Immature Surfactant Protein B Increases in the Serum of Patients with Calcific Severe Aortic Stenosis
Abstract
1. Introduction
2. Results
2.1. Characteristics of the Study Participants
2.2. Serum Levels of Surfactant Proteins
3. Discussion
4. Materials and Methods
4.1. Study Population
4.2. Immunoassays of proSP-B, SP-A, and SP-D
4.3. Measurement of Inflammatory Mediators
4.4. Statistical Analysis
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nkomo, V.T.; Gardin, J.M.; Skelton, T.N.; Gottdiener, J.S.; Scott, C.G.; Enriquez-Sarano, M. Burden of valvular heart diseases: A population-based study. Lancet 2006, 368, 1005–1011. [Google Scholar] [CrossRef] [PubMed]
- Virani, S.S.; Alonso, A.; Benjamin, E.J.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Delling, F.N.; et al. Heart Disease and Stroke Statistics-2020 Update: A Report From the American Heart Association. Circulation 2020, 141, e139–e596. [Google Scholar] [CrossRef] [PubMed]
- Alfieri, O.; Vahanian, A. The year in cardiology 2016: Valvular heart disease. Eur. Heart J. 2017, 38, 628–633. [Google Scholar] [CrossRef] [PubMed]
- Vahanian, A.; Beyersdorf, F.; Praz, F.; Milojevic, M.; Baldus, S.; Bauersachs, J.; Capodanno, D.; Conradi, L.; De Bonis, M.; De Paulis, R.; et al. 2021 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardiothorac. Surg. 2021, 60, 727–800. [Google Scholar] [CrossRef]
- Sun, J.C.; Davidson, M.J.; Lamy, A.; Eikelboom, J.W. Antithrombotic management of patients with prosthetic heart valves: Current evidence and future trends. Lancet 2009, 374, 565–576. [Google Scholar] [CrossRef] [PubMed]
- Maeder, M.T.; Weber, L.; Rickli, H. Pulmonary hypertension in aortic valve stenosis. Trends Cardiovasc. Med. 2022, 32, 73–81. [Google Scholar] [CrossRef] [PubMed]
- Ratwatte, S.; Stewart, S.; Strange, G.; Playford, D.; Celermajer, D.S. Prevalence of pulmonary hypertension in aortic stenosis and its influence on outcomes. Heart 2023, 109, 1319–1326. [Google Scholar] [CrossRef] [PubMed]
- Johansson, J.; Curstedt, T. Molecular structures and interactions of pulmonary surfactant components. Eur. J. Biochem. 1997, 244, 675–693. [Google Scholar] [CrossRef]
- Han, S.; Mallampalli, R.K. The Role of Surfactant in Lung Disease and Host Defense against Pulmonary Infections. Ann. Am. Thorac. Soc. 2015, 12, 765–774. [Google Scholar] [CrossRef]
- Colmorten, K.B.; Nexoe, A.B.; Sorensen, G.L. The Dual Role of Surfactant Protein-D in Vascular Inflammation and Development of Cardiovascular Disease. Front. Immunol. 2019, 10, 2264. [Google Scholar] [CrossRef]
- Gargiulo, P.; Banfi, C.; Ghilardi, S.; Magri, D.; Giovannardi, M.; Bonomi, A.; Salvioni, E.; Battaia, E.; Filardi, P.P.; Tremoli, E.; et al. Surfactant-derived proteins as markers of alveolar membrane damage in heart failure. PLoS ONE 2014, 9, e115030. [Google Scholar] [CrossRef] [PubMed]
- Banfi, C.; Agostoni, P. Surfactant protein B: From biochemistry to its potential role as diagnostic and prognostic marker in heart failure. Int. J. Cardiol. 2016, 221, 456–462. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.; Banfi, C.; Maruotti, A.; Farina, S.; Vignati, C.; Salvioni, E.; Morosin, M.; Brioschi, M.; Ghilardi, S.; Tremoli, E.; et al. Plasma immature form of surfactant protein type B correlates with prognosis in patients with chronic heart failure. A pilot single-center prospective study. Int. J. Cardiol. 2015, 201, 394–399. [Google Scholar] [CrossRef]
- Banfi, C.; Brioschi, M.; Mapelli, M.; Gianazza, E.; Mallia, A.; Zoanni, B.; Salvioni, E.; Gugliandolo, P.; Capra, N.; Veglia, F.; et al. Immature Circulating SP-B, Bound to HDL, Represents an Early Sign of Smoke-Induced Pathophysiological Alterations. Biomolecules 2021, 11, 551. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.C.; Wert, S.E.; Bachurski, C.J.; Stahlman, M.T.; Stripp, B.R.; Weaver, T.E.; Whitsett, J.A. Targeted disruption of the surfactant protein B gene disrupts surfactant homeostasis, causing respiratory failure in newborn mice. Proc. Natl. Acad. Sci. USA 1995, 92, 7794–7798. [Google Scholar] [CrossRef] [PubMed]
- Sever, N.; Milicic, G.; Bodnar, N.O.; Wu, X.; Rapoport, T.A. Mechanism of Lamellar Body Formation by Lung Surfactant Protein B. Mol. Cell 2021, 81, 49–66.e8. [Google Scholar] [CrossRef] [PubMed]
- Olmeda, B.; Garcia-Alvarez, B.; Perez-Gil, J. Structure-function correlations of pulmonary surfactant protein SP-B and the saposin-like family of proteins. Eur. Biophys. J. 2013, 42, 209–222. [Google Scholar] [CrossRef] [PubMed]
- Magri, D.; Brioschi, M.; Banfi, C.; Schmid, J.P.; Palermo, P.; Contini, M.; Apostolo, A.; Bussotti, M.; Tremoli, E.; Sciomer, S.; et al. Circulating plasma surfactant protein type B as biological marker of alveolar-capillary barrier damage in chronic heart failure. Circ. Heart Fail. 2009, 2, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Holmskov, U.; Thiel, S.; Jensenius, J.C. Collections and ficolins: Humoral lectins of the innate immune defense. Annu. Rev. Immunol. 2003, 21, 547–578. [Google Scholar] [CrossRef]
- Kishore, U.; Greenhough, T.J.; Waters, P.; Shrive, A.K.; Ghai, R.; Kamran, M.F.; Bernal, A.L.; Reid, K.B.; Madan, T.; Chakraborty, T. Surfactant proteins SP-A and SP-D: Structure, function and receptors. Mol. Immunol. 2006, 43, 1293–1315. [Google Scholar] [CrossRef]
- Haczku, A. Protective role of the lung collectins surfactant protein A and surfactant protein D in airway inflammation. J. Allergy Clin. Immunol. 2008, 122, 861–879; quiz 880–861. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, G.L. Surfactant Protein D in Respiratory and Non-Respiratory Diseases. Front. Med. 2018, 5, 18. [Google Scholar] [CrossRef] [PubMed]
- Bourbon, J.R.; Chailley-Heu, B. Surfactant proteins in the digestive tract, mesentery, and other organs: Evolutionary significance. Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2001, 129, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Gardai, S.J.; Xiao, Y.Q.; Dickinson, M.; Nick, J.A.; Voelker, D.R.; Greene, K.E.; Henson, P.M. By binding SIRPalpha or calreticulin/CD91, lung collectins act as dual function surveillance molecules to suppress or enhance inflammation. Cell 2003, 115, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Ohya, M.; Nishitani, C.; Sano, H.; Yamada, C.; Mitsuzawa, H.; Shimizu, T.; Saito, T.; Smith, K.; Crouch, E.; Kuroki, Y. Human pulmonary surfactant protein D binds the extracellular domains of Toll-like receptors 2 and 4 through the carbohydrate recognition domain by a mechanism different from its binding to phosphatidylinositol and lipopolysaccharide. Biochemistry 2006, 45, 8657–8664. [Google Scholar] [CrossRef] [PubMed]
- Stahlman, M.T.; Gray, M.E.; Hull, W.M.; Whitsett, J.A. Immunolocalization of surfactant protein-D (SP-D) in human fetal, newborn, and adult tissues. J. Histochem. Cytochem. 2002, 50, 651–660. [Google Scholar] [CrossRef] [PubMed]
- Leth-Larsen, R.; Floridon, C.; Nielsen, O.; Holmskov, U. Surfactant protein D in the female genital tract. Mol. Hum. Reprod. 2004, 10, 149–154. [Google Scholar] [CrossRef] [PubMed]
- Madsen, J.; Kliem, A.; Tornoe, I.; Skjodt, K.; Koch, C.; Holmskov, U. Localization of lung surfactant protein D on mucosal surfaces in human tissues. J. Immunol. 2000, 164, 5866–5870. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, G.L.; Madsen, J.; Kejling, K.; Tornoe, I.; Nielsen, O.; Townsend, P.; Poulain, F.; Nielsen, C.H.; Reid, K.B.; Hawgood, S.; et al. Surfactant protein D is proatherogenic in mice. Am. J. Physiol. Heart Circ. Physiol. 2006, 290, H2286–H2294. [Google Scholar] [CrossRef]
- Snyder, G.D.; Oberley-Deegan, R.E.; Goss, K.L.; Romig-Martin, S.A.; Stoll, L.L.; Snyder, J.M.; Weintraub, N.L. Surfactant protein D is expressed and modulates inflammatory responses in human coronary artery smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol. 2008, 294, H2053–H2059. [Google Scholar] [CrossRef]
- King, S.D.; Cai, D.; Fraunfelder, M.M.; Chen, S.Y. Surfactant protein A promotes atherosclerosis through mediating macrophage foam cell formation. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kati, C.; Alacam, H.; Duran, L.; Guzel, A.; Akdemir, H.U.; Sisman, B.; Sahin, C.; Yavuz, Y.; Altintas, N.; Murat, N.; et al. The effectiveness of the serum surfactant protein D (Sp-D) level to indicate lung injury in pulmonary embolism. Clin. Lab. 2014, 60, 1457–1464. [Google Scholar] [CrossRef]
- Hill, J.; Heslop, C.; Man, S.F.; Frohlich, J.; Connett, J.E.; Anthonisen, N.R.; Wise, R.A.; Tashkin, D.P.; Sin, D.D. Circulating surfactant protein-D and the risk of cardiovascular morbidity and mortality. Eur. Heart J. 2011, 32, 1918–1925. [Google Scholar] [CrossRef]
- Wulf-Johansson, H.; Thinggaard, M.; Tan, Q.; Johansson, S.L.; Schlosser, A.; Christensen, K.; Holmskov, U.; Sorensen, G.L. Circulating surfactant protein D is associated to mortality in elderly women: A twin study. Immunobiology 2013, 218, 712–717. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.; Zhong, Q.; Gong, J.; Qin, Y.; Cui, L.; Yuan, H. Serum Surfactant Protein D is Associated with Atherosclerosis of the Carotid Artery in Patients on Maintenance Hemodialysis. Clin. Lab. 2016, 62, 97–104. [Google Scholar] [CrossRef] [PubMed]
- Brankovic, M.; Martijn Akkerhuis, K.; Mouthaan, H.; Constantinescu, A.; Caliskan, K.; van Ramshorst, J.; Germans, T.; Umans, V.; Kardys, I. Utility of temporal profiles of new cardio-renal and pulmonary candidate biomarkers in chronic heart failure. Int. J. Cardiol. 2019, 276, 157–165. [Google Scholar] [CrossRef]
- Otaki, Y.; Watanabe, T.; Takahashi, H.; Sugai, T.; Yokoyama, M.; Nishiyama, S.; Arimoto, T.; Shishido, T.; Miyamoto, T.; Yamanaka, T.; et al. Circulating Surfactant Protein-D Is Associated With Clinical Outcomes in Peripheral Artery Disease Patients Following Endovascular Therapy. Circ. J. 2018, 82, 1926–1934. [Google Scholar] [CrossRef]
- Savini, C.; Tenti, E.; Mikus, E.; Eligini, S.; Munno, M.; Gaspardo, A.; Gianazza, E.; Greco, A.; Ghilardi, S.; Aldini, G.; et al. Albumin Thiolation and Oxidative Stress Status in Patients with Aortic Valve Stenosis. Biomolecules 2023, 13, 1713. [Google Scholar] [CrossRef] [PubMed]
- Bartoli-Leonard, F.; Zimmer, J.; Aikawa, E. Innate and adaptive immunity: The understudied driving force of heart valve disease. Cardiovasc. Res. 2021, 117, 2506–2524. [Google Scholar] [CrossRef]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef]
Aortic Valve Replacement | Redo Aortic Valve Replacement | p | |
---|---|---|---|
N | 36 | 8 | / |
Male gender | 18 (50.0) | 5 (62.5) | 0.701 |
Female gender | 18 (50.0) | 3 (37.5) | 0.701 |
Age (years) | 78.0 (8.5) | 70.5 (14) | 0.100 |
Weight (kg) | 75.5 (12.5) | 70.0 (43) | 0.604 |
BMI (kg/m2) | 27.5 (3.7) | 29.2 (12.2) | 0.784 |
Hemoglobin (g/dL) | 12.7 (2.1) | 12.8 (3.8) | 0.346 |
Platelets (×109/L) | 196 (80) | 157.5 (89) | 0.041 |
Neutrophils (×109/L) | / | 6.4 (53.8) | / |
Lymphocytes (×109/L) | / | 2.0 (17.6) | / |
Creatinine (mg/dL) | 0.91 (0.40) | 1.04 (0.36) | 0.640 |
LDL (mg/dL) | 71 (38) | 92.5 (40) | 0.439 |
Hypertension (n, %) | 33 (91.7) | 6 (75.0) | 0.219 |
Dyslipidemia (n, %) | 27 (75.0) | 5 (62.5) | 0.663 |
Diabetes (n, %) | 7 (19.4) | 2 (25.0) | 0.659 |
Coronary artery disease (n, %) | 6 (16.7) | 1 (12.5) | 1.000 |
LVEF (%) | 61 (11.0) | 55 (32.0) | 0.692 |
Peak aortic gradient (mmHg) | 72 (32) | 75 (27) | 0.737 |
Mean aortic gradient (mmHg) | 43 (15) | 48 (25) | 0.608 |
Previous coronary artery bypass graft (n, %) | 1 (2.8) | 1 (12.5) | 0.334 |
Oncological history (n, %) | 3 (8.3) | 1 (12.5) | 1.000 |
Direct oral anticoagulants (n, %) | 6 (16.7) | 0 (0.0) | 0.053 |
Statins (n, %) | 21 (58.3) | 4 (50.0) | 0.710 |
Antidiabetic drugs (n, %) | 7 (19.4) | 2 (25.0) | 0.659 |
Antihypertensive drugs (n, %) | 32 (88.9) | 5 (63.0) | 0.100 |
Years since first surgery | / | 8.7 (6.1) | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Eligini, S.; Savini, C.; Ghilardi, S.; Mallia, A.; Vieceli Dalla Sega, F.; Fortini, F.; Mikus, E.; Munno, M.; Modafferi, G.; Agostoni, P.; et al. Immature Surfactant Protein B Increases in the Serum of Patients with Calcific Severe Aortic Stenosis. Int. J. Mol. Sci. 2024, 25, 6418. https://doi.org/10.3390/ijms25126418
Eligini S, Savini C, Ghilardi S, Mallia A, Vieceli Dalla Sega F, Fortini F, Mikus E, Munno M, Modafferi G, Agostoni P, et al. Immature Surfactant Protein B Increases in the Serum of Patients with Calcific Severe Aortic Stenosis. International Journal of Molecular Sciences. 2024; 25(12):6418. https://doi.org/10.3390/ijms25126418
Chicago/Turabian StyleEligini, Sonia, Carlo Savini, Stefania Ghilardi, Alice Mallia, Francesco Vieceli Dalla Sega, Francesca Fortini, Elisa Mikus, Marco Munno, Gloria Modafferi, Piergiuseppe Agostoni, and et al. 2024. "Immature Surfactant Protein B Increases in the Serum of Patients with Calcific Severe Aortic Stenosis" International Journal of Molecular Sciences 25, no. 12: 6418. https://doi.org/10.3390/ijms25126418
APA StyleEligini, S., Savini, C., Ghilardi, S., Mallia, A., Vieceli Dalla Sega, F., Fortini, F., Mikus, E., Munno, M., Modafferi, G., Agostoni, P., Tremoli, E., & Banfi, C. (2024). Immature Surfactant Protein B Increases in the Serum of Patients with Calcific Severe Aortic Stenosis. International Journal of Molecular Sciences, 25(12), 6418. https://doi.org/10.3390/ijms25126418