C. Decreased Retronasal Olfaction and Taste Perception in Obesity Are Related to Saliva Biochemical and Microbiota Composition. Food Res. Int. 2023, 167, 112660. [Google Scholar] [CrossRef] [PubMed]
- Duarte-Coimbra, S.; Forcina, G.; Pérez-Pardal, L.; Beja-Pereira, A. Characterization of Tongue Dorsum Microbiome in Wine Tasters. Food Res. Int. 2023, 163, 112259. [Google Scholar] [CrossRef] [PubMed]
- Xi, Y.; Yu, M.; Li, X.; Zeng, X.; Li, J. The Coming Future: The Role of the Oral–Microbiota–Brain Axis in Aroma Release and Perception. Comp. Rev. Food Sci. Food Safe 2024, 23, e13303. [Google Scholar] [CrossRef] [PubMed]
- Starkenmann, C.; Le Calve, B.; Niclass, Y.; Cayeux, I.; Beccucci, S.; Troccaz, M. Olfactory Perception of Cysteine-S-Conjugates from Fruits and Vegetables. J. Agric. Food Chem. 2008, 56, 9575–9580. [Google Scholar] [CrossRef] [PubMed]
- Munoz-Gonzalez, C.; Cueva, C.; Angeles Pozo-Bayon, M.; Victoria Moreno-Arribas, M. Ability of Human Oral Microbiota to Produce Wine Odorant Aglycones from Odourless Grape Glycosidic Aroma Precursors. Food Chem. 2015, 187, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Parker, M.; Onetto, C.; Hixson, J.; Bilogrevic, E.; Schueth, L.; Pisaniello, L.; Borneman, A.; Herderich, M.; de Barros Lopes, M.; Francis, L. Factors Contributing to Interindividual Variation in Retronasal Odor Perception from Aroma Glycosides: The Role of Odorant Sensory Detection Threshold, Oral Microbiota, and Hydrolysis in Saliva. J. Agric. Food Chem. 2020, 68, 10299–10309. [Google Scholar] [CrossRef] [PubMed]
- Hirst, M.B.; Richter, C.L. Review of Aroma Formation through Metabolic Pathways of Saccharomyces cerevisiae in Beverage Fermentations. Am. J. Enol. Vitic. 2016, 67, 361–370. [Google Scholar] [CrossRef]
- Dzialo, M.C.; Park, R.; Steensels, J.; Lievens, B.; Verstrepen, K.J. Physiology, Ecology and Industrial Applications of Aroma Formation in Yeast. FEMS Microbiol. Rev. 2017, 41, S95–S128. [Google Scholar] [CrossRef]
- Mao, J.; Zhou, Z.; Yang, H. Microbial Succession and Its Effect on the Formation of Umami Peptides during Sufu Fermentation. Front. Microbiol. 2023, 14, 1181588. [Google Scholar] [CrossRef]
- Ferreira, V.; Lopez, R. The Actual and Potential Aroma of Winemaking Grapes. Biomolecules 2019, 9, 818. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.-C.; Nam, H.-K.; Oh, D.-K. Hydrolysis of Flavanone Glycosides by β-Glucosidase from Pyrococcus furiosus and Its Application to the Production of Flavanone Aglycones from Citrus Extracts. J. Agric. Food Chem. 2013, 61, 11532–11540. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Tian, Y.; Jiang, P.; Lin, Y.; Liu, X.; Yang, H. Recent Advances in the Application of Metabolomics for Food Safety Control and Food Quality Analyses. Crit. Rev. Food Sci. Nutr. 2021, 61, 1448–1469. [Google Scholar] [CrossRef]
- Muradova, M.; Proskura, A.; Canon, F.; Aleksandrova, I.; Schwartz, M.; Heydel, J.-M.; Baranenko, D.; Nadtochii, L.; Neiers, F. Unlocking Flavor Potential Using Microbial β-Glucosidases in Food Processing. Foods 2023, 12, 4484. [Google Scholar] [CrossRef] [PubMed]
- Neiers, F.; Gourrat, K.; Canon, F.; Schwartz, M. Metabolism of Cysteine Conjugates and Production of Flavor Sulfur Compounds by a Carbon–Sulfur Lyase from the Oral Anaerobe Fusobacterium nucleatum. J. Agric. Food Chem. 2022, 70, 9969–9979. [Google Scholar] [CrossRef] [PubMed]
- Allegrini, A.; Astegno, A.; La Verde, V.; Dominici, P. Characterization of C-S Lyase from Lactobacillus delbrueckii Subsp. Bulgaricus ATCC BAA-365 and Its Potential Role in Food Flavour Applications. J. Biochem. 2017, 161, 349–360. [Google Scholar] [CrossRef]
- Rudden, M.; Herman, R.; Rose, M.; Bawdon, D.; Cox, D.S.; Dodson, E.; Holden, M.T.G.; Wilkinson, A.J.; James, A.G.; Thomas, G.H. The Molecular Basis of Thioalcohol Production in Human Body Odour. Sci. Rep. 2020, 10, 12500. [Google Scholar] [CrossRef] [PubMed]
- Marcinkowska, M.A.; Jeleń, H.H. Role of Sulfur Compounds in Vegetable and Mushroom Aroma. Molecules 2022, 27, 6116. [Google Scholar] [CrossRef]
- Chin, H.-W.; Lindsay, R.C. Mechanisms of Formation of Volatile Sulfur Compounds Following the Action of Cysteine Sulfoxide Lyases. J. Agric. Food Chem. 1994, 42, 1529–1536. [Google Scholar] [CrossRef]
- Roncoroni, M.; Santiago, M.; Hooks, D.O.; Moroney, S.; Harsch, M.J.; Lee, S.A.; Richards, K.D.; Nicolau, L.; Gardner, R.C. The Yeast IRC7 Gene Encodes a Beta-Lyase Responsible for Production of the Varietal Thiol 4-Mercapto-4-Methylpentan-2-One in Wine. Food Microbiol. 2011, 28, 926–935. [Google Scholar] [CrossRef]
- Belda, I.; Ruiz, J.; Navascues, E.; Marquina, D.; Santos, A. Improvement of Aromatic Thiol Release through the Selection of Yeasts with Increased Beta-Lyase Activity. Int. J. Food Microbiol. 2016, 225, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Basic, A.; Blomqvist, M.; Dahlen, G.; Svensater, G. The Proteins of Fusobacterium Spp. Involved in Hydrogen Sulfide Production from L-Cysteine. BMC Microbiol. 2017, 17, 61. [Google Scholar] [CrossRef] [PubMed]
- Yoshida, Y.; Ito, S.; Kamo, M.; Kezuka, Y.; Tamura, H.; Kunimatsu, K.; Kato, H. Production of Hydrogen Sulfide by Two Enzymes Associated with Biosynthesis of Homocysteine and Lanthionine in Fusobacterium nucleatum Subsp. Nucleatum ATCC 25586. Microbiology 2010, 156, 2260–2269. [Google Scholar] [CrossRef] [PubMed]
- Cooper, A.J.; Krasnikov, B.F.; Niatsetskaya, Z.V.; Pinto, J.T.; Callery, P.S.; Villar, M.T.; Artigues, A.; Bruschi, S.A. Cysteine S-Conjugate Beta-Lyases: Important Roles in the Metabolism of Naturally Occurring Sulfur and Selenium-Containing Compounds, Xenobiotics and Anticancer Agents. Amino Acids 2011, 41, 7–27. [Google Scholar] [CrossRef] [PubMed]
- Alexander, F.W.; Sandmeier, E.; Mehta, P.K.; Christen, P. Evolutionary Relationships among Pyridoxal-5′-phosphate-dependent Enzymes: Regio-specific α, β and γ Families. Eur. J. Biochem. 1994, 219, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.; Huber, R.; Laber, B.; Pohlenz, H.-D.; Messerschmidt, A. Crystal Structure of the Pyridoxal-5′-Phosphate Dependent Cystathionine β-Lyase fromEscherichia Coliat 1.83 Å. J. Mol. Biol. 1996, 262, 202–224. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.; Schlegel, A.; Peist, R.; Schneider, E.; Steegborn, C.; Chang, Y.-S.; Haase, A.; Bourenkov, G.P.; Bartunik, H.D.; Boos, W. X-Ray Structure of MalY from Escherichia Coli: A Pyridoxal 5′-Phosphate-Dependent Enzyme Acting as a Modulator in Mal Gene Expression. EMBO J. 2000, 19, 831–842. [Google Scholar] [CrossRef] [PubMed]
- Auger, S.; Gomez, M.P.; Danchin, A.; Martin-Verstraete, I. The PatB Protein of Bacillus Subtilis Is a C-S-Lyase. Biochimie 2005, 87, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Aitken, S.M.; Lodha, P.H.; Morneau, D.J.K. The Enzymes of the Transsulfuration Pathways: Active-Site Characterizations. Biochim. Biophys. Acta BBA Proteins Proteom. 2011, 1814, 1511–1517. [Google Scholar] [CrossRef]
- Auger, S.; Yuen, W.H.; Danchin, A.; Martin-Verstraete, I. The metIC Operon Involved in Methionine Biosynthesis in Bacillus Subtilis Is Controlled by Transcription Antitermination. Microbiology 2002, 148, 507–518. [Google Scholar] [CrossRef]
- Krupka, H.I.; Huber, R.; Holt, S.C.; Clausen, T. Crystal Structure of Cystalysin from Treponema Denticola: A Pyridoxal 5′-phosphate-dependent Protein Acting as a Haemolytic Enzyme. EMBO J. 2000, 19, 3168–3178. [Google Scholar] [CrossRef]
- Chu, L.; Ebersole, J.L.; Kurzban, G.P.; Holt, S.C. Cystalysin, a 46-Kilodalton Cysteine Desulfhydrase from Treponema Denticola, with Hemolytic and Hemoxidative Activities. Infect. Immun. 1997, 65, 3231–3238. [Google Scholar] [CrossRef] [PubMed]
- Chu, L.; Ebersole, J.L.; Kurzban, G.P.; Holt, S.C. Cystalysin, a 46-kDa L-Cysteine Desulfhydrase from Treponema Denticola: Biochemical and Biophysical Characterization. Clin. Infect. Dis. 1999, 28, 442–450. [Google Scholar] [CrossRef] [PubMed]
- Bertoldi, M.; Cellini, B.; Clausen, T.; Voltattorni, C.B. Spectroscopic and Kinetic Analyses Reveal the Pyridoxal 5′-Phosphate Binding Mode and the Catalytic Features of Treponema denticola Cystalysin. Biochemistry 2002, 41, 9153–9164. [Google Scholar] [CrossRef] [PubMed]
- Krespi, Y.P.; Shrime, M.G.; Kacker, A. The Relationship between Oral Malodor and Volatile Sulfur Compound-Producing Bacteria. Otolaryngol. Head. Neck Surg. 2006, 135, 671–676. [Google Scholar] [CrossRef] [PubMed]
- Tomisawa, H.; Suzuki, S.; Ichihara, S.; Fukazawa, H.; Tateishi, M. Purification and Characterization of C-S Lyase from Fusobacterium Varium. A C-S Cleavage Enzyme of Cysteine Conjugates and Some S-Containing Amino Acids. J. Biol. Chem. 1984, 259, 2588–2593. [Google Scholar] [CrossRef] [PubMed]
- Starkenmann, C.; Niclass, Y.; Troccaz, M.; Clark, A.J. Identification of the Precursor of (S)-3-Methyl-3-Sulfanylhexan-1-Ol, the Sulfury Malodour of Human Axilla Sweat. Chem. Biodivers. 2005, 2, 705–716. [Google Scholar] [CrossRef] [PubMed]
- Natsch, A.; Schmid, J.; Flachsmann, F. Identification of Odoriferous Sulfanylalkanols in Human Axilla Secretions and Their Formation through Cleavage of Cysteine Precursors by a C–S Lyase Isolated from Axilla Bacteria. Chem. Biodivers. 2004, 1, 1058–1072. [Google Scholar] [CrossRef] [PubMed]
- Zdych, E.; Peist, R.; Reidl, J.; Boos, W. MalY of Escherichia Coli Is an Enzyme with the Activity of a Beta C-S Lyase (Cystathionase). J. Bacteriol. 1995, 177, 5035–5039. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, Y.; Richet, E.; Han, Z.; Chai, J. Structural Basis for Negative Regulation of the Escherichia coli Maltose System. Nat. Commun. 2023, 14, 4925. [Google Scholar] [CrossRef]
- Kato, S.; Oikawa, T. A Novel Bifunctional Amino Acid Racemase With Multiple Substrate Specificity, MalY From Lactobacillus sakei LT-13: Genome-Based Identification and Enzymological Characterization. Front. Microbiol. 2018, 9, 403. [Google Scholar] [CrossRef] [PubMed]
- Clausen, T.; Huber, R.; Messerschmidt, A.; Pohlenz, H.-D.; Laber, B. Slow-Binding Inhibition of Escherichia coli Cystathionine β-Lyase by l-Aminoethoxyvinylglycine: A Kinetic and X-ray Study. Biochemistry 1997, 36, 12633–12643. [Google Scholar] [CrossRef]
- Landaud, S.; Helinck, S.; Bonnarme, P. Formation of Volatile Sulfur Compounds and Metabolism of Methionine and Other Sulfur Compounds in Fermented Food. Appl. Microbiol. Biotechnol. 2008, 77, 1191–1205. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.J.; Ho, C.T. Volatile Sulfur Compounds in Tropical Fruits. J. Food Drug Anal. 2018, 26, 445–468. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Dadmohammadi, Y.; Abbaspourrad, A. Flavor Components, Precursors, Formation Mechanisms, Production and Characterization Methods: Garlic, Onion, and Chili Pepper Flavors. Crit. Rev. Food Sci. Nutr. 2022, 62, 8265–8287. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Iwasaki, K.; Mikami, M.; Yagihashi, A. Distribution of Eleven Flavor Precursors, S-Alk(En)Yl-L-Cysteine Derivatives, in Seven Allium Vegetables. Food Sci. Technol. Res. 2010, 17, 55–62. [Google Scholar] [CrossRef]
- Frank, D.; Piyasiri, U.; Archer, N.; Heffernan, J.; Poelman, A.A.M. In-Mouth Volatile Production from Brassica Vegetables (Cauliflower) and Associations with Liking in an Adult/Child Cohort. J. Agric. Food Chem. 2021, 69, 11646–11655. [Google Scholar] [CrossRef] [PubMed]
- Tominaga, T.; des Gachons, C.P.; Dubourdieu, D. A New Type of Flavor Precursors in Vitis Vinifera L Cv Sauvignon Blanc: S-Cysteine Conjugates. J. Agric. Food Chem. 1998, 46, 5215–5219. [Google Scholar] [CrossRef]
- Peyrot Des Gachons, C.; Tominaga, T.; Dubourdieu, D. Sulfur Aroma Precursor Present in S-Glutathione Conjugate Form: Identification of S-3-(Hexan-1-Ol)-Glutathione in Must from Vitis vinifera L. Cv. Sauvignon Blanc. J. Agric. Food Chem. 2002, 50, 4076–4079. [Google Scholar] [CrossRef]
- Gros, J.; Tran, T.T.H.; Collin, S. Enzymatic Release of Odourant Polyfunctional Thiols from Cysteine Conjugates in Hop. J. Inst. Brew. 2013, 119, 221–227. [Google Scholar] [CrossRef]
- Chenot, C.; Collin, S.; Suc, L.; Roland, A. Evidence of Enzymatic and Chemical Interconversions of Barley Malt 3-Sulfanylhexanol Conjugates during Mashing. J. Agric. Food Chem. 2023, 71, 13107–13113. [Google Scholar] [CrossRef] [PubMed]
- Starkenmann, C.; Luca, L.; Niclass, Y.; Praz, E.; Roguet, D. Comparison of Volatile Constituents of Persicaria odorata (Lour.) Soják (Polygonum odoratum Lour.) and Persicaria hydropiper L. Spach (Polygonum hydropiper L.). J. Agric. Food Chem. 2006, 54, 3067–3071. [Google Scholar] [CrossRef]
- Starkenmann, C.; Niclass, Y.; Escher, S. Volatile Organic Sulfur-Containing Constituents in Poncirus trifoliata (L.) Raf. (Rutaceae). J. Agric. Food Chem. 2007, 55, 4511–4517. [Google Scholar] [CrossRef]
- Cerny, C.; Guntz-Dubini, R. Formation of Cysteine-S-Conjugates in the Maillard Reaction of Cysteine and Xylose. Food Chem. 2013, 141, 1078–1086. [Google Scholar] [CrossRef]
- Cerny, C.; Schlichtherle-Cerny, H.; Gibe, R.; Yuan, Y. Furfuryl Alcohol Is a Precursor for Furfurylthiol in Coffee. Food Chem. 2021, 337, 128008. [Google Scholar] [CrossRef]
- Bonnaffoux, H.; Roland, A.; Schneider, R.; Cavelier, F. Spotlight on Release Mechanisms of Volatile Thiols in Beverages. Food Chem. 2021, 339, 127628. [Google Scholar] [CrossRef]
- Kobayashi, H.; Takase, H.; Suzuki, Y.; Tanzawa, F.; Takata, R.; Fujita, K.; Kohno, M.; Mochizuki, M.; Suzuki, S.; Konno, T. Environmental Stress Enhances Biosynthesis of Flavor Precursors, S-3-(Hexan-1-Ol)-Glutathione and S-3-(Hexan-1-Ol)-L-Cysteine, in Grapevine through Glutathione S-Transferase Activation. J. Exp. Bot. 2011, 62, 1325–1336. [Google Scholar] [CrossRef] [PubMed]
- Kishimoto, T.; Kobayashi, M.; Yako, N.; Iida, A.; Wanikawa, A. Comparison of 4-Mercapto-4-Methylpentan-2-One Contents in Hop Cultivars from Different Growing Regions. J. Agric. Food Chem. 2008, 56, 1051–1057. [Google Scholar] [CrossRef]
- Thibon, C.; Cluzet, S.; Mérillon, J.M.; Darriet, P.; Dubourdieu, D. 3-Sulfanylhexanol Precursor Biogenesis in Grapevine Cells: The Stimulating Effect of Botrytis cinerea. J. Agric. Food Chem. 2011, 59, 1344–1351. [Google Scholar] [CrossRef] [PubMed]
- Schwimmer, S.; Mazelis, M. Characterization of Alliinase of Allium Cepa (Onion). Arch. Biochem. Biophys. 1963, 100, 66–73. [Google Scholar] [CrossRef]
- Zhang, M.; Batra, R.; Brainta, M.; Huang, D. Purification and Characterisation of a C-S Lyase in Seeds of Parkia Speciosa Hassk. Food Chem. 2023, 404, 134438. [Google Scholar] [CrossRef] [PubMed]
- Lei, X.; Gao, S.; Feng, X.; Huang, Z.; Bian, Y.; Huang, W.; Liu, Y. Effects of GGT and C-S Lyase on the Generation of Endogenous Formaldehyde in Lentinula Edodes at Different Growth Stages. Molecules 2019, 24, 4203. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bao, D.-P.; Yang, R.-H.; Chen, H.-Y.; Gao, Y.-N.; Li, Y.; Mao, W.-J.; Wu, Y.-Y. Bioinformatics Analyses of C-S Lyases in the Genome of Lentinula Edode. Mycosystema 2018, 37, 1608–1619. [Google Scholar] [CrossRef]
- Peña-Gallego, A.; Hernández-Orte, P.; Cacho, J.; Ferreira, V. S-Cysteinylated and S-Glutathionylated Thiol Precursors in Grapes. A Review. Food Chem. 2012, 131, 1–13. [Google Scholar] [CrossRef]
- Vermeulen, C.; Lejeune, I.; Tran, T.T.; Collin, S. Occurrence of Polyfunctional Thiols in Fresh Lager Beers. J. Agric. Food Chem. 2006, 54, 5061–5068. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Cordente, A.G.; Williams, S.J.; Capone, D.L.; Jitjaroen, W.; Menz, I.R.; Curtin, C.; Anderson, P.A. Engineering Saccharomyces cerevisiae to Release 3-Mercaptohexan-1-Ol during Fermentation through Overexpression of an S. Cerevisiae Gene, STR3, for Improvement of Wine Aroma. Appl. Environ. Microbiol. 2011, 77, 3626–3632. [Google Scholar] [CrossRef]
- Tominaga, T.; Dubourdieu, D. Identification of Cysteinylated Aroma Precursors of Certain Volatile Thiols in Passion Fruit Juice. J. Agric. Food Chem. 2000, 48, 2874–2876. [Google Scholar] [CrossRef] [PubMed]
- Zha, M.; Sun, B.; Yin, S.; Mehmood, A.; Cheng, L.; Wang, C. Generation of 2-Furfurylthiol by Carbon–Sulfur Lyase from the Baijiu Yeast Saccharomyces cerevisiae G20. J. Agric. Food Chem. 2018, 66, 2114–2120. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, P.; Xu, Y.; Li, H.; Li, H.; Sun, J.; Sun, B. Isolation and Characterization of Yeast with Benzenemethanethiol Synthesis Ability Isolated from Baijiu Daqu. Foods 2023, 12, 2464. [Google Scholar] [CrossRef]
- Parker, M.; Capone, D.L.; Francis, I.L.; Herderich, M.J. Aroma Precursors in Grapes and Wine: Flavor Release during Wine Production and Consumption. J. Agric. Food Chem. 2018, 66, 2281–2286. [Google Scholar] [CrossRef]
- Eriksen, R.L.; Padgitt-Cobb, L.K.; Townsend, M.S.; Henning, J.A. Gene Expression for Secondary Metabolite Biosynthesis in Hop (Humulus lupulus L.) Leaf Lupulin Glands Exposed to Heat and Low-Water Stress. Sci. Rep. 2021, 11, 5138. [Google Scholar] [CrossRef] [PubMed]
- Holt, S.; Miks, M.H.; de Carvalho, B.T.; Foulquie-Moreno, M.R.; Thevelein, J.M. The Molecular Biology of Fruity and Floral Aromas in Beer and Other Alcoholic Beverages. FEMS Microbiol. Rev. 2019, 43, 193–222. [Google Scholar] [CrossRef] [PubMed]
- Chenot, C.; Willemart, G.; Gros, J.; Collin, S. Ability of Exogenous or Wort Endogenous Enzymes to Release Free Thiols from Hop Cysteinylated and Glutathionylated S-Conjugates. J. Am. Soc. Brew. Chem. 2023, 81, 33–44. [Google Scholar] [CrossRef]
- Song, X.; Zhu, L.; Wang, X.; Zheng, F.; Zhao, M.; Liu, Y.; Li, H.; Zhang, F.; Zhang, Y.; Chen, F. Characterization of Key Aroma-Active Sulfur-Containing Compounds in Chinese Laobaigan Baijiu by Gas Chromatography-Olfactometry and Comprehensive Two-Dimensional Gas Chromatography Coupled with Sulfur Chemiluminescence Detection. Food Chem. 2019, 297, 124959. [Google Scholar] [CrossRef] [PubMed]
- Hanniffy, S.B.; Peláez, C.; Martínez-Bartolomé, M.A.; Requena, T.; Martínez-Cuesta, M.C. Key Enzymes Involved in Methionine Catabolism by Cheese Lactic Acid Bacteria. Int. J. Food Microbiol. 2009, 135, 223–230. [Google Scholar] [CrossRef] [PubMed]
- Alting, A.C.; Engels, W.; Van Schalkwijk, S.; Exterkate, F.A. Purification and Characterization of Cystathionine (Beta)-Lyase from Lactococcus lactis Subsp. Cremoris B78 and Its Possible Role in Flavor Development in Cheese. Appl. Environ. Microbiol. 1995, 61, 4037–4042. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.-J.; Banavara, D.S.; Hughes, J.E.; Christiansen, J.K.; Steele, J.L.; Broadbent, J.R.; Rankin, S.A. Role of Cystathionine β-Lyase in Catabolism of Amino Acids to Sulfur Volatiles by Genetic Variants of Lactobacillus helveticus CNRZ 32. Appl. Environ. Microbiol. 2007, 73, 3034–3039. [Google Scholar] [CrossRef] [PubMed]
- Howell, K.S.; Klein, M.; Swiegers, J.H.; Hayasaka, Y.; Elsey, G.M.; Fleet, G.H.; Høj, P.B.; Pretorius, I.S.; De Barros Lopes, M.A. Genetic Determinants of Volatile-Thiol Release by Saccharomyces cerevisiae during Wine Fermentation. Appl. Environ. Microbiol. 2005, 71, 5420–5426. [Google Scholar] [CrossRef] [PubMed]
- Yamagata, S.; D’Andrea, R.J.; Fujisaki, S.; Isaji, M.; Nakamura, K. Cloning and Bacterial Expression of the CYS3 Gene Encoding Cystathionine Gamma-Lyase of Saccharomyces cerevisiae and the Physicochemical and Enzymatic Properties of the Protein. J. Bacteriol. 1993, 175, 4800–4808. [Google Scholar] [CrossRef]
- Takase, H.; Sasaki, K.; Kiyomichi, D.; Kobayashi, H.; Matsuo, H.; Takata, R. Impact of Lactobacillus Plantarum on Thiol Precursor Biotransformation Leading to Production of 3-Sulfanylhexan-1-Ol. Food Chem. 2018, 259, 99–104. [Google Scholar] [CrossRef]
- Clérat, L.; Rémond, E.; Schneider, R.; Cavelier, F.; Vivès, E. Exogenous C–S Lyase Enzyme, a Potential Tool To Release Aromas in Wine or Beer? J. Agric. Food Chem. 2024, 72, 1878–1884. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.; Pius Bassey, A.; Cao, Y.; Ma, Y.; Huang, M.; Yang, H. Food Protein Aggregation and Its Application. Food Res. Int. 2022, 160, 111725. [Google Scholar] [CrossRef] [PubMed]
- Lamont, R.J.; Koo, H.; Hajishengallis, G. The Oral Microbiota: Dynamic Communities and Host Interactions. Nat. Rev. Microbiol. 2018, 16, 745–759. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Ahmed, L.; Zhang, R.; Pan, Y.; Matsunami, H.; Burger, J.L.; Block, E.; Batista, V.S.; Zhuang, H. Smelling Sulfur: Copper and Silver Regulate the Response of Human Odorant Receptor OR2T11 to Low-Molecular-Weight Thiols. J. Am. Chem. Soc. 2016, 138, 13281–13288. [Google Scholar] [CrossRef]
- Frank, D.; Piyasiri, U.; Archer, N.; Jenifer, J.; Appelqvist, I. Influence of Saliva on Individual In-Mouth Aroma Release from Raw Cabbage (Brassica oleracea Var. Capitata f. Rubra L.) and Links to Perception. Heliyon 2018, 4, e01045. [Google Scholar] [CrossRef]
Name | Organism | PDB Code | Resolution (Å) | Oligomerization | References |
---|---|---|---|---|---|
BaCBL | Bacillus anthracis | 3T32 | 2.00 | Homodimer | NP |
BsPatB | Bacillus subtilis | 6QP3 | 2.30 | Homodimer | [39] |
CdCBL | Clostridium difficile | 4DGT | 1.55 | Homodimer | NP |
CdCBL | Corynebacterium diphtheriae | 3FDB | 1.99 | Homodimer | NP |
EcCBL | Escherichia coli | 1CL1 | 1.83 | Homotetramer | [37,53] |
EcMalY | 1D2F | 2.50 | Homodimer | [38] | |
FnaPatB1 | Fusobacterium nucleatum subsp. animalis | 7QUG | 2.60 | Homodimer | [26] |
KpCBL | Klebsiella pneumonia | 8DUY | 1.90 | Homodimer | NP |
LDB CSL | Lactobacillus delbrueckii subs. bulgaricus | 3DZZ | 1.61 | Homodimer | [27] |
ShPatB | Staphylococcus hominis | 6QP2 | 1.60 | Homodimer | [28] |
Cystalysin | Treponema denticola | 1C7N | 1.90 | Homodimer | [42] |
Substrate | Metabolite | Organism/Enzyme | Foods/Compounds | References |
---|---|---|---|---|
S-3-(hexan-1-ol)-L-cysteine | 3-mercaptohexan-1-ol | Human saliva β-CSL, F. nucleatum β-CSL | Pure compounds | [16] |
S-(1-propyl)-L-cysteine | 1-propanethiol | |||
S-((R/S)-2-Heptyl)-L-cysteine | 2-heptanethiol | |||
S-methyl-L-cysteine-oxide (Methiin) | methanethiol, dimethyl disulfide, dimethyl trisulfide | Human saliva β-CSL | Allium and Brassica vegetables | [57,58,96] |
S-allyl-L-cysteine | allyl-thiol, diallyl-sulfide, diallyl-disulfide | Human saliva β-CSL, FnaPatB1 from F. nucleatum | Pure compounds | [26] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwartz, M.; Poirier, N.; Moreno, J.; Proskura, A.; Lelièvre, M.; Heydel, J.-M.; Neiers, F. Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation. Int. J. Mol. Sci. 2024, 25, 6412. https://doi.org/10.3390/ijms25126412
Schwartz M, Poirier N, Moreno J, Proskura A, Lelièvre M, Heydel J-M, Neiers F. Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation. International Journal of Molecular Sciences. 2024; 25(12):6412. https://doi.org/10.3390/ijms25126412
Chicago/Turabian StyleSchwartz, Mathieu, Nicolas Poirier, Jade Moreno, Alena Proskura, Mélanie Lelièvre, Jean-Marie Heydel, and Fabrice Neiers. 2024. "Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation" International Journal of Molecular Sciences 25, no. 12: 6412. https://doi.org/10.3390/ijms25126412
APA StyleSchwartz, M., Poirier, N., Moreno, J., Proskura, A., Lelièvre, M., Heydel, J. -M., & Neiers, F. (2024). Microbial β C-S Lyases: Enzymes with Multifaceted Roles in Flavor Generation. International Journal of Molecular Sciences, 25(12), 6412. https://doi.org/10.3390/ijms25126412